CS 231. Crowd Simulation. Outline. Introduction to Crowd Simulation. Flocking Social Forces 2D Cellular Automaton Continuum Crowds

Size: px
Start display at page:

Download "CS 231. Crowd Simulation. Outline. Introduction to Crowd Simulation. Flocking Social Forces 2D Cellular Automaton Continuum Crowds"

Transcription

1 CS 231 Crowd Simulation Outline Introduction to Crowd Simulation Fields of Study & Applications Visualization vs. Realism Microscopic vs. Macroscopic Flocking Social Forces 2D Cellular Automaton Continuum Crowds 1

2 Introduction Crowd simulation attempts to model the motions of objects within an environment. The topic has been researched from several different areas of study: Entertainment Civil Engineering Psychology Computer Science Applications of Crowd Simulation Entertainment and Visual Effects Goal: Create a visually realistic model of crowds for use in movies, television, and video games. Architecture and Civil Engineering Goal: Study the flow of people/vehicles through environments. Analyze road network efficiency. Building evacuation characteristics. Psychology Goal: Validate behavior models of the human mind under different environmental conditions (ex. panic). Computer Science Goal: Help out in any of the three areas above with algorithmic know- how. Study AI models and behavior. 2

3 Visualization vs. Realism The various crowd simulation techniques can generally be divided into two categories: Visualization Entertainment and Visual Effects Realism Architecture and Civil Engineering Psychology Techniques have begun to merge over the last decade. Crowd Visualization Goal: Create a visually realistic model of crowds. Simulation does not have to be physically accurate. Techniques may have to integrate with motion captured animations. Algorithms frequently exploit Level-of of-detail. Movies and television applications can afford offline processing as long as simulation time is reasonable. Video games have real-time requirements. 3

4 Crowd Visualization Disney s Lion King (1994). Lord of the Rings Trilogy ( ). Using the tool Massive. Crowd Realism Goal: Study the flow of people/vehicles through environments. Must be as physically accurate as possible. Studies constantly compare simulation results with empirical data. Simple visualizations such as a single point per object. 4

5 Crowd Realism Simulation of a ship evacuation, using the tool EXODUS. Paths of pedestrian exploration driven by space syntax architectural concepts. Microscopic vs. Macroscopic Simulations techniques can also be categorized as microscopic vs. macroscopic. Microscopic techniques simulate the individual object. Crowd behavior is an emergent property of the microscopic-level algorithms driving the simulation. Macroscopic techniques simulate groups of objects. Example: Treating a transit system as a flow problem.. 5

6 Flocking Flocking technique introduced by Craig W. Reynolds and his Boids. Techniques to simulate animal flocking, herds, and schooling. Sets the stage for further study into crowd simulation. Each agent in the simulation is called a boid. Big Idea: Complex crowd behaviors can be achieved through individual agents following simple rules. Flocking Geometry in Flight Each boid has its own local coordinate system: X axis is left/right Y axis is up/down Z axis is ahead/back Rotations too: Rotation about X is pitch Rotation about Y is yaw Rotation about Z is roll 6

7 Flocking Geometry in Flight For realism in the simulation Momentum is conserved. Speed damping achieved by setting a maximum speed and acceleration. Gravity is used for banking of boids. Banking orientation a function of path curvature and direction of gravity. Not physically realistic. Does not capture that traveling up is harder than traveling down. Flocking Steering Behaviors Flocking is closely related to particle systems. Forces between particles cause motion. Interactions take place within a local neighborhood of each Boid. Three basic steering behaviors: Separation Alignment Cohesion Each steering behavior directs thrust in a desired direction. 7

8 Flocking Steering Behaviors Separation Boids steer to avoid crowding local flockmates. Collision avoidance. Keeps boids a realistic distance apart. Flocking Steering Behaviors Alignment (AKA Velocity Matching) Boids attempt to match the velocity of their neighbors. Complements separation. Causes boids to move in the same general direction. 8

9 Flocking Steering Behaviors Cohesion Boids steer to move towards the average position of local flockmates. Stay together in a local flock. Allows flocks to both merge and bifurcate. Flocking Boid Brain Each steering behavior may yield a different thrust vector. The Boid Brain combines, prioritizes, and arbitrates between potentially conflicting urges. 9

10 Flocking Boid Brain Averaging (and weighted averaging) of steering vectors works but can yield poor behavior in cases where steering urges are in opposite directions. Hesitation or indecision can lead to collisions with obstacles. INSTEAD: Steering vectors are processed in order of priority with a weighted average. Priorities may be reassigned dynamically. Flocking Boid Brain Better Solution: A fixed amount of acceleration is available to each boid each simulation iteration. Steering vectors are processed in order of priority with a weighted average. Priorities may be reassigned dynamically. Steering vectors are processed until all acceleration credits have been used up. The last processed vector is attenuated to keep within acceleration credit limits. 10

