Semantic Image Search. Alex Egg

Size: px
Start display at page:

Download "Semantic Image Search. Alex Egg"

Transcription

1 Semantic Image Search Alex Egg

2 Inspiration Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems

3 AlexNet 2012 Deep CNN Classifier Feature Generator C1 C2 C3 C4 C5 FC6 FC7 FC8 c) First Pooling Layer d) second to last FC Layer Decaf

4 Nearest Neighbor Search Images in 2D space

5 Semantic Search Reverse Image Search: Image A -> Identical image of A Semantic Image Search: Image A -> Any images containing A The word "semantic" refers to the meaning or essence of something Text Semantics: Sentiment & Meaning Image Semantics: Object Quantification

6 Theoretical Implementation Setup DCNN (Image Feature Generator) Setup Database Index feature vectors in database Query database using 1-Nearest Neighbor Search

7

8 Theoretical Impl. Problems Naive Solution Accuracy: Distance measure breakdown in high dimensions Scalability: Storage & Nearest Neighbor intractability

9 Problem: Accuracy AlexNet: 4096D VGG: 4096D Inception V3: 2048D Inception V4: 1536D After about 10D all points are equally far away -- distance measure break down: Curse of Dimensionality

10 Problem: Scalability Storage Complexity: 4096x32 bits float = KB/vector x 1M images = GB Computational Complexity: 1NN = O(n); 1ms*1e6=16.6m We can mitigate most of these problems using a modern database system.

11 Solutions Scalability: Reduce search space Accuracy: Reduce Dimensionality

12 Dimensionality Reduction PCA: Directions of projection are data-dependent Random Projections: Direction of projections are data-independent Data is so high dimensional that it is too expensive to compute PCA You don t have access to the data all at once, as in streaming

13

14 /\ 2

15 /\ /\/\ 4

16 /\ /\/\ /\/\ 6

17 /\ /\/\ /\/\ /\/\ 8

18 /\ /\/\ /\/\ /\/\ 8

19 /\ /\/\ /\/\ /\/\ 8

20 Johnson-Lindenstrauss Lemma The Johnson-Lindenstrauss Lemma: A set of p points in high-dimensional space can be linearly embedded in m > (12 log p) dimensions without distorting the distance between any two points by more than a factor of (1 ± ε). m > (4 log 1e6) m > 55 2^5 = 32 splits 2^6 = 64 splits

21 Hash Table Binary Tree Search is O(log n) Hash Table lookup is O(1) Bad Hashing Function (Maximizes Collisions) CNN Image Vector 4096D Hashing Function: h(v) = sgn(v r), that is h(v) = ±1 depending on what side of the hyperplane v lies. 4 Random Projections

22 Locality Sensitivity Hashing (LSH) Keep splitting until node are small enough Median splits give nicely balances trees Build a forest

23

24 /\ 2

25 /\ /\/\ 4

26 /\ /\/\ /\/\ 6

27 /\ /\/\ /\/\ /\/\ 8

28 Forrest

29 Smart Implementation Same DCNN Feature Extractor Database to store hashtable instead of vectors Index Features in Database Approximate Nearest Neighbors using LSH

30 Query: Giraffe & Zebra Results: Giraffes and/or Zebras in various colors, varieties & orientations

31 Query: Human Face Results: Human Faces in various colors, varieties & orientations

32 Query: Cat Results: Cats in various colors, varieties & orientations

33 Query: Polar Bear Results: Polar bears in various orientations + white sheep

34 Query: Grizzly Bear Results: Bears in various colors, varieties & orientations

35 Query: Orange Cat Results: Cats in various colors, varieties & orientations

36 Query: Giraffe Results: Giraffes various colors, varieties & orientations

37 Future Work Text -> Image Search: Type in text phrase, then convert into a point in the same high-dimensional space as the images Deployment w/ kubernetes

38 Appendix

39 History 2005: No source control! 2010: Source control & continuous builds, yay!.. but not for ML :( 2017: Great tools!.. still have a way to go for ML.

40 Distance Measures Distance between two points in N dimensional space: Euclidian Cosine Manhattan

41 Naive Implementation Feature Generator: TensorFlow Serving VGG16/FC6 Database: PostgreSQL Frontend: Flask Deployment: Docker & Kubernetes

42 VGG16 Tensorflow Implementation 103 images/s on CPU 711 images/s on Tesla V100 GPU

43 Reverse image search in PostgreSQL using vector operations: rows are CNN image vectors. Euclidian Distance exhaustive search against query image. This is as opposed to the naive solution of doing exhaustive euclidian search in memory.

