Adding Virtual Characters to the Virtual Worlds. Yiorgos Chrysanthou Department of Computer Science University of Cyprus

Size: px
Start display at page:

Download "Adding Virtual Characters to the Virtual Worlds. Yiorgos Chrysanthou Department of Computer Science University of Cyprus"

Transcription

1 Adding Virtual Characters to the Virtual Worlds Yiorgos Chrysanthou Department of Computer Science University of Cyprus

2 Cities need people However realistic the model is, without people it does not have the same impact 1/7/2009 2

3 Adding virtual characters to cities is hard City model is already large scale with its own complexity Add to that thousands/millions of characters Rendering A human model has complex deformable geometry Behaviour Multiple interactions between static and dynamic entities 1/7/2009 3

4 Rendering Three main approaches Polygonal-based Crowd Rendering Point-based Crowd Rendering Image-based Crowd Rendering

5 Using Polygons A good 3D avatar model uses many triangles as the human body has a complex shape Elixir Studios ~23,500 Tris Elixir Studios Rendering 1,000s individuals require a very large polygonal budget

6 Using Polygons (II) Even simple models are composed by thousands of polygons 2K x 10,000 = 20 Millions ~2K Tris

7 Attempt 1: Careful modeling Skilled 3D artists can produce very low-poly, good looking characters, but there is always a limit to simplification Courtesy of Got3D ~3300 faces ~2800 faces Courtesy of Got3D

8 Even more careful modeling... ~1000 faces Courtesy of Stephanie Noverraz

9 Attempt 2: Using LODS Using LODs for distant individuals Lot of care is needed to avoid introducing artifacts LODs can be hardware-unfriendly Elixir Studios 615 Polys 615 x 10,000 = >6 Millions The polygons count may still be too high

10 Attempt 3: Details recovering Normal maps allow perpixel lighting -> recovery of small details Normal maps are efficient on modern HW, but there is still a performance penalty

11 Polygonal crowd: instancing ATI X800 crowds rendering demo

12 Rendering using points Point-based objects are represented as a dense set of surface point samples which contain colour, depth and normal information They are rendered directly and independently without any knowledge of surface topology

13 Rendering crowds using points(i) Wand and Straßer 2002 Football stadium, 16,416 objects, 105 million triangles, rendering time 373 msec (Hierarchical instantiation) (Test system: 2 GHz PIV,1 GB of RAM, GeForce3)

14 Rendering crowds using points(ii) Wand and Straßer 2002 Replicated poser models, objects, 575 million triangles, rendering time 294 msec (Hierarchical instantiation)

15 Image Based Rendering We have seen a lot of progress in recent years Improved techniques Greatly improved hardware Most scalable systems use Impostors for far Geometry for near 1/7/

16 Impostors Run time Pre-processing Tecchia, Loscos and Chrysanthou, IB Crowd Rendering, IEEE CG&A 2002, GCF /7/

17 Impostors + geometry Combination of techniques Impostors for far Geometry for closer, with either Geometric LODs such as in the Geopostors or Static pre-compiled meshes Dynamic Meshes 1/7/

18 Behavior of the avatars At several levels A. Authoring of the city: distributing the people in a realistic way and maintain their flow in the city for stability B. Ambient crowd C. Interactive-social behaviors 1/7/

19 Distributing the characters How do you place the characters in such a city? More in city centre and central streets Less in out-of-theway areas Place then in an Easy and quick, yet Controlled way 1/7/

20 Interactive Authoring Ulicny, Ciechomski,, Thalmann(2004) Crowdbrush:: Interactive Authoring of Real-time Crowd Scenes

21 Ideas from other disciplines Ledra Bill Hiller, Bartlett School of Architecture Evagorou Makariou Pedestrian activity can be considered the product of two distinct components: The configuration of the street network (space syntax) The location of particular attractors (shops, offices, happenings, etc.) Stylianou, Fyrillas and Chrysanthou, Scalable Pedestrians Simulation, ACM VRST 04 1/7/

22 Pre-processing Negative binomial For each node: how long avatars stay in it cells and portals For each edge: attractiveness space syntax + attractors Iterative diffusion simulation Distribution & flows Stylianou, Fyrillas and Chrysanthou, Scalable Pedestrians Simulation, ACM VRST 04 1/7/

23 Crowd Behavior Yiorgos Chrysanthou (Most slides taken from Alon Lerner)

24 Different Approaches Rule based approaches can produce realistic simulations. Different rules required for different situations. Rules can be local, global, reactive, cognitive... Other approaches tend to capture the flow of a crowd. Usually, do not capture subtleties of individual behaviors. Rule based: Reynolds 87, Terzopoulos et. et. al. al Musse et. et. al. al Funge et. et. al al Loscos et. et. al. al Lamarche et. et. al. al Shao and Terzopoulos Massive Software AI AI Implant Software Fluid Mechanics: Hughes Treuille Particles: Heigeas Social Forces: Helbing 95 95

25 Flocks, Herds and Schools Separation: steer to avoid crowding local flock mates. Alignment: steer towards the avg. heading of local flock mates. Cohesion: steer to move toward the average position of local flock mates REYNOLDS, C. W Computer Graphics 21. Flocks, herds, and schools: A distributed behavioral model.