11 Flocking Simulated Perception Perception is limited to a local field of view. Local neighborhood is a spherical zone of sensitivity centered around a boid s origin. Sensitivity is weighted with the inverse of distance square, 1/r 2. Linear weighting yields unrealistic spring- like animations. Additional parameters can be used to simulated bias: Extra weighting in forward direction to increase awareness of what is ahead. Flocking Simulated Perception Implications of local perception: Flocks of boids are allowed to bifurcate as groups of boids may break away from others and still satisfy the cohesion steering behavior. Global cohesion/centering models were used early in Boids development. Generated unusual effects causing all members of a scattered flock to simultaneously converge towards the flock s centroid. 11

12 Video Break 12

13 Social Forces Developed by Dirk Helbing and Peter Molnar in 1995 with several advancements since A frequently referenced piece of work Widely successful because it elegantly reproduces many common features observed in pedestrian movement Social Forces Social Forces are not exerted by the environment on a pedestrian s s body, but rather a quantity that describes the motivation to act: Respect personal space Follow others at a safe distance Avoid getting too close to walls and obstacles Can be thought of as a developed model of flocking for humans as pedestrians follow a set of social rules that guide their movement 13

14 Social Forces One equation describes all forces acting on an individual agent: Desired Motion Obstacle Avoidance Social Force Attractive Forces Social Forces Acceleration towards a goal. Given current location, desired location, current speed, and desired speed Acceleration towards the destination is given by: Where e α is a vector towards the destination The τ α term is a relaxation value that controls timing 14

15 Social Forces Pedestrians will keep a certain distance from others that depends upon the pedestrian density and desired speed Implemented as a repulsive force with equipotential lines having the form of an ellipse that is in the direction of motion Elliptical range allows for an agent to leave room for their own subsequent steps Social Forces Respect the personal space of others Pedestrians have a limited cone of vision, so forces from agents outside an agent s s immediate attention should be attenuated. Inter-agent forces to not cross between obstacles. For example, agents on opposite sides of a wall should not affect each other. 15

16 Social Forces Avoid colliding with obstacles. Pedestrians keep a certain distance from buildings, walls, obstacles, etc. This behavior can be described by repulse force with: Where monotonic decreasing potential. The r αb denotes the distance between the agent and the nearest portion of the obstacle. Social Forces Social Forces also allows attractive forces Examples: Friends Street Performers Window Displays The equation for these forces has the same form as the inter-agent repulsive forces This force is also attenuated with a field of attention 16

17 Social Forces Final Social Force equation The social force model is now defined by: The fluctuation term takes into account random variations in behavior which enhances realism. Social Forces Simulations Two pedestrian phenomena are observed with social forces model: Lane Formation Door Oscillation 17

18 Social Forces Simulations Lane Formation The empty circles and full circles have desired direction of motion in opposite directions. Circle diameter reflects actual velocity. Social Forces Simulations Door Oscillation If one pedestrian has been able to pass a narrow door, other pedestrians with the same desired walking direction can follow easily. Others wait. The door can be captured as pressure on the opposite side builds up, allowing pedestrians in the other direction to pass. 18

19 Social Forces Additions Several additions to Social Forces appear Example, evacuation and panic: People move or try to move considerably faster than normal. Individuals start pushing each other (violating repulsive forces from earlier work). Moving becomes uncoordinated. Arching and clogging appears at exits. Jams build up. Physical interactions in jams can build up to dangerous pressures, s, injuring people and breaking of obstacles. Injured people become obstacles to the rest of the crowd. People show a tendency towards mass behavior. Alternative exits are often overlooked or not efficiently used. Social Forces (II) Equations Revised inter-agent force equation is given by: Body force counteracts body compression. k is a large constant. Sliding friction force impedes relative tangential motion if pedestrians come too close. Κ is another large constant. Inspired by granular interactions. 19

20 Social Forces (II) Simulations Arching/Clogging at exits: Corridor widening can lead to bottlenecks: Social Forces Results Below shows the effects of fire, which is said to have a socio-psychological strength 10x greater than a normal wall. 20

21 Social Forces Results Breaking of a corridor doorway into two helps in lane formation and avoid door clogging and oscillation. Social Forces Results Placing a column in front of an exit can alleviates problems due to arching by reducing pressure. More efficient egress. Fewer or no injuries. 21

22 2D Cellular Automata Cellular automaton (plural: cellular automata) A regular grid of cells,, each in one of a finite number of states.. Time is also discrete, updates based on neighbors form last timestep. Neighbors are a selection of cells relative to the specified cell, and do not change (though the cell itself may be in its neighborhood, it is not usually considered a neighbor). 22

23 2D Cellular Automata 2D CA system for modeling pedestrian crowds: Goal to replicate the phenomena generated by Social Forces. Lane formation Door oscillations Arching and clogging By replicating these phenomena, they hope to prove CA is a valid approach to pedestrian modeling. (Historical Note: Most cellular automata solutions are 1D and in the domain of traffic analysis.) 2D Cellular Automata The 2D CA pedestrian model presented here breaks an environment (floor plan) down into a grid of cells. Each cell may be occupied by one particle (agent) or by an obstacle. Particles move through the environment by moving to adjacent unoccupied cells. 23