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Implementation of Deep Convolutional Neural Net on a Digital Signal Processor

Implementation of Deep Convolutional Neural Net on a Digital Signal Processor Implementation of Deep Convolutional Neural Net on a Digital Signal Processor Elaina Chai December 12, 2014 1. Abstract In this paper I will discuss the feasibility of an implementation of an algorithm

More information

Convolutional Neural Networks

Convolutional Neural Networks Lecturer: Barnabas Poczos Introduction to Machine Learning (Lecture Notes) Convolutional Neural Networks Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Learning Binary Code with Deep Learning to Detect Software Weakness

Learning Binary Code with Deep Learning to Detect Software Weakness KSII The 9 th International Conference on Internet (ICONI) 2017 Symposium. Copyright c 2017 KSII 245 Learning Binary Code with Deep Learning to Detect Software Weakness Young Jun Lee *, Sang-Hoon Choi

More information

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing feature 3 PC 3 Beate Sick Many slides are taken form Hinton s great lecture on NN: https://www.coursera.org/course/neuralnets

More information

Machine Learning in the Process Industry. Anders Hedlund Analytics Specialist

Machine Learning in the Process Industry. Anders Hedlund Analytics Specialist Machine Learning in the Process Industry Anders Hedlund Analytics Specialist anders@binordic.com Artificial Specific Intelligence Artificial General Intelligence Strong AI Consciousness MEDIA, NEWS, CELEBRITIES

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT Mocha.jl Deep Learning in Julia Chiyuan Zhang (@pluskid) CSAIL, MIT Deep Learning Learning with multi-layer (3~30) neural networks, on a huge training set. State-of-the-art on many AI tasks Computer Vision:

More information

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Naveen Suda, Vikas Chandra *, Ganesh Dasika *, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, Yu

More information

Apparel Classifier and Recommender using Deep Learning

Apparel Classifier and Recommender using Deep Learning Apparel Classifier and Recommender using Deep Learning Live Demo at: http://saurabhg.me/projects/tag-that-apparel Saurabh Gupta sag043@ucsd.edu Siddhartha Agarwal siagarwa@ucsd.edu Apoorve Dave a1dave@ucsd.edu

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Deep Learning Workshop Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Why deep learning? The ImageNet Challenge Goal: image classification with 1000 categories Top 5 error rate of 15%. Krizhevsky, Alex,

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

DeepIndex for Accurate and Efficient Image Retrieval

DeepIndex for Accurate and Efficient Image Retrieval DeepIndex for Accurate and Efficient Image Retrieval Yu Liu, Yanming Guo, Song Wu, Michael S. Lew Media Lab, Leiden Institute of Advance Computer Science Outline Motivation Proposed Approach Results Conclusions

More information

All You Want To Know About CNNs. Yukun Zhu

All You Want To Know About CNNs. Yukun Zhu All You Want To Know About CNNs Yukun Zhu Deep Learning Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

Human Action Recognition Using CNN and BoW Methods Stanford University CS229 Machine Learning Spring 2016

Human Action Recognition Using CNN and BoW Methods Stanford University CS229 Machine Learning Spring 2016 Human Action Recognition Using CNN and BoW Methods Stanford University CS229 Machine Learning Spring 2016 Max Wang mwang07@stanford.edu Ting-Chun Yeh chun618@stanford.edu I. Introduction Recognizing human

More information

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

Inception Network Overview. David White CS793

Inception Network Overview. David White CS793 Inception Network Overview David White CS793 So, Leonardo DiCaprio dreams about dreaming... https://m.media-amazon.com/images/m/mv5bmjaxmzy3njcxnf5bml5banbnxkftztcwnti5otm0mw@@._v1_sy1000_cr0,0,675,1 000_AL_.jpg

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Global Optimality in Neural Network Training

Global Optimality in Neural Network Training Global Optimality in Neural Network Training Benjamin D. Haeffele and René Vidal Johns Hopkins University, Center for Imaging Science. Baltimore, USA Questions in Deep Learning Architecture Design Optimization

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

A HPX backend for TensorFlow

A HPX backend for TensorFlow A HPX backend for TensorFlow Lukas Troska Institute for Numerical Simulation University Bonn April 5, 2017 Lukas Troska April 5, 2017 1 / 45 Table of Contents 1 Introduction to TensorFlow What is it? Examples

More information

Real-time convolutional networks for sonar image classification in low-power embedded systems

Real-time convolutional networks for sonar image classification in low-power embedded systems Real-time convolutional networks for sonar image classification in low-power embedded systems Matias Valdenegro-Toro Ocean Systems Laboratory - School of Engineering & Physical Sciences Heriot-Watt University,

More information

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders Neural Networks for Machine Learning Lecture 15a From Principal Components Analysis to Autoencoders Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Principal Components

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Weighted Convolutional Neural Network. Ensemble.