26 Related Works

27 Global & Local Rules Most of the works give the simulated agents geographic goals to reach. Global path planning is used to guide the agents in the correct direction. Local rules are defined to avoid collisions and simulate behaviors

28 Global & Local Rules Shao w., Terzopoulos D. SCA 2005 Autonomous Pedestrians

29 Treuille A., Cooper S. Popovic Z. Siggraph 2006 Continuum Crowds

30 The Movie Industry AI software is a network of nodes, where each node is a sensor or a rule. Sensors allow an agent to detect information in its immediate surroundings. You create rules based on these (sensors) To have a fully convincing simulation you d require a huge number of sensors and rules... CGSociety interview with VFX supervisor on the film Troy 2005

31 The Movie Industry We found that many of our shots did not need such a high degree of complexity. Clean Plate All we needed were rules that prevented them from bumping into each other! Simple Render Final Render

32 Crowd Characteristics Different behaviors: Stopping / Standing Grouping / Dispersing Changes in direction Slight movements Walking against the flow etc... Most approaches cannot recreate these behaviors.

33 The Basic Idea Real people know how to behave, simulated ones do not. Copy behaviors from real people. Behavior is is the the trajectory over a short period of of time.

34 The Basic Idea If an agent can find a person facing a similar situation, then it can copy its trajectory, thereby mimicking its behavior. The marked people are are facing similar situations.

35 Defining Examples During preprocessing: Key frames are manually track in the video and the people s paths interpolated. An influence function is used to define the configuration of influencing factors for each person at each frame. Examples store the trajectory of a person and its configuration of influencing factors.

36 Influencing Factors An influencing factor can be anything that influences a person s behavior. We consider people and obstacles as influencing factors. Not all factors have the same amount of influence. Potentially Influencing Factors: Personality, Personality, Emotions Emotions Terrain, Terrain, Obstacles Obstacles Surrounding Surrounding people people......

37 The Influence Function A continuous function. Quantifies each factors influence. High Factors in front influence more than those behind. Values below a certain threshold are considered non-influential. Influence is computed over time. Accounts for the relative velocity of the influencing factor. Low

38 A Few Examples

39 Simulation During a simulation an agent: Defines a query. Searches the database for a matching example. Copies the trajectory from the example. Follows the trajectory until a new one is needed. define query find example copy trajectory walk

40 Queries A query is is the the configuration of of influencing factors for for a simulated agent query example

41 Queries To see if an example matches a query, we align them and use a continuous function to determine their similarity. query example

42 Matching Function Validity check: To assure a collision free simulation the example path is checked for collisions against the query s factors. Query Example To assure a smooth transition the velocities of the query and example subjects are checked.

43 Matching Function For each query factor, find the most similar example factor. Quantify similarity in terms of position, velocity and direction over time. Query Example Multiple query factors can be matched to the same example factor. Penalize matching value for unmatched factors. Length of of copied trajectory is is determined by by the the quality of of the the match.

44 Collision Avoiding Paths There are occasions where all matching examples lead to a collision. Query Example Find a collision free example trajectory. Use the matching function to match the historical path of the query and example subjects. historical path

45 Results Tracking times range from several hours to a day. The number of examples generated from a video is in the tens of thousands. We filter similar examples from consecutive frames. The needed storage space is about 100MB. Crowd density and length of of video determines tracking times and number of of examples created.

46 Results 2 minute simulation 3000 simulated frames Sparse crowd input 20 agent average per frame ~10 minute computation. Dense crowd input 40 agent average per frame ~1 hour computation.

47 Discussion The running time of the simulation is affected by: The similarity between the example crowd and the simulated crowd. The variety of examples that exist in the database. The presence of obstacles. These factors affect the the number of of queries needed.

48 A Simulated Crowd A collision free simulation whose agents exhibit a variety complex group and individual behaviors.

49

50

Sketch-based Interface for Crowd Animation

Sketch-based Interface for Crowd Animation Sketch-based Interface for Crowd Animation Masaki Oshita 1, Yusuke Ogiwara 1 1 Kyushu Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan oshita@ces.kyutech.ac.p ogiwara@cg.ces.kyutech.ac.p

More information

Automatic High Level Avatar Guidance Based on Affordance of Movement

Automatic High Level Avatar Guidance Based on Affordance of Movement EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations Automatic High Level Avatar Guidance Based on Affordance of Movement Despina Michael and Yiorgos Chrysanthou Department of Computer

More information

Crowd simulation. Taku Komura

Crowd simulation. Taku Komura Crowd simulation Taku Komura Animating Crowds We have been going through methods to simulate individual characters What if we want to simulate the movement of crowds? Pedestrians in the streets Flock of

