Under the Guidance of

Size: px
Start display at page:

Download "Under the Guidance of"

Transcription

1 Presented by Linga Venkatesh ( ) Deepak Jayanth ( ) Under the Guidance of Prof. Parag Chaudhuri

2 Flocking/Swarming/Schooling Nature Phenomenon Collective Behaviour by animals of same size Reasons - Avoiding predators - Search for food - Aero Dynamic Efficiency

3 Simulation of large number of characters are very common nowadays in movies, games and screensavers. Applications Computer animation Games Robotics Crowd Simulation Interactive Graphics, etc,.

4 1. Modeling each and every characters paths. Tedious task Keeping the birds from not colliding each frame Hard to edit Final result will be unrealistic 2. Allowing the characters to interact among themselves No need of animators work to some extent. Final Result will be realistic

5 This Approach resembles real world scenario This paper uses the particle system approach, which are used to model the dynamic "fuzzy objects like fire, smoke,etc..

6 Objects are made of clouds of particles rather than primitive types like polygon with definite boundary Collection of large no of particles with its own individual behaviour. Each particles have position, velocity, lifetime, color, size, etc.

7 Typical computer animation models only shape and physical properties of characters. The goal of behavior model simulate characters to handle details on their own. Behaviours ranging from simple path planning to complex emotions. The behaviors are represented as rules. Each boids(bird objects) as an actor.

8

9 mass - scalar position - vector velocity - vector max_force - scalar max_speed - scalar orientation - N basis vectors

10 Based on forward Euler s Integration steering_force = truncate (steering_direction, max_force) acceleration = steering_force / mass velocity = truncate (velocity + acceleration, max_speed) position = position + velocity New Basis Vectors new_forward = normalize (velocity) approximate_up = normalize (approximate_up) new_side = cross (new_forward, approximate_up) new_up = cross (new_forward, new_side)

11 Seek and Flee desired_velocity = normalize (position - target) * max_speed steering = desired_velocity - velocity

12 Pursuit and Evasion Assume the quarry won t move for next T time units. Scale velocity by T and add that to current position

13 Offset Pursuit Refers to steering a path which passes near but not directly into a moving target. Compute an offset by a given radius R from the predicted future position of the target Use seek behaviour

14 Arrival target_offset = target - position distance = length (target_offset) ramped_speed = max_speed * (distance / slowing_distance) clipped_speed = minimum (ramped_speed, max_speed) desired_velocity = (clipped_speed / distance) * target_offset steering = desired_velocity - velocity

15 Wander and Explore The steering force takes a random walk from one direction to another. Next frame s steering force = previous value + Random displacement Cover region of space

16 Path following Circular tube specified by a curve and radius. For projection distance less than the path radius no corrective steering is required.

17 Axis considerations X axis pitch Y axis Yaw Z axis boids forward translation / roll Simple model of viscous speed damping Truncation of over anxious requests Gravity only to define banking Lift aligned with Yaxis

18

19 For straight motion, no radial force Banking aligns the Y axis with gravity. When turning radial component grows larger Acceleration swings outward Centrifugal force tries to push the object away from the turning direction With corrective banking boids Y axis is aligned with Resultant acceleration. Produces realistic representation of how flying object move and orient themselves.

20 Birds seem to have a desire to stay close to the flock and a desire to avoid collisions within the flock. To build simulate flocks start with a boid model which supports geometry Add behaviours correspond to collision avoidance and urge to join the flock 1. Collision Avoidance 2. Velocity Matching 3. Flock Centering

21 Collision Avoidance

22 Collision Avoidance Flock Centering

23 Collision Avoidance Flock Centering Velocity Matching

24 Each individual behavioural urge will result in their own acceleration. Flight Model will AVERAGE them. This works pretty well BUT. AI techniques are needed to solve this problem.

25 Algorithm :: 1. Priorities will be assigned for each acceleration resulted from behavioural urges. 2. These acceleration requests are sorted in the descending order. 3. These are added to accumulator one by one. 4. The magnitude of each request is measured and added to another accumulator. 5. The above steps are performed until magnitude becomes greater than sum of priorities. 6. This magnitude is the final acceleration.