Weighted Convolutional Neural Network. Ensemble. Weighted Convolutional Neural Network Ensemble Xavier Frazão and Luís A. Alexandre Dept. of Informatics, Univ. Beira Interior and Instituto de Telecomunicações Covilhã, Portugal xavierfrazao@gmail.com

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks

Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks Nikiforos Pittaras 1, Foteini Markatopoulou 1,2, Vasileios Mezaris 1, and Ioannis Patras 2 1 Information Technologies

More information

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage HENet: A Highly Efficient Convolutional Neural Networks Optimized for Accuracy, Speed and Storage Qiuyu Zhu Shanghai University zhuqiuyu@staff.shu.edu.cn Ruixin Zhang Shanghai University chriszhang96@shu.edu.cn

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang

K-Nearest Neighbour (Continued) Dr. Xiaowei Huang K-Nearest Neighbour (Continued) Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ A few things: No lectures on Week 7 (i.e., the week starting from Monday 5 th November), and Week 11 (i.e., the week

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS Kuan-Chuan Peng and Tsuhan Chen School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

More information

ConvolutionalNN's... ConvNet's... deep learnig

ConvolutionalNN's... ConvNet's... deep learnig Deep Learning ConvolutionalNN's... ConvNet's... deep learnig Markus Thaler, TG208 tham@zhaw.ch www.zhaw.ch/~tham Martin Weisenhorn, TB427 weie@zhaw.ch 20.08.2018 1 Neural Networks Classification: up to

More information

DEEP NEURAL NETWORKS FOR OBJECT DETECTION

DEEP NEURAL NETWORKS FOR OBJECT DETECTION DEEP NEURAL NETWORKS FOR OBJECT DETECTION Sergey Nikolenko Steklov Institute of Mathematics at St. Petersburg October 21, 2017, St. Petersburg, Russia Outline Bird s eye overview of deep learning Convolutional

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink

Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Optimizing Out-of-Core Nearest Neighbor Problems on Multi-GPU Systems Using NVLink Rajesh Bordawekar IBM T. J. Watson Research Center bordaw@us.ibm.com Pidad D Souza IBM Systems pidsouza@in.ibm.com 1 Outline

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Ritchie Zhao 1, Weinan Song 2, Wentao Zhang 2, Tianwei Xing 3, Jeng-Hau Lin 4, Mani Srivastava 3, Rajesh Gupta 4, Zhiru

More information

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018 INF 5860 Machine learning for image classification Lecture 11: Visualization Anne Solberg April 4, 2018 Reading material The lecture is based on papers: Deep Dream: https://research.googleblog.com/2015/06/inceptionism-goingdeeper-into-neural.html

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Revolutionizing the Datacenter

Revolutionizing the Datacenter Power-Efficient Machine Learning using FPGAs on POWER Systems Ralph Wittig, Distinguished Engineer Office of the CTO, Xilinx Revolutionizing the Datacenter Join the Conversation #OpenPOWERSummit Top-5

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

Classifiers and Detection. D.A. Forsyth

Classifiers and Detection. D.A. Forsyth Classifiers and Detection D.A. Forsyth Classifiers Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc) Detection with a classifier Search all windows at relevant scales Prepare features Classify

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Architecting new deep neural networks for embedded applications

Architecting new deep neural networks for embedded applications Architecting new deep neural networks for embedded applications Forrest Iandola 1 Machine Learning in 2012 Sentiment Analysis LDA Object Detection Deformable Parts Model Word Prediction Linear Interpolation

More information

Exploring the Structure of Data at Scale. Rudy Agovic, PhD CEO & Chief Data Scientist at Reliancy January 16, 2019

Exploring the Structure of Data at Scale. Rudy Agovic, PhD CEO & Chief Data Scientist at Reliancy January 16, 2019 Exploring the Structure of Data at Scale Rudy Agovic, PhD CEO & Chief Data Scientist at Reliancy January 16, 2019 Outline Why exploration of large datasets matters Challenges in working with large data

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Scaling Convolutional Neural Networks on Reconfigurable Logic Michaela Blott, Principal Engineer, Xilinx Research