More information

CROWD SIMULATION FOR ANCIENT MALACCA VIRTUAL WALKTHROUGH

CROWD SIMULATION FOR ANCIENT MALACCA VIRTUAL WALKTHROUGH 511 CROWD SIMULATION FOR ANCIENT MALACCA VIRTUAL WALKTHROUGH Mohamed `Adi Bin Mohamed Azahar 1, Mohd Shahrizal Sunar 2, Abdullah Bade 2, Daut Daman 2 Faculty of Computer Science and Information Technology

More information

Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time Applications

Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time Applications Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time Applications Barbara Yersin Jonathan Maı m VRlab-EPFL, Lausanne, Switzerland Julien Pettre Bunraku team, INRIA Rennes, France Daniel

More information

Real-time Crowd Movement On Large Scale Terrains

Real-time Crowd Movement On Large Scale Terrains Real-time Crowd Movement On Large Scale Terrains Wen Tang, Tao Ruan Wan* and Sanket Patel School of Computing and Mathematics, University of Teesside, Middlesbrough, United Kingdom E-mail: w.tang@tees.ac.uk

More information

Intuitive Crowd Behaviour in Dense Urban Environments using Local Laws

Intuitive Crowd Behaviour in Dense Urban Environments using Local Laws Intuitive Crowd Behaviour in Dense Urban Environments using Local Laws Celine Loscos University College London C.Loscos@cs.ucl.ac.uk David Marchal Ecole Polytechnique Paris Alexandre Meyer University College

More information

High-density Crowds. A masters student s journey to graphics and multi agent systems

High-density Crowds. A masters student s journey to graphics and multi agent systems High-density Crowds A masters student s journey to graphics and multi agent systems Who am I and why am I here? Jack Shabo, student of CDATE, year 2012 Doing a degree project in Crowd Simulations with

More information

Modeling the Virtual World

Modeling the Virtual World Modeling the Virtual World Joaquim Madeira November, 2013 RVA - 2013/2014 1 A VR system architecture Modeling the Virtual World Geometry Physics Haptics VR Toolkits RVA - 2013/2014 2 VR object modeling

More information

Impostors and pseudo-instancing for GPU crowd rendering

Impostors and pseudo-instancing for GPU crowd rendering Impostors and pseudo-instancing for GPU crowd rendering Erik Millan ITESM CEM Isaac Rudomin ITESM CEM Figure 1: Rendering of a 1, 048, 576 character crowd. Abstract Animated crowds are effective to increase

More information

CS 231. Crowd Simulation. Outline. Introduction to Crowd Simulation. Flocking Social Forces 2D Cellular Automaton Continuum Crowds

CS 231. Crowd Simulation. Outline. Introduction to Crowd Simulation. Flocking Social Forces 2D Cellular Automaton Continuum Crowds CS 231 Crowd Simulation Outline Introduction to Crowd Simulation Fields of Study & Applications Visualization vs. Realism Microscopic vs. Macroscopic Flocking Social Forces 2D Cellular Automaton Continuum

More information

Master s Thesis. Animal Stampede Simulation

Master s Thesis. Animal Stampede Simulation Master s Thesis Animal Stampede Simulation Akila Lakshminarayanan Brian Tran MSc Computer Animation and Visual Effects, NCCA 2011-2012 Abstract Large crowd scenes with humans and animals are abundant in

More information

Impostors, Pseudo-instancing and Image Maps for GPU Crowd Rendering

Impostors, Pseudo-instancing and Image Maps for GPU Crowd Rendering 35 Impostors, Pseudo-instancing and Image Maps for GPU Crowd Rendering Erik Millán and Isaac Rudomín 1 Abstract Rendering large crowds of characters requires a great amount of computational power. To increase

More information

Behavioral Animation in Crowd Simulation. Ying Wei

Behavioral Animation in Crowd Simulation. Ying Wei Behavioral Animation in Crowd Simulation Ying Wei Goal Realistic movement: Emergence of crowd behaviors consistent with real-observed crowds Collision avoidance and response Perception, navigation, learning,

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technology Dynamic Path Planning, Flocking Spring 2012 University of Texas at Austin CS 378 Game Technology Don Fussell Dynamic Path Planning! What happens when the environment changes

More information

Real-time crowd motion planning

Real-time crowd motion planning Vis Comput (2008) 24: 859 870 DOI 10.1007/s00371-008-0286-0 ORIGINAL ARTICLE Real-time crowd motion planning Scalable Avoidance and Group Behavior Barbara Yersin Jonathan Maïm Fiorenzo Morini Daniel Thalmann

More information

Under the Guidance of

Under the Guidance of Presented by Linga Venkatesh (10305085) Deepak Jayanth (10305913) Under the Guidance of Prof. Parag Chaudhuri Flocking/Swarming/Schooling Nature Phenomenon Collective Behaviour by animals of same size