26 The boid model doesn t have senses like real animals. Simulated boids have direct access to geometrical database describing objects. It may not be possible to give each simulated boid the complete information about the world. Interestingly the aggregate motion of the flock depends on a limited localized view of the world.

27 The neighbour root is a spherical zone of sensitivity centered at boids local origin. Magnitude of sensitivity is inverse of exponent of distance. The field of sensitivity should be oriented in the direction of the boid.

28 To combine flock simulation with other animated action. It is to describe the timing of various flock actions by passing parameters to simulation softwares. We can animate dynamic parameter (global position or direction vector). Scripts control the direction of flock using this parameter. Path of each boid will be smooth though the goal changes abruptly.

29

30 The motion of the simulated should also be affected by objects in the environment. There are two solutions for environmental collision avoidance Force Field Concept Steer-to-avoid

31 Force Field Concept Assumes a repulsion force in the space around the obstacles. Increases as the boid gets close to the obstacle. This produces good results but has drawbacks.

32 Steer-to-Avoid Aiming at point offset from silhouette edge computes radial vector

33 O(n 2 ) where n is the flock population. If a separate processor is assigned for each boid then, it can be reduced to O(n).

34 Models a polarized, non colliding flock motion Its difficult to measure how valid they are But still this model behaves similar to natural birds flock like motion The parameter can be adjusted to obtain many variations.

35 Reynolds, C. W.(1987), Flocks, Herds, and Schools: A Distributed Behavioral model, in Computer Graphics, 21(4) (SIGGRAPH '87 Conference Proceedings), pages Reynolds, C. W, Steering Behaviors For Autonomous Characters, in the proceedings of Game Developers Conference 1999 held in San Jose, California. Miller Freeman Game Group, San Francisco, California. Pages William T. Reeves, Particle Systems: A Technique for Modelling a Class of Fuzzy Objects, ACM Transactions on Graphics, April Potts, W. K., The Chorus-Line Hypothesis of Manoeuvre Coordination in Avian Flocks, letter in Nature, Vol. 309, May 24, 1984, pp

Traffic/Flocking/Crowd AI. Gregory Miranda

Traffic/Flocking/Crowd AI. Gregory Miranda Traffic/Flocking/Crowd AI Gregory Miranda Introduction What is Flocking? Coordinated animal motion such as bird flocks and fish schools Initially described by Craig Reynolds Created boids in 1986, generic

More information

STEERING BEHAVIORS. Markéta Popelová, marketa.popelova [zavináč] matfyz.cz. 2012, Umělé Bytosti, MFF UK

STEERING BEHAVIORS. Markéta Popelová, marketa.popelova [zavináč] matfyz.cz. 2012, Umělé Bytosti, MFF UK STEERING BEHAVIORS Markéta Popelová, marketa.popelova [zavináč] matfyz.cz 2012, Umělé Bytosti, MFF UK MOTIVATION MOTIVATION REQUIREMENTS FOR MOTION CONTROL Responding to dynamic environment Avoiding obstacles

More information

STEERING BEHAVIORS MOTIVATION REQUIREMENTS FOR MOTION CONTROL MOTIVATION BOIDS & FLOCKING MODEL STEERING BEHAVIORS - BASICS

STEERING BEHAVIORS MOTIVATION REQUIREMENTS FOR MOTION CONTROL MOTIVATION BOIDS & FLOCKING MODEL STEERING BEHAVIORS - BASICS Přednáška byla podpořena v rámci projektu OPPA CZ.2.17/3.1.00/33274 financovaného Evropským sociálním fondem a rozpočtem hlavního města Prahy. Evropský sociální fond Praha & EU: investujeme do Vaší budoucnosti

More information

CS 354 R Game Technology

CS 354 R Game Technology CS 354 R Game Technology Particles and Flocking Behavior Fall 2017 Particle Effects 2 General Particle Systems Objects are considered point masses with orientation Simple rules control how the particles

More information

Particle Systems. Typical Time Step. Particle Generation. Controlling Groups of Objects: Particle Systems. Flocks and Schools

Particle Systems. Typical Time Step. Particle Generation. Controlling Groups of Objects: Particle Systems. Flocks and Schools Particle Systems Controlling Groups of Objects: Particle Systems Flocks and Schools A complex, fuzzy system represented by a large collection of individual elements. Each element has simple behavior and