Scaling Convolutional Neural Networks on Reconfigurable Logic Michaela Blott, Principal Engineer, Xilinx Research Scaling Convolutional Neural Networks on Reconfigurable Logic Michaela Blott, Principal Engineer, Xilinx Research Nick Fraser (Xilinx & USydney) Yaman Umuroglu (Xilinx & NTNU) Giulio Gambardella (Xilinx)

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 1 LSTM for Language Translation and Image Captioning Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 2 Part I LSTM for Language Translation Motivation Background (RNNs, LSTMs) Model

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Ryerson University CP8208. Soft Computing and Machine Intelligence. Naive Road-Detection using CNNS. Authors: Sarah Asiri - Domenic Curro

Ryerson University CP8208. Soft Computing and Machine Intelligence. Naive Road-Detection using CNNS. Authors: Sarah Asiri - Domenic Curro Ryerson University CP8208 Soft Computing and Machine Intelligence Naive Road-Detection using CNNS Authors: Sarah Asiri - Domenic Curro April 24 2016 Contents 1 Abstract 2 2 Introduction 2 3 Motivation

More information

Training Convolutional Neural Networks for Translational Invariance on SAR ATR

Training Convolutional Neural Networks for Translational Invariance on SAR ATR Downloaded from orbit.dtu.dk on: Mar 28, 2019 Training Convolutional Neural Networks for Translational Invariance on SAR ATR Malmgren-Hansen, David; Engholm, Rasmus ; Østergaard Pedersen, Morten Published

More information

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions CAMCOS Report Day December 9th, 2015 San Jose State University Project Theme: Classification The Kaggle Competition

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

Chapter 8: Convolutional Networks

Chapter 8: Convolutional Networks Chapter 8: Convolutional Networks Dietrich Klakow Spoken Language Systems Saarland University, Germany Dietrich.Klakow@LSV.Uni-Saarland.De Neural Networks Implementation and Application Introduction Source:

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Lecture Notes for Chapter 5

Lecture Notes for Chapter 5 Classification - Alternative Techniques Lecture tes for Chapter 5 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web site. Topics Rule-Based Classifier

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Warped parallel nearest neighbor searches using kd-trees

Warped parallel nearest neighbor searches using kd-trees Warped parallel nearest neighbor searches using kd-trees Roman Sokolov, Andrei Tchouprakov D4D Technologies Kd-trees Binary space partitioning tree Used for nearest-neighbor search, range search Application:

More information

Predictive Indexing for Fast Search

Predictive Indexing for Fast Search Predictive Indexing for Fast Search Sharad Goel, John Langford and Alex Strehl Yahoo! Research, New York Modern Massive Data Sets (MMDS) June 25, 2008 Goel, Langford & Strehl (Yahoo! Research) Predictive

More information

Lecture Notes for Chapter 5

Lecture Notes for Chapter 5 Classifcation - Alternative Techniques Lecture Notes for Chapter 5 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web site. Topics Rule-Based Classifier

More information

Deep Neural Network Hyperparameter Optimization with Genetic Algorithms

Deep Neural Network Hyperparameter Optimization with Genetic Algorithms Deep Neural Network Hyperparameter Optimization with Genetic Algorithms EvoDevo A Genetic Algorithm Framework Aaron Vose, Jacob Balma, Geert Wenes, and Rangan Sukumar Cray Inc. October 2017 Presenter Vose,

More information

CS231N Project Final Report - Fast Mixed Style Transfer

CS231N Project Final Report - Fast Mixed Style Transfer CS231N Project Final Report - Fast Mixed Style Transfer Xueyuan Mei Stanford University Computer Science xmei9@stanford.edu Fabian Chan Stanford University Computer Science fabianc@stanford.edu Tianchang

More information

Fast Sliding Window Classification with Convolutional Neural Networks

Fast Sliding Window Classification with Convolutional Neural Networks Fast Sliding Window Classification with Convolutional Neural Networks Henry G. R. Gouk Department of Computer Science University of Waikato Private Bag 3105, Hamilton 3240, New Zealand hgouk@waikato.ac.nz

More information

COMPARATIVE DEEP LEARNING FOR CONTENT- BASED MEDICAL IMAGE RETRIEVAL

COMPARATIVE DEEP LEARNING FOR CONTENT- BASED MEDICAL IMAGE RETRIEVAL 1 COMPARATIVE DEEP LEARNING FOR CONTENT- BASED MEDICAL IMAGE RETRIEVAL ADITYA SRIRAM DECEMBER 1 st, 2016 Aditya Sriram CS846 Software Engineering for Big Data December 1, 2016 TOPICS 2 Paper Synopsis Content-Based