More information

Real-Time Rendering of a Scene With Many Pedestrians

Real-Time Rendering of a Scene With Many Pedestrians 2015 http://excel.fit.vutbr.cz Real-Time Rendering of a Scene With Many Pedestrians Va clav Pfudl Abstract The aim of this text was to describe implementation of software that would be able to simulate

More information

Crowd simulation of pedestrians in a virtual city

Crowd simulation of pedestrians in a virtual city Crowd simulation of pedestrians in a virtual city Submitted in partial fulfilment of the requirements of the degree Bachelor of Science (Honours) of Rhodes University Flora Ponjou Tasse November 3, 2008

More information

Real-Time Shadows for Animated Crowds in Virtual Cities

Real-Time Shadows for Animated Crowds in Virtual Cities Real-Time Shadows for Animated Crowds in Virtual Cities Céline Loscos c.loscos@cs.ucl.ac.uk Franco Tecchia f.techhia@cs.ucl.ac.uk Yiorgos Chrysanthou y.chrysanthou@cs.ucl.ac.uk University College London

More information

Rendering Grass Terrains in Real-Time with Dynamic Lighting. Kévin Boulanger, Sumanta Pattanaik, Kadi Bouatouch August 1st 2006

Rendering Grass Terrains in Real-Time with Dynamic Lighting. Kévin Boulanger, Sumanta Pattanaik, Kadi Bouatouch August 1st 2006 Rendering Grass Terrains in Real-Time with Dynamic Lighting Kévin Boulanger, Sumanta Pattanaik, Kadi Bouatouch August 1st 2006 Goal Rendering millions of grass blades, at any distance, in real-time, with:

More information

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film NVIDIA Interacting with Particle Simulation in Maya using CUDA & Maximus Wil Braithwaite NVIDIA Applied Engineering Digital Film Some particle milestones FX Rendering Physics 1982 - First CG particle FX

More information

Traffic/Flocking/Crowd AI. Gregory Miranda

Traffic/Flocking/Crowd AI. Gregory Miranda Traffic/Flocking/Crowd AI Gregory Miranda Introduction What is Flocking? Coordinated animal motion such as bird flocks and fish schools Initially described by Craig Reynolds Created boids in 1986, generic

More information

URBAN SCALE CROWD DATA ANALYSIS, SIMULATION, AND VISUALIZATION

URBAN SCALE CROWD DATA ANALYSIS, SIMULATION, AND VISUALIZATION www.bsc.es URBAN SCALE CROWD DATA ANALYSIS, SIMULATION, AND VISUALIZATION Isaac Rudomin May 2017 ABSTRACT We'll dive deep into how we use heterogeneous clusters with GPUs for accelerating urban-scale crowd

More information

Collision Avoidance with Unity3d

Collision Avoidance with Unity3d Collision Avoidance with Unity3d Jassiem Ifill September 12, 2013 Abstract The primary goal of the research presented in this paper is to achieve natural crowd simulation and collision avoidance within

More information

Topics in Computer Animation

Topics in Computer Animation Topics in Computer Animation Animation Techniques Artist Driven animation The artist draws some frames (keyframing) Usually in 2D The computer generates intermediate frames using interpolation The old

More information

Point based global illumination is now a standard tool for film quality renderers. Since it started out as a real time technique it is only natural

Point based global illumination is now a standard tool for film quality renderers. Since it started out as a real time technique it is only natural 1 Point based global illumination is now a standard tool for film quality renderers. Since it started out as a real time technique it is only natural to consider using it in video games too. 2 I hope that

More information

LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2

LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2 15-382 COLLECTIVE INTELLIGENCE - S18 LECTURE 16: SWARM INTELLIGENCE 2 / PARTICLE SWARM OPTIMIZATION 2 INSTRUCTOR: GIANNI A. DI CARO BACKGROUND: REYNOLDS BOIDS Reynolds created a model of coordinated animal

More information

Chapter 3 Implementing Simulations as Individual-Based Models

Chapter 3 Implementing Simulations as Individual-Based Models 24 Chapter 3 Implementing Simulations as Individual-Based Models In order to develop models of such individual behavior and social interaction to understand the complex of an urban environment, we need

More information

Real-Time Rendering of Densely Populated Urban Environments

Real-Time Rendering of Densely Populated Urban Environments Real-Time Rendering of Densely Populated Urban Environments Franco Tecchia Laboratorio Percro - Scuola Superiore S. Anna, Pisa, Italy Yiorgos Chrysanthou Department of Computer Science, University College

More information

Large Scale Crowd Simulation Using A Hybrid Agent Model

Large Scale Crowd Simulation Using A Hybrid Agent Model Large Scale Crowd Simulation Using A Hybrid Agent Model Seung In Park 1, Yong Cao 1, Francis Quek 1 1 Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations

CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations Shannon Blyth and Howard J. Hamilton Department of Computer Science University of Regina, Regina, SK, Canada S4S 0A2 {blyth1sh, hamilton}@cs.uregina.ca