More information

Swarm Intelligence Particle Swarm Optimization. Erick Luerken 13.Feb.2006 CS 790R, University of Nevada, Reno

Swarm Intelligence Particle Swarm Optimization. Erick Luerken 13.Feb.2006 CS 790R, University of Nevada, Reno Swarm Intelligence Particle Swarm Optimization Erick Luerken 13.Feb.2006 CS 790R, University of Nevada, Reno Motivation Discuss assigned literature in terms of complexity leading to actual applications

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technology Dynamic Path Planning, Flocking Spring 2012 University of Texas at Austin CS 378 Game Technology Don Fussell Dynamic Path Planning! What happens when the environment changes

More information

Collision Avoidance with Unity3d

Collision Avoidance with Unity3d Collision Avoidance with Unity3d Jassiem Ifill September 12, 2013 Abstract The primary goal of the research presented in this paper is to achieve natural crowd simulation and collision avoidance within

More information

Simulation: Particle Systems

Simulation: Particle Systems Simulation: Particle Systems Course web page: http://goo.gl/eb3aa February 28, 2012 Lecture 5 Particle Systems Definition: Simulation of a set of similar, moving agents in a larger environment Scale usually

More information

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987 (~) ~ Computer Graphics, Volume 21, Number 4, July 1987 Flocks, Herds, and Schools: A Distributed Behavioral Model Craig W. Reynolds Symbolics Graphics Division 1401 Westwood Boulevard Los Angeles, California

More information

12 - More Steering. from Milligan, "Artificial Intelligence for Games", Morgan Kaufman, 2006

12 - More Steering. from Milligan, Artificial Intelligence for Games, Morgan Kaufman, 2006 12 - More Steering from Milligan, "Artificial Intelligence for Games", Morgan Kaufman, 2006 Separation commonly used in crowds, when all characters moving in roughly the same direction (repulsion steering)

More information

Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go)

Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go) Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go) Class N-2 1. What are some benefits of path networks? 2. Cons of path networks?

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Game AI Search Path Finding Finite State Machines Steering Behavior 1 Search Blind search Breadth-first search Depth-first search Heuristic search

More information

CS 231. Crowd Simulation. Outline. Introduction to Crowd Simulation. Flocking Social Forces 2D Cellular Automaton Continuum Crowds

CS 231. Crowd Simulation. Outline. Introduction to Crowd Simulation. Flocking Social Forces 2D Cellular Automaton Continuum Crowds CS 231 Crowd Simulation Outline Introduction to Crowd Simulation Fields of Study & Applications Visualization vs. Realism Microscopic vs. Macroscopic Flocking Social Forces 2D Cellular Automaton Continuum

More information

Crowd simulation. Taku Komura

Crowd simulation. Taku Komura Crowd simulation Taku Komura Animating Crowds We have been going through methods to simulate individual characters What if we want to simulate the movement of crowds? Pedestrians in the streets Flock of

More information

Hierarchical Impostors for the Flocking Algorithm in 3D

Hierarchical Impostors for the Flocking Algorithm in 3D Volume 21 (2002), number 4 pp. 723 731 COMPUTER GRAPHICS forum Hierarchical Impostors for the Flocking Algorithm in 3D Noel O Hara Fruition Technologies Ltd, Dublin, Ireland Abstract The availability of

More information

Master s Thesis. Animal Stampede Simulation

Master s Thesis. Animal Stampede Simulation Master s Thesis Animal Stampede Simulation Akila Lakshminarayanan Brian Tran MSc Computer Animation and Visual Effects, NCCA 2011-2012 Abstract Large crowd scenes with humans and animals are abundant in

More information

When using Flocking with network rendering (LWSN, for instance) you must bake your Flocking results.