24 2D Cellular Automata Particles may move in 1 of 9 directions with probabilities denoted by M ij. (Or one is to stay put.) Each particle may have its own local probability grid. If the target cell is occupied, the particle stays put. 2D Cellular Automata Lane Formation Two different species of pedestrians traveling in different directions across the screen. 24

25 2D Cellular Automata Arching/Clogging Pedestrians exit the room. Arching is clearly visible around the exit. 2D Cellular Automata A full simulation: Lecture hall evacuation. 25

26 Continuum Crowds Treuille et al. 26

27 Continuum Crowds - motivation Most previous methods are agent-based This is a (macroscopic) continuum approach 27

28 Goal G Speed f Discomfort g Cost C Potential Ф Goal G G 28

29 Speed - Topography Height Discomfort 29

30 Cost Assumption: People always choose the path P to the goal which minimizes: distance time discomfort Potential Goal 30

31 Potential Group 1 Group 2 Group 3 31

32 32 Cost Cost C Potential Potential Ф Goal Goal G Discomfort Discomfort g Speed Speed f Cost Cost C Potential Potential Ф Goal Goal G Discomfort Discomfort g Speed Speed f Cost Cost C Potential Potential Ф Goal Goal G Discomfort Discomfort g Speed Speed f Cost Cost C Potential Potential Ф Goal Goal G Discomfort Discomfort g Speed Speed f Cost Cost C Potential Potential Ф Goal Goal G Discomfort Discomfort g Speed Speed f Cost Cost C Potential Potential Ф Goal Goal G Discomfort Discomfort g Speed Speed f Results Results

33 Video Break Conclusion Path planning for large groups of people at interactive rates Unify overall path planning and collision avoidance Captures emergent phenomena Model adaptable to many situations 33

34 LOD in Crowds 34

35 LOD in Crowds While not explicitly related to simulation, fast rendering allows for more time to be spent performing simulation. There are several techniques that are commonly used to speed up crowd rendering. LOD in Crowds Geometric & Animation LOD Reduce the number of polygons in the model at different LOD steps. At a certain LOD, stop animating bones of figure and use static-keyframe meshes instead. May continue to reduce polygons in the model. At the farthest LOD, stop using static meshes and use 2D billboards. May be a simple sprite animation. Or more complex polyposter [Kavan]] which is a collection of 2D deformable textured polygons. 35

36 Geometric LOD Geometric LOD A 2D billboard from different views can be generated dynamically. Billboards can be used to dramatically increase crowd size. 36

37 Geometric LOD Polyposter approximation of a full mesh animation. 37

38 Crowd Interfaces Crowds brush Video Break 38

Crowd simulation. Taku Komura

Crowd simulation. Taku Komura Crowd simulation Taku Komura Animating Crowds We have been going through methods to simulate individual characters What if we want to simulate the movement of crowds? Pedestrians in the streets Flock of

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technology Dynamic Path Planning, Flocking Spring 2012 University of Texas at Austin CS 378 Game Technology Don Fussell Dynamic Path Planning! What happens when the environment changes

More information

Strategies for simulating pedestrian navigation with multiple reinforcement learning agents

Strategies for simulating pedestrian navigation with multiple reinforcement learning agents Strategies for simulating pedestrian navigation with multiple reinforcement learning agents Francisco Martinez-Gil, Miguel Lozano, Fernando Ferna ndez Presented by: Daniel Geschwender 9/29/2016 1 Overview

More information

Traffic/Flocking/Crowd AI. Gregory Miranda

Traffic/Flocking/Crowd AI. Gregory Miranda Traffic/Flocking/Crowd AI Gregory Miranda Introduction What is Flocking? Coordinated animal motion such as bird flocks and fish schools Initially described by Craig Reynolds Created boids in 1986, generic

More information

CS 354 R Game Technology

CS 354 R Game Technology CS 354 R Game Technology Particles and Flocking Behavior Fall 2017 Particle Effects 2 General Particle Systems Objects are considered point masses with orientation Simple rules control how the particles

More information

Under the Guidance of

Under the Guidance of Presented by Linga Venkatesh (10305085) Deepak Jayanth (10305913) Under the Guidance of Prof. Parag Chaudhuri Flocking/Swarming/Schooling Nature Phenomenon Collective Behaviour by animals of same size

More information

Swarm Intelligence Particle Swarm Optimization. Erick Luerken 13.Feb.2006 CS 790R, University of Nevada, Reno

Swarm Intelligence Particle Swarm Optimization. Erick Luerken 13.Feb.2006 CS 790R, University of Nevada, Reno Swarm Intelligence Particle Swarm Optimization Erick Luerken 13.Feb.2006 CS 790R, University of Nevada, Reno Motivation Discuss assigned literature in terms of complexity leading to actual applications

More information

Simulation of Agent Movement with a Path Finding Feature Based on Modification of Physical Force Approach