More information

Destination Flow for Crowd Simulation

Destination Flow for Crowd Simulation Destination Flow for Crowd Simulation Stefano Pellegrini 1,, Juergen Gall 2, Leonid Sigal 3, and Luc Van Gool 1 1 ETH Zurich, 2 MPI for Intelligent Systems, 3 Disney Research Pittsburgh Abstract. We present

More information

CS 354 R Game Technology

CS 354 R Game Technology CS 354 R Game Technology Particles and Flocking Behavior Fall 2017 Particle Effects 2 General Particle Systems Objects are considered point masses with orientation Simple rules control how the particles

More information

Egocentric Affordance Fields in Pedestrian Steering

Egocentric Affordance Fields in Pedestrian Steering Egocentric Affordance Fields in Pedestrian Steering Mubbasir Kapadia Shawn Singh Billy Hewlett University of California, Los Angeles Petros Faloutsos (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) Figure 1: Figures

More information

Egocentric Affordance Fields in Pedestrian Steering

Egocentric Affordance Fields in Pedestrian Steering Egocentric Affordance Fields in Pedestrian Steering Mubbasir Kapadia Shawn Singh William Hewlett University of California, Los Angeles Petros Faloutsos (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) Figure 1:

More information

Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data 1

Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data 1 Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data 1, Zhi Zhai, Greg Madey Dept. of Computer Science and Engineering University of Notre Dame Notre

More information

Crowd Creation Pipeline for Games

Crowd Creation Pipeline for Games Crowd Creation Pipeline for Games R. McDonnell 1, S. Dobbyn 1 and C. O Sullivan 1 1 Interaction, Simulation & Graphics Lab, Trinity College Dublin, Ireland Abstract With the increase in realism of games

More information

MODELLING AND SIMULATION OF REALISTIC PEDESTRIAN BEHAVIOURS

MODELLING AND SIMULATION OF REALISTIC PEDESTRIAN BEHAVIOURS MODELLING AND SIMULATION OF REALISTIC PEDESTRIAN BEHAVIOURS KOH WEE LIT School Of Computer Engineering A thesis submitted to the Nanyang Technological University in fulfillment of the requirement for the

More information

Virtual Agents. Graduate Program on Applied Computing. Universidade do Vale do Rio dos Sinos. Tel: ext Fax:

Virtual Agents. Graduate Program on Applied Computing. Universidade do Vale do Rio dos Sinos. Tel: ext Fax: Using Computer Vision to Simulate the Motion of Virtual Agents Soraia R. Musse, Cláudio R. Jung, Julio C. S. Jacques Jr. and Adriana Braun Graduate Program on Applied Computing Universidade do Vale do

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

View-Dependent Selective Refinement for Fast Rendering

View-Dependent Selective Refinement for Fast Rendering 1 View-Dependent Selective Refinement for Fast Rendering Kyle Brocklehurst Department of Computer Science and Engineering The Pennsylvania State University kpb136@psu.edu Abstract Triangle meshes are used

More information

Improving Boids Algorithm in GPU using Estimated Self Occlusion

Improving Boids Algorithm in GPU using Estimated Self Occlusion Improving Boids Algorithm in GPU using Estimated Self Occlusion Alessandro Ribeiro da Silva 1 Universidade Federal de Minas Gerais Wallace Santos Lages 2 Universidade Federal de Minas Gerais Luiz Chaimowicz

More information

Levels of Detail for Crowds and Groups

Levels of Detail for Crowds and Groups Volume 21 (2002), number 4 pp. 733 741 COMPUTER GRAPHICS forum Levels of Detail for Crowds and Groups C. O Sullivan, J. Cassell, H. Vilhjálmsson, J. Dingliana, S. Dobbyn, B. McNamee, C. Peters and T. Giang

More information

Motion Graphs for Character Animation

Motion Graphs for Character Animation Parag Chaudhuri Indian Institute of Technology Bombay Research Promotion Workshop on Introduction to Graph and Geometric Algorithms Thapar University Patiala October 30, 2010 Outline Introduction The Need

More information

PARTICLE SWARM OPTIMIZATION (PSO)

PARTICLE SWARM OPTIMIZATION (PSO) PARTICLE SWARM OPTIMIZATION (PSO) J. Kennedy and R. Eberhart, Particle Swarm Optimization. Proceedings of the Fourth IEEE Int. Conference on Neural Networks, 1995. A population based optimization technique

More information

GPU-based Distributed Behavior Models with CUDA

GPU-based Distributed Behavior Models with CUDA GPU-based Distributed Behavior Models with CUDA Courtesy: YouTube, ISIS Lab, Universita degli Studi di Salerno Bradly Alicea Introduction Flocking: Reynolds boids algorithm. * models simple local behaviors