When using Flocking with network rendering (LWSN, for instance) you must bake your Flocking results. Flocking About Flocking LightWave s flocking system is based on 3D computer models of coordinated animal motion, things like flocks of birds, herds of animals or schools of fish. It can be used with LightWave

More information

Real-time Crowd Movement On Large Scale Terrains

Real-time Crowd Movement On Large Scale Terrains Real-time Crowd Movement On Large Scale Terrains Wen Tang, Tao Ruan Wan* and Sanket Patel School of Computing and Mathematics, University of Teesside, Middlesbrough, United Kingdom E-mail: w.tang@tees.ac.uk

More information

Announcements. Ray tracer is due in five days you should have started by now or you re going to have a bad week. Missing file posted on the web page

Announcements. Ray tracer is due in five days you should have started by now or you re going to have a bad week. Missing file posted on the web page Announcements Ray tracer is due in five days you should have started by now or you re going to have a bad week Missing file posted on the web page I m sorry for canceling class on Tuesday... 1 Animation

More information

ENHANCING THE CONTROL AND PERFORMANCE OF PARTICLE SYSTEMS THROUGH THE USE OF LOCAL ENVIRONMENTS. Abstract

ENHANCING THE CONTROL AND PERFORMANCE OF PARTICLE SYSTEMS THROUGH THE USE OF LOCAL ENVIRONMENTS. Abstract ENHANCING THE CONTROL AND PERFORMANCE OF PARTICLE SYSTEMS THROUGH THE USE OF LOCAL ENVIRONMENTS Daniel O. Kutz Richard R. Eckert State University of New York at Binghamton Binghamton, NY 13902 Abstract

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

Advanced Algorithms. Particle Systems. Reading. What is a Particle System?

Advanced Algorithms. Particle Systems. Reading. What is a Particle System? Advanced Algorithms Particle Systems CMPT 466 Computer Animation Torsten Möller Hierarchical Kinematic Modeling Forward Kinematics Inverse Kinematics Rigid Body Constraints Basic Particle Forces Collision

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Particle Systems. Lecture 8 Taku Komura

Particle Systems. Lecture 8 Taku Komura Particle Systems Computer Animation and Visualisation Lecture 8 Taku Komura Overview Particle System Modelling fuzzy objects (fire, smoke) Modelling liquid Modelling cloth Integration : implicit integration,

More information

Modelling and recreating complex, natural flocking and predatory behaviour using a limited rule set. BSc (Hons.) in Computer Science

Modelling and recreating complex, natural flocking and predatory behaviour using a limited rule set. BSc (Hons.) in Computer Science Modelling and recreating complex, natural flocking and predatory behaviour using a limited rule set. BSc (Hons.) in Computer Science Samuele Pavone 2004 Modelling and recreating complex, natural flocking

More information

CSE 167: Introduction to Computer Graphics Lecture #19: Wrapping Up. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #19: Wrapping Up. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #19: Wrapping Up Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements TA evaluations CAPE Final project blog entries

More information

Particle Systems: Theory and Practice. Ciara Belle CMSC498A Spring 2012

Particle Systems: Theory and Practice. Ciara Belle CMSC498A Spring 2012 Particle Systems: Theory and Practice Ciara Belle CMSC498A Spring 2012 Introduction: Modeling non-deterministic, complex objects is difficult, using general techniques in computer graphics. Particles systems

More information

NCCA National Center for Computer Animation Master Project ZHUO YAO LU. MSC Computer Animation. Media School. Bournemouth University NCCA 2005

NCCA National Center for Computer Animation Master Project ZHUO YAO LU. MSC Computer Animation. Media School. Bournemouth University NCCA 2005 Master Project ZHUO YAO LU MSC Computer Animation Media School Bournemouth University NCCA 2005-1 - MSC Computer Animation Contents Part 1 Flocking System in Maya Mel Script 5 Chapter 1 Introduction 6

More information

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66 Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^ Computer a jap Animation Algorithms and Techniques Second Edition Rick Parent Ohio State University AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

DM842 Computer Game Programming: AI. Lecture 2. Movement Behaviors. Marco Chiarandini

DM842 Computer Game Programming: AI. Lecture 2. Movement Behaviors. Marco Chiarandini DM842 Computer Game Programming: AI Lecture 2 Movement Behaviors Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Pursue and Evade Face Looking

More information

11 Behavioural Animation. Chapter 11. Behavioural Animation. Department of Computer Science and Engineering 11-1

11 Behavioural Animation. Chapter 11. Behavioural Animation. Department of Computer Science and Engineering 11-1 Chapter 11 Behavioural Animation 11-1 Behavioral Animation Knowing the environment Aggregate behavior Primitive behavior Intelligent behavior Crowd management 11-2 Behavioral Animation 11-3 Knowing the