More information

Convolutional Neural Network Layer Reordering for Acceleration

Convolutional Neural Network Layer Reordering for Acceleration R1-15 SASIMI 2016 Proceedings Convolutional Neural Network Layer Reordering for Acceleration Vijay Daultani Subhajit Chaudhury Kazuhisa Ishizaka System Platform Labs Value Co-creation Center System Platform

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

An introduction to Machine Learning silicon

An introduction to Machine Learning silicon An introduction to Machine Learning silicon November 28 2017 Insight for Technology Investors AI/ML terminology Artificial Intelligence Machine Learning Deep Learning Algorithms: CNNs, RNNs, etc. Additional

More information

Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Statistisches Data Mining (StDM) Woche 14 Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften oliver.duerr@zhaw.ch Winterthur, 20 Dezember 2016 1 Multitasking

More information

7. Nearest neighbors. Learning objectives. Foundations of Machine Learning École Centrale Paris Fall 2015

7. Nearest neighbors. Learning objectives. Foundations of Machine Learning École Centrale Paris Fall 2015 Foundations of Machine Learning École Centrale Paris Fall 2015 7. Nearest neighbors Chloé-Agathe Azencott Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr Learning

More information

Yelp Restaurant Photo Classification

Yelp Restaurant Photo Classification Yelp Restaurant Photo Classification Haomin Peng haomin@stanford.edu Yiqing Ding yiqingd@stanford.edu Boning Huang bnhuang@stanford.edu 1. Introduction Everyday, millions of users upload numerous photos

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

ADVANCED CLASSIFICATION TECHNIQUES

ADVANCED CLASSIFICATION TECHNIQUES Admin ML lab next Monday Project proposals: Sunday at 11:59pm ADVANCED CLASSIFICATION TECHNIQUES David Kauchak CS 159 Fall 2014 Project proposal presentations Machine Learning: A Geometric View 1 Apples

More information

Sanny: Scalable Approximate Nearest Neighbors Search System Using Partial Nearest Neighbors Sets

Sanny: Scalable Approximate Nearest Neighbors Search System Using Partial Nearest Neighbors Sets Sanny: EC 1,a) 1,b) EC EC EC EC Sanny Sanny ( ) Sanny: Scalable Approximate Nearest Neighbors Search System Using Partial Nearest Neighbors Sets Yusuke Miyake 1,a) Ryosuke Matsumoto 1,b) Abstract: Building

More information

Supplementary material for Analyzing Filters Toward Efficient ConvNet

Supplementary material for Analyzing Filters Toward Efficient ConvNet Supplementary material for Analyzing Filters Toward Efficient Net Takumi Kobayashi National Institute of Advanced Industrial Science and Technology, Japan takumi.kobayashi@aist.go.jp A. Orthonormal Steerable

More information

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Fast Indexing and Search Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Motivation Object categorization? http://www.cs.utexas.edu/~grauman/slides/jain_et_al_cvpr2008.ppt Motivation

More information

CS 523: Multimedia Systems

CS 523: Multimedia Systems CS 523: Multimedia Systems Angus Forbes creativecoding.evl.uic.edu/courses/cs523 Today - Convolutional Neural Networks - Work on Project 1 http://playground.tensorflow.org/ Convolutional Neural Networks

More information

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan

CENG 783. Special topics in. Deep Learning. AlchemyAPI. Week 11. Sinan Kalkan CENG 783 Special topics in Deep Learning AlchemyAPI Week 11 Sinan Kalkan TRAINING A CNN Fig: http://www.robots.ox.ac.uk/~vgg/practicals/cnn/ Feed-forward pass Note that this is written in terms of the

More information

FastText. Jon Koss, Abhishek Jindal

FastText. Jon Koss, Abhishek Jindal FastText Jon Koss, Abhishek Jindal FastText FastText is on par with state-of-the-art deep learning classifiers in terms of accuracy But it is way faster: FastText can train on more than one billion words

More information

RETRIEVAL OF FACES BASED ON SIMILARITIES Jonnadula Narasimha Rao, Keerthi Krishna Sai Viswanadh, Namani Sandeep, Allanki Upasana

RETRIEVAL OF FACES BASED ON SIMILARITIES Jonnadula Narasimha Rao, Keerthi Krishna Sai Viswanadh, Namani Sandeep, Allanki Upasana ISSN 2320-9194 1 Volume 5, Issue 4, April 2017, Online: ISSN 2320-9194 RETRIEVAL OF FACES BASED ON SIMILARITIES Jonnadula Narasimha Rao, Keerthi Krishna Sai Viswanadh, Namani Sandeep, Allanki Upasana ABSTRACT

More information