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

Hierarchical Impostors for the Flocking Algorithm in 3D

Hierarchical Impostors for the Flocking Algorithm in 3D Volume 21 (2002), number 4 pp. 723 731 COMPUTER GRAPHICS forum Hierarchical Impostors for the Flocking Algorithm in 3D Noel O Hara Fruition Technologies Ltd, Dublin, Ireland Abstract The availability of

More information

Watch Out! A Framework for Evaluating Steering Behaviors

Watch Out! A Framework for Evaluating Steering Behaviors Watch Out! A Framework for Evaluating Steering Behaviors Shawn Singh, Mishali Naik, Mubbasir Kapadia, Petros Faloutsos, and Glenn Reinman University of California, Los Angeles Abstract. Interactive virtual

More information

Real-time Collision Avoidance for Pedestrian and Bicyclist Simulation: a smooth and predictive approach

Real-time Collision Avoidance for Pedestrian and Bicyclist Simulation: a smooth and predictive approach Available online at www.sciencedirect.com Procedia Computer Science 19 (2013 ) 815 820 The 2nd International Workshop on Agent-based Mobility, Traffic and Transportation Models, Methodologies and Applications

More information

Simulation: Particle Systems

Simulation: Particle Systems Simulation: Particle Systems Course web page: http://goo.gl/eb3aa February 28, 2012 Lecture 5 Particle Systems Definition: Simulation of a set of similar, moving agents in a larger environment Scale usually

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

Real-time Simulation and Rendering of Large-scale Crowd Motion

Real-time Simulation and Rendering of Large-scale Crowd Motion Real-time Simulation and Rendering of Large-scale Crowd Motion A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Department of Computer Science by Bo Li

More information

Efficient Crowd Simulation for Mobile Games

Efficient Crowd Simulation for Mobile Games 24 Efficient Crowd Simulation for Mobile Games Graham Pentheny 24.1 Introduction 24.2 Grid 24.3 Flow Field 24.4 Generating the Flow Field 24.5 Units 24.6 Adjusting Unit Movement Values 24.7 Mobile Limitations

More information

Scalable Ambient Effects

Scalable Ambient Effects Scalable Ambient Effects Introduction Imagine playing a video game where the player guides a character through a marsh in the pitch black dead of night; the only guiding light is a swarm of fireflies that

More information

Real-time, Multi-agent Simulation of Coordinated Hierarchical Movements for Military Vehicles with Formation Conservation

Real-time, Multi-agent Simulation of Coordinated Hierarchical Movements for Military Vehicles with Formation Conservation Real-time, Multi-agent Simulation of Coordinated Hierarchical Movements for Military Vehicles with Formation Conservation Abdulla M. Mamdouh, Ahmed Kaboudan, and Ibrahim F. Imam Abstract In the military

More information

Shape modeling Modeling technique Shape representation! 3D Graphics Modeling Techniques

Shape modeling Modeling technique Shape representation! 3D Graphics   Modeling Techniques D Graphics http://chamilo2.grenet.fr/inp/courses/ensimag4mmgd6/ Shape Modeling technique Shape representation! Part : Basic techniques. Projective rendering pipeline 2. Procedural Modeling techniques Shape

More information

A Predictive Collision Avoidance Model for Pedestrian Simulation

A Predictive Collision Avoidance Model for Pedestrian Simulation A Predictive Collision Avoidance Model for Pedestrian Simulation Ioannis Karamouzas, Peter Heil, Pascal van Beek, and Mark H. Overmars Center for Advanced Gaming and Simulation, Utrecht University, The

More information

Improved Computer-Generated Simulation Using Motion Capture Data

Improved Computer-Generated Simulation Using Motion Capture Data Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2014-06-30 Improved Computer-Generated Simulation Using Motion Capture Data Seth A. Brunner Brigham Young University - Provo Follow

More information

CS248. Game Mechanics

CS248. Game Mechanics CS248 Game Mechanics INTRODUCTION TOM WANG 2007 BS/MS CS KEY GAME MECHANICS * * * * * WORLD BUILDING CONTROLS CAMERA AI PERFORMANCE WORLD BUILDING WORLD BUILDING Set the atmosphere and tone of the game.

More information

Triangle Strip Multiresolution Modelling Using Sorted Edges

Triangle Strip Multiresolution Modelling Using Sorted Edges Triangle Strip Multiresolution Modelling Using Sorted Edges Ó. Belmonte Fernández, S. Aguado González, and S. Sancho Chust Department of Computer Languages and Systems Universitat Jaume I 12071 Castellon,

More information

Indicative Routes for Path Planning and Crowd Simulation

Indicative Routes for Path Planning and Crowd Simulation Indicative Routes for Path Planning and Crowd Simulation Ioannis Karamouzas Roland Geraerts Mark Overmars Department of Information and Computing Sciences, Utrecht University Padualaan 14, De Uithof, 3584CH

More information

PED: Pedestrian Environment Designer

PED: Pedestrian Environment Designer PED: Pedestrian Environment Designer James McIlveen, Steve Maddock, Peter Heywood and Paul Richmond Department of Computer Science, University of Sheffield, Sheffield, UK Environment created in the PED

More information

Abstract. Introduction. Kevin Todisco

Abstract. Introduction. Kevin Todisco - Kevin Todisco Figure 1: A large scale example of the simulation. The leftmost image shows the beginning of the test case, and shows how the fluid refracts the environment around it. The middle image

More information

Overview. Agents and Avatars. Why IVAs? IVAS. Agents and Avatars Believability v naturalism Building the body H-anim Moving and sensing.