Simulation of Agent Movement with a Path Finding Feature Based on Modification of Physical Force Approach Simulation of Agent Movement with a Path Finding Feature Based on Modification of Physical Force Approach NURULAQILLA KHAMIS Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia,

More information

11 Behavioural Animation. Chapter 11. Behavioural Animation. Department of Computer Science and Engineering 11-1

11 Behavioural Animation. Chapter 11. Behavioural Animation. Department of Computer Science and Engineering 11-1 Chapter 11 Behavioural Animation 11-1 Behavioral Animation Knowing the environment Aggregate behavior Primitive behavior Intelligent behavior Crowd management 11-2 Behavioral Animation 11-3 Knowing the

More information

Behavioral Animation in Crowd Simulation. Ying Wei

Behavioral Animation in Crowd Simulation. Ying Wei Behavioral Animation in Crowd Simulation Ying Wei Goal Realistic movement: Emergence of crowd behaviors consistent with real-observed crowds Collision avoidance and response Perception, navigation, learning,

More information

Simulation: Particle Systems

Simulation: Particle Systems Simulation: Particle Systems Course web page: http://goo.gl/eb3aa February 28, 2012 Lecture 5 Particle Systems Definition: Simulation of a set of similar, moving agents in a larger environment Scale usually

More information

GPU-based Distributed Behavior Models with CUDA

GPU-based Distributed Behavior Models with CUDA GPU-based Distributed Behavior Models with CUDA Courtesy: YouTube, ISIS Lab, Universita degli Studi di Salerno Bradly Alicea Introduction Flocking: Reynolds boids algorithm. * models simple local behaviors

More information

Collision Avoidance with Unity3d

Collision Avoidance with Unity3d Collision Avoidance with Unity3d Jassiem Ifill September 12, 2013 Abstract The primary goal of the research presented in this paper is to achieve natural crowd simulation and collision avoidance within

More information

Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go)

Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go) Graphs, Search, Pathfinding (behavior involving where to go) Steering, Flocking, Formations (behavior involving how to go) Class N-2 1. What are some benefits of path networks? 2. Cons of path networks?

More information

Robot-Assisted Crowd Evacuation under Emergency Situations: A Survey

Robot-Assisted Crowd Evacuation under Emergency Situations: A Survey robotics Article Robot-Assisted Crowd Evacuation under Emergency Situations: A Survey Ibraheem Sakour * and Huosheng Hu School of Computer and Electronic Engineering, University of Essex, Colchester CO4

More information

NUMB3RS Activity: Follow the Flock. Episode: In Plain Sight

NUMB3RS Activity: Follow the Flock. Episode: In Plain Sight Teacher Page 1 NUMB3RS Activity: Follow the Flock Topic: Introduction to Flock Behavior Grade Level: 8-12 Objective: Use a mathematical model to simulate an aspect of birds flying in a flock Time: 30 minutes

More information

LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2

LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2 15-382 COLLECTIVE INTELLIGENCE - S18 LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2 INSTRUCTOR: GIANNI A. DI CARO BACKGROUND: REYNOLDS BOIDS Reynolds created a model of coordinated animal

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

MODELING REALISTIC HIGH DENSITY AUTONOMOUS AGENT CROWD MOVEMENT: SOCIAL FORCES, COMMUNICATION, ROLES AND PSYCHOLOGICAL INFLUENCES A DISSERTATION

MODELING REALISTIC HIGH DENSITY AUTONOMOUS AGENT CROWD MOVEMENT: SOCIAL FORCES, COMMUNICATION, ROLES AND PSYCHOLOGICAL INFLUENCES A DISSERTATION MODELING REALISTIC HIGH DENSITY AUTONOMOUS AGENT CROWD MOVEMENT: SOCIAL FORCES, COMMUNICATION, ROLES AND PSYCHOLOGICAL INFLUENCES NURIA PELECHANO GOMEZ A DISSERTATION in Computer and Information Science

More information

CS248. Game Mechanics

CS248. Game Mechanics CS248 Game Mechanics INTRODUCTION TOM WANG 2007 BS/MS CS KEY GAME MECHANICS * * * * * WORLD BUILDING CONTROLS CAMERA AI PERFORMANCE WORLD BUILDING WORLD BUILDING Set the atmosphere and tone of the game.