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

SWARMING PIXEL TRACKER

SWARMING PIXEL TRACKER SWARMING PIXEL TRACKER B.Tech Project submitted by Parth Kanungo Computers and Communication Engineering, The LNM Institute of Information Technology, Jaipur 2011 CERTIFICATE It is certified that the work

More information

Course Review. Computer Animation and Visualisation. Taku Komura

Course Review. Computer Animation and Visualisation. Taku Komura Course Review Computer Animation and Visualisation Taku Komura Characters include Human models Virtual characters Animal models Representation of postures The body has a hierarchical structure Many types

More information

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano tel:

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano   tel: Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02 2399 3470 Path Planning Robotica for Computer Engineering students A.A. 2006/2007

More information

CSE 167: Introduction to Computer Graphics Lecture #18: More Effects. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #18: More Effects. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #18: More Effects Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements TA evaluations CAPE Final project blog

More information

Founda'ons of Game AI

Founda'ons of Game AI Founda'ons of Game AI Level 3 Basic Movement Prof Alexiei Dingli 2D Movement 2D Movement 2D Movement 2D Movement 2D Movement Movement Character considered as a point 3 Axis (x,y,z) Y (Up) Z X Character

More information

CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations

CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations Shannon Blyth and Howard J. Hamilton Department of Computer Science University of Regina, Regina, SK, Canada S4S 0A2 {blyth1sh, hamilton}@cs.uregina.ca

More information

DM842 Computer Game Programming: AI. Lecture 3. Movement Behaviors. Marco Chiarandini

DM842 Computer Game Programming: AI. Lecture 3. Movement Behaviors. Marco Chiarandini DM842 Computer Game Programming: AI Lecture 3 Movement Behaviors Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Combined Steering Blending Priorities

More information

Particle methods for a virtual patient

Particle methods for a virtual patient Particle methods for a virtual patient Buckley, O, Hughes, CJ, John, N and Pop, S Title Authors Type URL Published Date 2009 Particle methods for a virtual patient Buckley, O, Hughes, CJ, John, N and Pop,

More information

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1 Animation Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/23/07 1 Today s Topics Interpolation Forward and inverse kinematics Rigid body simulation Fluids Particle systems Behavioral

More information

Sketch-based Interface for Crowd Animation

Sketch-based Interface for Crowd Animation Sketch-based Interface for Crowd Animation Masaki Oshita 1, Yusuke Ogiwara 1 1 Kyushu Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan oshita@ces.kyutech.ac.p ogiwara@cg.ces.kyutech.ac.p

More information

Particle Systems. Sample Particle System. What is a particle system? Types of Particle Systems. Stateless Particle System

Particle Systems. Sample Particle System. What is a particle system? Types of Particle Systems. Stateless Particle System Sample Particle System Particle Systems GPU Graphics Water Fire and Smoke What is a particle system? Types of Particle Systems One of the original uses was in the movie Star Trek II William Reeves (implementor)

More information

Adding Virtual Characters to the Virtual Worlds. Yiorgos Chrysanthou Department of Computer Science University of Cyprus

Adding Virtual Characters to the Virtual Worlds. Yiorgos Chrysanthou Department of Computer Science University of Cyprus Adding Virtual Characters to the Virtual Worlds Yiorgos Chrysanthou Department of Computer Science University of Cyprus Cities need people However realistic the model is, without people it does not have

More information

9 Dynamics. Getting Started with Maya 491

9 Dynamics. Getting Started with Maya 491 9 Dynamics Dynamics is a branch of physics that describes how objects move using physical rules to simulate the natural forces that act upon them. Dynamic simulations are difficult to achieve with traditional

More information

A LIGHTWEIGHT CONTROL METHODOLOGY FOR FORMATION CONTROL OF VEHICLE SWARMS. Dept. of Computer Engineering, University of California, Santa Cruz