Overview. Agents and Avatars. Why IVAs? IVAS. Agents and Avatars Believability v naturalism Building the body H-anim Moving and sensing. Overview Agents and Avatars Ruth Aylett Agents and Avatars Believability v naturalism Building the body H-anim Moving and sensing IVAS Why IVAs? Intelligent Virtual Agents (IVAs) Also: Synthetic characters

More information

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling CSCI 420 Computer Graphics Lecture 19 Keyframe Animation Traditional Animation Keyframe Animation [Angel Ch. 9] Animation "There is no particular mystery in animation...it's really very simple, and like

More information

Real-time Path Planning and Navigation for Multi-Agent and Heterogeneous Crowd Simulation

Real-time Path Planning and Navigation for Multi-Agent and Heterogeneous Crowd Simulation Real-time Path Planning and Navigation for Multi-Agent and Heterogeneous Crowd Simulation Ming C. Lin Department of Computer Science University of North Carolina at Chapel Hill lin@cs.unc.edu Joint work

More information

Course Review. Computer Animation and Visualisation. Taku Komura

Course Review. Computer Animation and Visualisation. Taku Komura Course Review Computer Animation and Visualisation Taku Komura Characters include Human models Virtual characters Animal models Representation of postures The body has a hierarchical structure Many types

More information

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the topic. They are neither a substitute for attending the lectures nor for reading the assigned material. I may not have

More information

LOD and Occlusion Christian Miller CS Fall 2011

LOD and Occlusion Christian Miller CS Fall 2011 LOD and Occlusion Christian Miller CS 354 - Fall 2011 Problem You want to render an enormous island covered in dense vegetation in realtime [Crysis] Scene complexity Many billions of triangles Many gigabytes

More information

A Geometric Approach to Animating Thin Surface Features in SPH Water

A Geometric Approach to Animating Thin Surface Features in SPH Water A Geometric Approach to Animating Thin Surface Features in SPH Water Taekwon Jang et al. Computer Animation and Social Agents 2013 (CASA) Jong-Hyun Kim 2013. 11.08 Abstract We propose a geometric approach

More information

Real-time Simulation of Heterogeneous Crowds

Real-time Simulation of Heterogeneous Crowds Real-time Simulation of Heterogeneous Crowds Avneesh Sud Russell Gayle Stephen Guy Erik Andersen Ming Lin Dinesh Manocha Dept of Computer Science, University of North Carolina at Chapel Hill Figure 1:

More information

An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks

An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks OMNeT++ Community Summit 2016 An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks Benjamin Sliwa, Christoph Ide and Christian Wietfeld September 16, 2016 Faculty of Electrical

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Hardware Displacement Mapping

Hardware Displacement Mapping Matrox's revolutionary new surface generation technology, (HDM), equates a giant leap in the pursuit of 3D realism. Matrox is the first to develop a hardware implementation of displacement mapping and

More information

Crowd simulation. Summerschool Utrecht: Multidisciplinary Game Research. Dr. Roland Geraerts 23 August 2017

Crowd simulation. Summerschool Utrecht: Multidisciplinary Game Research. Dr. Roland Geraerts 23 August 2017 Crowd simulation Summerschool Utrecht: Multidisciplinary Game Research Dr. Roland Geraerts 23 August 2017 1 Societal relevance of crowd simulation The number of environments with big crowds are growing

More information

8. Tensor Field Visualization

8. Tensor Field Visualization 8. Tensor Field Visualization Tensor: extension of concept of scalar and vector Tensor data for a tensor of level k is given by t i1,i2,,ik (x 1,,x n ) Second-order tensor often represented by matrix Examples:

More information

Modelling. Ruth Aylett

Modelling. Ruth Aylett Modelling Ruth Aylett Overview Basic issues Modelling packages Low polygon modelling Importing models Buildings Photogrammetry Laser range finders LIDAR The great outdoors Cheap methods 3D Authoring tools

More information

SFX - Tricks of the Trade Fredrik Limsäter Partner / CTO Fido Stockholm

SFX - Tricks of the Trade Fredrik Limsäter Partner / CTO Fido Stockholm S - Tricks of the Trade 2009 Fredrik Limsäter Partner / CTO Fido Stockholm Resume... and 20 or so commercials CTO what? Chief Technical Officer Building a high-end digital studio in Stockholm Front edge