More information

Adding Virtual Characters to the Virtual Worlds. Yiorgos Chrysanthou Department of Computer Science University of Cyprus

Adding Virtual Characters to the Virtual Worlds. Yiorgos Chrysanthou Department of Computer Science University of Cyprus Adding Virtual Characters to the Virtual Worlds Yiorgos Chrysanthou Department of Computer Science University of Cyprus Cities need people However realistic the model is, without people it does not have

More information

12 - More Steering. from Milligan, "Artificial Intelligence for Games", Morgan Kaufman, 2006

12 - More Steering. from Milligan, Artificial Intelligence for Games, Morgan Kaufman, 2006 12 - More Steering from Milligan, "Artificial Intelligence for Games", Morgan Kaufman, 2006 Separation commonly used in crowds, when all characters moving in roughly the same direction (repulsion steering)

More information

Particle Systems. Typical Time Step. Particle Generation. Controlling Groups of Objects: Particle Systems. Flocks and Schools

Particle Systems. Typical Time Step. Particle Generation. Controlling Groups of Objects: Particle Systems. Flocks and Schools Particle Systems Controlling Groups of Objects: Particle Systems Flocks and Schools A complex, fuzzy system represented by a large collection of individual elements. Each element has simple behavior and

More information

GPU Modeling of Ship Operations in Pack Ice

GPU Modeling of Ship Operations in Pack Ice Modeling of Ship Operations in Pack Ice Claude Daley cdaley@mun.ca Shadi Alawneh Dennis Peters Bruce Quinton Bruce Colbourne ABSTRACT The paper explores the use of an event-mechanics approach to assess

More information

Multi-Agent Simulation of Circular Pedestrian Movements Using Cellular Automata

Multi-Agent Simulation of Circular Pedestrian Movements Using Cellular Automata Second Asia International Conference on Modelling & Simulation Multi-Agent Simulation of Circular Pedestrian Movements Using Cellular Automata Siamak Sarmady, Fazilah Haron and Abdullah Zawawi Hj. Talib

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Cloth and Hair Collisions

Cloth and Hair Collisions algorithm (presented in Section IV-C.2), by using the recent capabilities of GPUs. Koster et al. [78] exploited graphics hardware by storing all the opacity maps in a 3D texture, to have the hair self-shadow

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

PARTICLE SWARM OPTIMIZATION (PSO)

PARTICLE SWARM OPTIMIZATION (PSO) PARTICLE SWARM OPTIMIZATION (PSO) J. Kennedy and R. Eberhart, Particle Swarm Optimization. Proceedings of the Fourth IEEE Int. Conference on Neural Networks, 1995. A population based optimization technique

More information

Chapter 3 Implementing Simulations as Individual-Based Models

Chapter 3 Implementing Simulations as Individual-Based Models 24 Chapter 3 Implementing Simulations as Individual-Based Models In order to develop models of such individual behavior and social interaction to understand the complex of an urban environment, we need

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

Announcements. Ray tracer is due in five days you should have started by now or you re going to have a bad week. Missing file posted on the web page

Announcements. Ray tracer is due in five days you should have started by now or you re going to have a bad week. Missing file posted on the web page Announcements Ray tracer is due in five days you should have started by now or you re going to have a bad week Missing file posted on the web page I m sorry for canceling class on Tuesday... 1 Animation

More information

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano tel:

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano   tel: Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02 2399 3470 Path Planning Robotica for Computer Engineering students A.A. 2006/2007

More information

Master s Thesis. Animal Stampede Simulation

Master s Thesis. Animal Stampede Simulation Master s Thesis Animal Stampede Simulation Akila Lakshminarayanan Brian Tran MSc Computer Animation and Visual Effects, NCCA 2011-2012 Abstract Large crowd scenes with humans and animals are abundant in

More information

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University What is Animation? Making things move What is Animation? Consider a model with n parameters Polygon

More information

Animation. Itinerary Computer Graphics Lecture 22

Animation. Itinerary Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University Itinerary Review Basic Animation Keyed Animation Motion Capture Physically-Based Animation Behavioral

More information

Sensitivity Analysis of Evacuation Simulations

Sensitivity Analysis of Evacuation Simulations Sensitivity Analysis of Evacuation Simulations 07. November 2014, WOST Contents Introduction Project Motivation and Background Basics of Evacuation Simulation Pathfinder simulation Input and Output Parameters

More information

Agent Based Intersection Traffic Simulation

Agent Based Intersection Traffic Simulation Agent Based Intersection Traffic Simulation David Wilkie May 7, 2009 Abstract This project focuses on simulating the traffic at an intersection using agent-based planning and behavioral methods. The motivation

More information

Sketch-based Interface for Crowd Animation

Sketch-based Interface for Crowd Animation Sketch-based Interface for Crowd Animation Masaki Oshita 1, Yusuke Ogiwara 1 1 Kyushu Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan oshita@ces.kyutech.ac.p ogiwara@cg.ces.kyutech.ac.p

More information

Modeling and Simulating Social Systems with MATLAB

Modeling and Simulating Social Systems with MATLAB Modeling and Simulating Social Systems with MATLAB Lecture 7 Game Theory / Agent-Based Modeling Stefano Balietti, Olivia Woolley, Lloyd Sanders, Dirk Helbing Computational Social Science ETH Zürich 02-11-2015

More information

Generating sparse navigation graphs for microscopic pedestrian simulation models

Generating sparse navigation graphs for microscopic pedestrian simulation models Generating sparse navigation graphs for microscopic pedestrian simulation models Angelika Kneidl 1, André Borrmann 1, Dirk Hartmann 2 1 Computational Modeling and Simulation Group, TU München, Germany