A LIGHTWEIGHT CONTROL METHODOLOGY FOR FORMATION CONTROL OF VEHICLE SWARMS. Dept. of Computer Engineering, University of California, Santa Cruz A LIGHTWEIGHT CONTROL METHODOLOGY FOR FORMATION CONTROL OF VEHICLE SWARMS Gabriel Hugh Elkaim Michael Siegel Dept. of Computer Engineering, University of California, Santa Cruz Abstract: Multi-vehicle

More information

Programming Game Al by Example

Programming Game Al by Example Programming Game Al by Example Mat Buckland Wordware Publishing, Inc. Contents Foreword Acknowledgments Introduction xiii xvii xix Chapter 7 A Math and Physics Primer 1 Mathematics 1 Cartesian Coordinates

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Particle Systems A Technique for Modeling a Class of Fuzzy Objects

Particle Systems A Technique for Modeling a Class of Fuzzy Objects Particle Systems A Technique for Modeling a Class of Fuzzy Objects William T. Reeves, Lucasfilm ACM Transactions on Graphics, 1983 Presented in CS536 by Walt Mankowski 19 October 2006 Genesis Project

More information

NUMB3RS Activity: Follow the Flock. Episode: In Plain Sight

NUMB3RS Activity: Follow the Flock. Episode: In Plain Sight Teacher Page 1 NUMB3RS Activity: Follow the Flock Topic: Introduction to Flock Behavior Grade Level: 8-12 Objective: Use a mathematical model to simulate an aspect of birds flying in a flock Time: 30 minutes

More information

Chapter 3 Implementing Simulations as Individual-Based Models

Chapter 3 Implementing Simulations as Individual-Based Models 24 Chapter 3 Implementing Simulations as Individual-Based Models In order to develop models of such individual behavior and social interaction to understand the complex of an urban environment, we need

More information

Algorithms for Atmospheric Special Effects in Graphics and their Implementation

Algorithms for Atmospheric Special Effects in Graphics and their Implementation Algorithms for Atmospheric Special Effects in Graphics and their Implementation M.Tech Project - First Stage Report Submitted in partial fullfillment of the requirements for the degree of Master of Technology

More information

Replicating Chaos Vehicle Replication in Watch Dogs 2. Matt Delbosc Team Lead Programmer Ubisoft Toronto

Replicating Chaos Vehicle Replication in Watch Dogs 2. Matt Delbosc Team Lead Programmer Ubisoft Toronto Replicating Chaos Vehicle Replication in Watch Dogs 2 Matt Delbosc Team Lead Programmer Ubisoft Toronto Network architecture 4-player peer-to-peer No single server Lots of entities to replicate Distributed

More information

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection Algorithms ROBERT SEDGEWICK KEVIN WAYNE GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE 1d range search line segment intersection kd trees interval search

More information

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection Algorithms ROBERT SEDGEWICK KEVIN WAYNE GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE 1d range search line segment intersection kd trees interval search

More information

Simulation of curly hair

Simulation of curly hair Computer Generated Imagery Techniques Assignment Report May 2013 Simulation of curly hair student ID : i7266699 student name : Fabio student surname : Turchet 1. Introduction For my assignment I implemented

More information

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection Algorithms ROBERT SEDGEWICK KEVIN WAYNE GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE 1d range search line segment intersection kd trees interval search

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Mass-Spring Systems. Last Time?

Mass-Spring Systems. Last Time? Mass-Spring Systems Last Time? Implicit Surfaces & Marching Cubes/Tetras Collision Detection & Conservative Bounding Regions Spatial Acceleration Data Structures Octree, k-d tree, BSF tree 1 Today Particle

More information

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS 1 ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS Purpose The overall goal of this activity is for students to analyze the motion of an object moving with constant velocity along a diagonal line. In this

More information

The jello cube. Undeformed cube. Deformed cube

The jello cube. Undeformed cube. Deformed cube The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC Undeformed cube The jello cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

PARTICLE SWARM OPTIMIZATION (PSO)

PARTICLE SWARM OPTIMIZATION (PSO) PARTICLE SWARM OPTIMIZATION (PSO) J. Kennedy and R. Eberhart, Particle Swarm Optimization. Proceedings of the Fourth IEEE Int. Conference on Neural Networks, 1995. A population based optimization technique