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

The Terrain Rendering Pipeline. Stefan Roettger, Ingo Frick. VIS Group, University of Stuttgart. Massive Development, Mannheim

The Terrain Rendering Pipeline. Stefan Roettger, Ingo Frick. VIS Group, University of Stuttgart. Massive Development, Mannheim The Terrain Rendering Pipeline Stefan Roettger, Ingo Frick VIS Group, University of Stuttgart wwwvis.informatik.uni-stuttgart.de Massive Development, Mannheim www.massive.de Abstract: From a game developers

More information

Streaming Massive Environments From Zero to 200MPH

Streaming Massive Environments From Zero to 200MPH FORZA MOTORSPORT From Zero to 200MPH Chris Tector (Software Architect Turn 10 Studios) Turn 10 Internal studio at Microsoft Game Studios - we make Forza Motorsport Around 70 full time staff 2 Why am I

More information

High-performance Penetration Depth Computation for Haptic Rendering

High-performance Penetration Depth Computation for Haptic Rendering High-performance Penetration Depth Computation for Haptic Rendering Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Issues of Interpenetration Position and orientation of the haptic probe,

More information

Universiteit Leiden Computer Science

Universiteit Leiden Computer Science Universiteit Leiden Computer Science Optimizing octree updates for visibility determination on dynamic scenes Name: Hans Wortel Student-no: 0607940 Date: 28/07/2011 1st supervisor: Dr. Michael Lew 2nd

More information

Particle Systems. Typical Time Step. Particle Generation. Controlling Groups of Objects: Particle Systems. Flocks and Schools

Particle Systems. Typical Time Step. Particle Generation. Controlling Groups of Objects: Particle Systems. Flocks and Schools Particle Systems Controlling Groups of Objects: Particle Systems Flocks and Schools A complex, fuzzy system represented by a large collection of individual elements. Each element has simple behavior and

More information

Introduction. Optimized Organization and Adaptive Visualization Method. Visualization Experiments and Prototype System Implementation

Introduction. Optimized Organization and Adaptive Visualization Method. Visualization Experiments and Prototype System Implementation CONTENTS Introduction Optimized Organization and Adaptive Visualization Method Visualization Experiments and Prototype System Implementation Conclusions and Future Work Introduction Research Background

More information

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University What is Animation? Making things move What is Animation? Consider a model with n parameters Polygon

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

GUERRILLA DEVELOP CONFERENCE JULY 07 BRIGHTON

GUERRILLA DEVELOP CONFERENCE JULY 07 BRIGHTON Deferred Rendering in Killzone 2 Michal Valient Senior Programmer, Guerrilla Talk Outline Forward & Deferred Rendering Overview G-Buffer Layout Shader Creation Deferred Rendering in Detail Rendering Passes

More information

Animation. Itinerary Computer Graphics Lecture 22

Animation. Itinerary Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University Itinerary Review Basic Animation Keyed Animation Motion Capture Physically-Based Animation Behavioral

More information

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Rendering Computer Animation and Visualisation Lecture 9 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Volume Data Usually, a data uniformly distributed

More information

AUTONOMOUS TAWAF CROWD SIMULATION. Ahmad Zakwan Azizul Fata, Mohd Shafry Mohd Rahim, Sarudin Kari

AUTONOMOUS TAWAF CROWD SIMULATION. Ahmad Zakwan Azizul Fata, Mohd Shafry Mohd Rahim, Sarudin Kari BORNEO SCIENCE 36 (2): SEPTEMBER 2015 AUTONOMOUS TAWAF CROWD SIMULATION Ahmad Zakwan Azizul Fata, Mohd Shafry Mohd Rahim, Sarudin Kari MaGIC-X (Media and Games Innonovation Centre of Excellence UTM-IRDA

More information

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Abstract: We present an interactive algorithm to perform continuous collision

More information

Attention to Detail! Creating Next Generation Content For Radeon X1800 and beyond

Attention to Detail! Creating Next Generation Content For Radeon X1800 and beyond Attention to Detail! Creating Next Generation Content For Radeon X1800 and beyond Callan McInally Manager, 3D Application Research Group Overview In order to fully take advantage of next generation hardware,

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Motion Planning for Human Crowds: from Individuals to Groups of Virtual Characters

Motion Planning for Human Crowds: from Individuals to Groups of Virtual Characters Motion Planning for Human Crowds: from Individuals to Groups of Virtual Characters Cover design by Ioannis Karamouzas ISBN/EAN: 978-90-393-5786-6 Copyright 2012 by Ioannis Karamouzas. All rights reserved.

More information

Illumination and Geometry Techniques. Karljohan Lundin Palmerius

Illumination and Geometry Techniques. Karljohan Lundin Palmerius Illumination and Geometry Techniques Karljohan Lundin Palmerius Objectives Complex geometries Translucency Huge areas Really nice graphics! Shadows Graceful degradation Acceleration Optimization Straightforward

More information