More information

Principles of Computer Game Design and Implementation. Revision Lecture

Principles of Computer Game Design and Implementation. Revision Lecture Principles of Computer Game Design and Implementation Revision Lecture Introduction Brief history; game genres Game structure A series of interesting choices Series of convexities Variable difficulty increase

More information

Modeling and Simulating Social Systems with MATLAB

Modeling and Simulating Social Systems with MATLAB Modeling and Simulating Social Systems with MATLAB Lecture 4 Cellular Automata Olivia Woolley, Tobias Kuhn, Dario Biasini, Dirk Helbing Chair of Sociology, in particular of Modeling and Simulation ETH

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

Real-time Path Planning and Navigation for Multi-Agent and Heterogeneous Crowd Simulation

Real-time Path Planning and Navigation for Multi-Agent and Heterogeneous Crowd Simulation Real-time Path Planning and Navigation for Multi-Agent and Heterogeneous Crowd Simulation Ming C. Lin Department of Computer Science University of North Carolina at Chapel Hill lin@cs.unc.edu Joint work

More information

Improved Computer-Generated Simulation Using Motion Capture Data

Improved Computer-Generated Simulation Using Motion Capture Data Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2014-06-30 Improved Computer-Generated Simulation Using Motion Capture Data Seth A. Brunner Brigham Young University - Provo Follow

More information

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment Planning and Navigation Where am I going? How do I get there?? Localization "Position" Global Map Cognition Environment Model Local Map Perception Real World Environment Path Motion Control Competencies

More information

Robotic Behaviors. Potential Field Methods

Robotic Behaviors. Potential Field Methods Robotic Behaviors Potential field techniques - trajectory generation - closed feedback-loop control Design of variety of behaviors - motivated by potential field based approach steering behaviors Closed

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Simulation in Computer Graphics. Introduction. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Introduction. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Introduction Matthias Teschner Computer Science Department University of Freiburg Contact Matthias Teschner Computer Graphics University of Freiburg Georges-Koehler-Allee

More information

Shape of Things to Come: Next-Gen Physics Deep Dive

Shape of Things to Come: Next-Gen Physics Deep Dive Shape of Things to Come: Next-Gen Physics Deep Dive Jean Pierre Bordes NVIDIA Corporation Free PhysX on CUDA PhysX by NVIDIA since March 2008 PhysX on CUDA available: August 2008 GPU PhysX in Games Physical

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

Crowd simulation influenced by agent s sociopsychological

Crowd simulation influenced by agent s sociopsychological HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/ Crowd simulation influenced by agent s sociopsychological state F. Cherif, and R. Chighoub 48 Abstract The aim our work is to create virtual humans as

More information

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING 2015 WJTA-IMCA Conference and Expo November 2-4 New Orleans, Louisiana Paper COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING J. Schneider StoneAge, Inc. Durango, Colorado, U.S.A.

More information

When using Flocking with network rendering (LWSN, for instance) you must bake your Flocking results.

When using Flocking with network rendering (LWSN, for instance) you must bake your Flocking results. Flocking About Flocking LightWave s flocking system is based on 3D computer models of coordinated animal motion, things like flocks of birds, herds of animals or schools of fish. It can be used with LightWave

More information

AUTONOMOUS TAWAF CROWD SIMULATION. Ahmad Zakwan Azizul Fata, Mohd Shafry Mohd Rahim, Sarudin Kari

AUTONOMOUS TAWAF CROWD SIMULATION. Ahmad Zakwan Azizul Fata, Mohd Shafry Mohd Rahim, Sarudin Kari BORNEO SCIENCE 36 (2): SEPTEMBER 2015 AUTONOMOUS TAWAF CROWD SIMULATION Ahmad Zakwan Azizul Fata, Mohd Shafry Mohd Rahim, Sarudin Kari MaGIC-X (Media and Games Innonovation Centre of Excellence UTM-IRDA

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

Real-time Crowd Movement On Large Scale Terrains

Real-time Crowd Movement On Large Scale Terrains Real-time Crowd Movement On Large Scale Terrains Wen Tang, Tao Ruan Wan* and Sanket Patel School of Computing and Mathematics, University of Teesside, Middlesbrough, United Kingdom E-mail: w.tang@tees.ac.uk

More information

Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data 1

Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data 1 Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data 1, Zhi Zhai, Greg Madey Dept. of Computer Science and Engineering University of Notre Dame Notre

More information

MODELLING AND SIMULATION OF REALISTIC PEDESTRIAN BEHAVIOURS

MODELLING AND SIMULATION OF REALISTIC PEDESTRIAN BEHAVIOURS MODELLING AND SIMULATION OF REALISTIC PEDESTRIAN BEHAVIOURS KOH WEE LIT School Of Computer Engineering A thesis submitted to the Nanyang Technological University in fulfillment of the requirement for the