More information

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film NVIDIA Interacting with Particle Simulation in Maya using CUDA & Maximus Wil Braithwaite NVIDIA Applied Engineering Digital Film Some particle milestones FX Rendering Physics 1982 - First CG particle FX

More information

Youngho Kim CIS665: GPU Programming

Youngho Kim CIS665: GPU Programming Youngho Kim CIS665: GPU Programming Building a Million Particle System: Lutz Latta UberFlow - A GPU-based Particle Engine: Peter Kipfer et al. Real-Time Particle Systems on the GPU in Dynamic Environments:

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 480 Computer Graphics Lecture 20 and Rotations April 6, 2011 Jernej Barbic Rotations Motion Capture [Ch. 4.12] University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ 1 Rotations

More information

Simulating Group Formations Using RVO

Simulating Group Formations Using RVO Simulating Group Formations Using RVO Martin Funkquist martinfu@kth.se Supervisor: Christopher Peters Staffan Sandberg stsand@kth.se May 25, 2016 Figure 1: From left to right. First figure displays a real

More information

Technical Game Development II. [some material provided by Mark Claypool] IMGD 4000 (D 10) 1. computing motion of objects in virtual scene

Technical Game Development II. [some material provided by Mark Claypool] IMGD 4000 (D 10) 1. computing motion of objects in virtual scene Basic Game Physics Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu [some material provided by Mark Claypool] IMGD 4000 (D 10) 1 Introduction What is game physics?

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Efficient Crowd Simulation for Mobile Games

Efficient Crowd Simulation for Mobile Games 24 Efficient Crowd Simulation for Mobile Games Graham Pentheny 24.1 Introduction 24.2 Grid 24.3 Flow Field 24.4 Generating the Flow Field 24.5 Units 24.6 Adjusting Unit Movement Values 24.7 Mobile Limitations

More information

CS 387/680: GAME AI MOVEMENT

CS 387/680: GAME AI MOVEMENT CS 387/680: GAME AI MOVEMENT 4/5/2016 Instructor: Santiago Ontañón santi@cs.drexel.edu Class website: https://www.cs.drexel.edu/~santi/teaching/2016/cs387/intro.html Reminders Check Blackboard site for

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

Real Time Cloth Simulation

Real Time Cloth Simulation Real Time Cloth Simulation Sebastian Olsson (81-04-20) Mattias Stridsman (78-04-13) Linköpings Universitet Norrköping 2004-05-31 Table of contents Introduction...3 Spring Systems...3 Theory...3 Implementation...4

More information

Real-time, Multi-agent Simulation of Coordinated Hierarchical Movements for Military Vehicles with Formation Conservation

Real-time, Multi-agent Simulation of Coordinated Hierarchical Movements for Military Vehicles with Formation Conservation Real-time, Multi-agent Simulation of Coordinated Hierarchical Movements for Military Vehicles with Formation Conservation Abdulla M. Mamdouh, Ahmed Kaboudan, and Ibrahim F. Imam Abstract In the military

More information

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC

The Jello Cube Assignment 1, CSCI 520. Jernej Barbic, USC The Jello Cube Assignment 1, CSCI 520 Jernej Barbic, USC 1 The jello cube Undeformed cube Deformed cube The jello cube is elastic, Can be bent, stretched, squeezed,, Without external forces, it eventually

More information

Technical Game Development II. [some material provided by Mark Claypool] IMGD 4000 (D 11) 1. computing motion of objects in virtual scene

Technical Game Development II. [some material provided by Mark Claypool] IMGD 4000 (D 11) 1. computing motion of objects in virtual scene Basic Game Physics Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu [some material provided by Mark Claypool] IMGD 4000 (D 11) 1 Introduction What is game physics?

More information

Technical Game Development II. [using materials provided by Mark Claypool] IMGD 4000 (D 08) 1. What is game physics and why is it important?