More information

CROWD SIMULATION FOR ANCIENT MALACCA VIRTUAL WALKTHROUGH

CROWD SIMULATION FOR ANCIENT MALACCA VIRTUAL WALKTHROUGH 511 CROWD SIMULATION FOR ANCIENT MALACCA VIRTUAL WALKTHROUGH Mohamed `Adi Bin Mohamed Azahar 1, Mohd Shahrizal Sunar 2, Abdullah Bade 2, Daut Daman 2 Faculty of Computer Science and Information Technology

More information

Real-time Simulation and Rendering of Large-scale Crowd Motion

Real-time Simulation and Rendering of Large-scale Crowd Motion Real-time Simulation and Rendering of Large-scale Crowd Motion A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Department of Computer Science by Bo Li

More information

STEERING BEHAVIORS. Markéta Popelová, marketa.popelova [zavináč] matfyz.cz. 2012, Umělé Bytosti, MFF UK

STEERING BEHAVIORS. Markéta Popelová, marketa.popelova [zavináč] matfyz.cz. 2012, Umělé Bytosti, MFF UK STEERING BEHAVIORS Markéta Popelová, marketa.popelova [zavináč] matfyz.cz 2012, Umělé Bytosti, MFF UK MOTIVATION MOTIVATION REQUIREMENTS FOR MOTION CONTROL Responding to dynamic environment Avoiding obstacles

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

Cloth Simulation. COMP 768 Presentation Zhen Wei

Cloth Simulation. COMP 768 Presentation Zhen Wei Cloth Simulation COMP 768 Presentation Zhen Wei Outline Motivation and Application Cloth Simulation Methods Physically-based Cloth Simulation Overview Development References 2 Motivation Movies Games VR

More information

What is a Rigid Body?

What is a Rigid Body? Physics on the GPU What is a Rigid Body? A rigid body is a non-deformable object that is a idealized solid Each rigid body is defined in space by its center of mass To make things simpler we assume the

More information

Crowd simulation. Summerschool Utrecht: Multidisciplinary Game Research. Dr. Roland Geraerts 23 August 2017

Crowd simulation. Summerschool Utrecht: Multidisciplinary Game Research. Dr. Roland Geraerts 23 August 2017 Crowd simulation Summerschool Utrecht: Multidisciplinary Game Research Dr. Roland Geraerts 23 August 2017 1 Societal relevance of crowd simulation The number of environments with big crowds are growing

More information

403 Poyntz Avenue, Suite B Manhattan, KS USA Technical Reference

403 Poyntz Avenue, Suite B Manhattan, KS USA Technical Reference 403 Poyntz Avenue, Suite B Manhattan, KS 66502 USA +1.785.770.8511 www.thunderheadeng.com Technical Reference Pathfinder 2014 Disclaimer Thunderhead Engineering makes no warranty, expressed or implied,

More information

9 Dynamics. Getting Started with Maya 491

9 Dynamics. Getting Started with Maya 491 9 Dynamics Dynamics is a branch of physics that describes how objects move using physical rules to simulate the natural forces that act upon them. Dynamic simulations are difficult to achieve with traditional

More information

URBAN SCALE CROWD DATA ANALYSIS, SIMULATION, AND VISUALIZATION

URBAN SCALE CROWD DATA ANALYSIS, SIMULATION, AND VISUALIZATION www.bsc.es URBAN SCALE CROWD DATA ANALYSIS, SIMULATION, AND VISUALIZATION Isaac Rudomin May 2017 ABSTRACT We'll dive deep into how we use heterogeneous clusters with GPUs for accelerating urban-scale crowd

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Modeling the Virtual World

Modeling the Virtual World Modeling the Virtual World Joaquim Madeira November, 2013 RVA - 2013/2014 1 A VR system architecture Modeling the Virtual World Geometry Physics Haptics VR Toolkits RVA - 2013/2014 2 VR object modeling

More information

A Particle Cellular Automata Model for Fluid Simulations

A Particle Cellular Automata Model for Fluid Simulations Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 36(2), 2009, Pages 35 41 ISSN: 1223-6934 A Particle Cellular Automata Model for Fluid Simulations Costin-Radu Boldea Abstract. A new cellular-automaton

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Implicit Surfaces Marching Cubes/Tetras Collision Detection & Response Conservative Bounding Regions backtracking fixing Today Flow Simulations in Graphics Flow

More information

NCCA National Center for Computer Animation Master Project ZHUO YAO LU. MSC Computer Animation. Media School. Bournemouth University NCCA 2005

NCCA National Center for Computer Animation Master Project ZHUO YAO LU. MSC Computer Animation. Media School. Bournemouth University NCCA 2005 Master Project ZHUO YAO LU MSC Computer Animation Media School Bournemouth University NCCA 2005-1 - MSC Computer Animation Contents Part 1 Flocking System in Maya Mel Script 5 Chapter 1 Introduction 6

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the topic. They are neither a substitute for attending the lectures nor for reading the assigned material. I may not have

More information

Animation of Fluids. Animating Fluid is Hard

Animation of Fluids. Animating Fluid is Hard Animation of Fluids Animating Fluid is Hard Too complex to animate by hand Surface is changing very quickly Lots of small details In short, a nightmare! Need automatic simulations AdHoc Methods Some simple

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Efficient Crowd Simulation for Mobile Games

Efficient Crowd Simulation for Mobile Games 24 Efficient Crowd Simulation for Mobile Games Graham Pentheny 24.1 Introduction 24.2 Grid 24.3 Flow Field 24.4 Generating the Flow Field 24.5 Units 24.6 Adjusting Unit Movement Values 24.7 Mobile Limitations

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Dynamics: Constraints, Continua, etc. Subramanian Ramamoorthy School of Informatics 5 February, 2009 Recap Last time, we discussed two major approaches to describing

More information

1/16. Emergence in Artificial Life. Sebastian Marius Kirsch Back Close

1/16. Emergence in Artificial Life. Sebastian Marius Kirsch Back Close 1/16 Emergence in Artificial Life Sebastian Marius Kirsch skirsch@moebius.inka.de 2/16 Artificial Life not life as it is, but life as it could be very recent field of science first a-life conference in

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology A* Heuristics Fall 2018 A* Search f(n): The current best estimate for the best path through a node: f(n)=g(n)+h(n) g(n): current known best cost for getting to a node

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Implementing a Hybrid Space Discretisation Within An Agent Based Evacuation Model

Implementing a Hybrid Space Discretisation Within An Agent Based Evacuation Model Paper presented at PED 2010, NIST, Maryland USA, March 8-10 2010 Implementing a Hybrid Space Discretisation Within An Agent Based Evacuation Model N. Chooramun, P.J. Lawrence and E.R.Galea Fire Safety

More information

Crowd simulation of pedestrians in a virtual city

Crowd simulation of pedestrians in a virtual city Crowd simulation of pedestrians in a virtual city Submitted in partial fulfilment of the requirements of the degree Bachelor of Science (Honours) of Rhodes University Flora Ponjou Tasse November 3, 2008

More information

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more Parallel Free-Surface Extension of the Lattice-Boltzmann Method A Lattice-Boltzmann Approach for Simulation of Two-Phase Flows Stefan Donath (LSS Erlangen, stefan.donath@informatik.uni-erlangen.de) Simon

More information

Streaming Massive Environments From Zero to 200MPH

Streaming Massive Environments From Zero to 200MPH FORZA MOTORSPORT From Zero to 200MPH Chris Tector (Software Architect Turn 10 Studios) Turn 10 Internal studio at Microsoft Game Studios - we make Forza Motorsport Around 70 full time staff 2 Why am I

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION

REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION REINFORCEMENT LEARNING: MDP APPLIED TO AUTONOMOUS NAVIGATION ABSTRACT Mark A. Mueller Georgia Institute of Technology, Computer Science, Atlanta, GA USA The problem of autonomous vehicle navigation between

More information

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre Constraint fluids in Sprinkle Dennis Gustafsson Mediocre Sprinkle. Sequel. Put out fires. Makeshift firetruck. Distant moon of Saturn. Fluid sim used at the core. Not only to put out fires -> move obstacles,

More information

Simulating Group Formations Using RVO

Simulating Group Formations Using RVO Simulating Group Formations Using RVO Martin Funkquist martinfu@kth.se Supervisor: Christopher Peters Staffan Sandberg stsand@kth.se May 25, 2016 Figure 1: From left to right. First figure displays a real

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Course Review. Computer Animation and Visualisation. Taku Komura

Course Review. Computer Animation and Visualisation. Taku Komura Course Review Computer Animation and Visualisation Taku Komura Characters include Human models Virtual characters Animal models Representation of postures The body has a hierarchical structure Many types

More information

L Modeling and Simulating Social Systems with MATLAB

L Modeling and Simulating Social Systems with MATLAB 851-0585-04L Modeling and Simulating Social Systems with MATLAB Lecture 4 Cellular Automata Karsten Donnay and Stefano Balietti Chair of Sociology, in particular of Modeling and Simulation ETH Zürich 2011-03-14

More information

A Predictive Collision Avoidance Model for Pedestrian Simulation

A Predictive Collision Avoidance Model for Pedestrian Simulation A Predictive Collision Avoidance Model for Pedestrian Simulation Ioannis Karamouzas, Peter Heil, Pascal van Beek, and Mark H. Overmars Center for Advanced Gaming and Simulation, Utrecht University, The

More information

Physics Tutorial 2: Numerical Integration Methods

Physics Tutorial 2: Numerical Integration Methods Physics Tutorial 2: Numerical Integration Methods Summary The concept of numerically solving differential equations is explained, and applied to real time gaming simulation. Some objects are moved in a

More information

Complex behavior emergent from simpler ones

Complex behavior emergent from simpler ones Reactive Paradigm: Basics Based on ethology Vertical decomposition, as opposed to horizontal decomposition of hierarchical model Primitive behaviors at bottom Higher behaviors at top Each layer has independent

More information