Technical Game Development II. [using materials provided by Mark Claypool] IMGD 4000 (D 08) 1. What is game physics and why is it important? Basic Game Physics Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu [using materials provided by Mark Claypool] IMGD 4000 (D 08) 1 Introduction What is game

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

AI for Games Movement Behaviors

AI for Games Movement Behaviors DM842 Computer Game Programming: AI Lecture 1 AI for Games Movement Behaviors Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Seeking Wandering

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture 3: Path Planning Algorithm Prof. Yi Guo ECE Dept. Plan Representing the Space Path Planning Methods A* Search Algorithm D* Search Algorithm Representing

More information

LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2

LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2 15-382 COLLECTIVE INTELLIGENCE - S18 LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2 INSTRUCTOR: GIANNI A. DI CARO BACKGROUND: REYNOLDS BOIDS Reynolds created a model of coordinated animal

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Structural Configurations of Manipulators

Structural Configurations of Manipulators Structural Configurations of Manipulators 1 In this homework, I have given information about the basic structural configurations of the manipulators with the concerned illustrations. 1) The Manipulator

More information

Soft Body. 9.7 Physics - Soft Body

Soft Body. 9.7 Physics - Soft Body 9.7 Physics - Soft Body Soft Body...1 Typical scenarios for using Soft Bodies...2 Creating a Soft Body...3 Simulation Quality...3 Cache and Bake...4 Interaction in real time...5 Tips...5 Exterior Forces...5

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Steering 1. from Millington, "Artificial Intelligence for Games", MKP 2006.

Steering 1. from Millington, Artificial Intelligence for Games, MKP 2006. Steering 1 from Millington, "Artificial Intelligence for Games", MKP 2006. Movement Algorithms kinematic movement computes a velocity for the object based on current position no acceleration dynamic movement

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

GPU-based Distributed Behavior Models with CUDA

GPU-based Distributed Behavior Models with CUDA GPU-based Distributed Behavior Models with CUDA Courtesy: YouTube, ISIS Lab, Universita degli Studi di Salerno Bradly Alicea Introduction Flocking: Reynolds boids algorithm. * models simple local behaviors

More information

CNM 190 Advanced Digital Animation Lec 12 : Walk Cycles & Autonomous Motion

CNM 190 Advanced Digital Animation Lec 12 : Walk Cycles & Autonomous Motion John Cleese Silly Walk animated using SPAM software CNM 190 Advanced Digital Animation Lec 12 : Dan Garcia,, EECS (co-instructor) Greg Niemeyer, Art (co-instructor) Jeremy Huddleston, EECS (TA) Overview

More information

Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N 1d range search line segment intersection kd trees interval search trees rectangle intersection R O B E R T S E D G E W I C K K E V I

More information

8 Physics Simulations

8 Physics Simulations 8 Physics Simulations 8.1 Billiard-Game Physics 8.2 Game Physics Engines Literature: cocos2d-x.org R. Engelbert: Cocos2d-x Beginner's Guide, 2nd ed., Packt Publishing 2015 1 Particle Animations Animation

More information

Sphero Lightning Lab Cheat Sheet

Sphero Lightning Lab Cheat Sheet Actions Tool Description Variables Ranges Roll Combines heading, speed and time variables to make the robot roll. Duration Speed Heading (0 to 999999 seconds) (degrees 0-359) Set Speed Sets the speed of

More information

CS248. Game Mechanics

CS248. Game Mechanics CS248 Game Mechanics INTRODUCTION TOM WANG 2007 BS/MS CS KEY GAME MECHANICS * * * * * WORLD BUILDING CONTROLS CAMERA AI PERFORMANCE WORLD BUILDING WORLD BUILDING Set the atmosphere and tone of the game.

More information

Mobile Robot Path Planning in Static Environments using Particle Swarm Optimization

Mobile Robot Path Planning in Static Environments using Particle Swarm Optimization Mobile Robot Path Planning in Static Environments using Particle Swarm Optimization M. Shahab Alam, M. Usman Rafique, and M. Umer Khan Abstract Motion planning is a key element of robotics since it empowers

More information

The Australian National University

The Australian National University The Australian National University Faculty of Engineering and Information Technology Department of Engineering The Examination and Exploration of Algorithms and Complex Behaviour to Realistically Control

More information

Agents and Avatars 2. Ruth Aylett

Agents and Avatars 2. Ruth Aylett Agents and Avatars 2 Ruth Aylett Overview- Crowds Speech and Expressive behaviour Embodied conversational characters Creating autonomy Scripting Architectures Crowds and flocking Interactions among members

More information