Metric Learning Applied for Automatic Large Image Classification

Size: px
Start display at page:

Download "Metric Learning Applied for Automatic Large Image Classification"

Transcription

1 September, 2014 UPC Metric Learning Applied for Automatic Large Image Classification Supervisors SAHILU WENDESON / IT4BI TOON CALDERS (PhD)/ULB SALIM JOUILI (PhD)/EuraNova

2 Image Database Classification How? Depends on Using K-Nearest Neighbor (knn) Quality of Distance Measure 2

3 k Nearest Neighbor (knn) Classifier Depends on the distance measure k neighbors choose based on Euclidean distance measure (k=1) (k=5) Q 3

4 Outline 1) METRIC LEARNING 2) INDEXING 3) OBJECTIVES and CONTRIBUTIONS 4) EXPERIMENT RESULTS 5) DISCUSSION,CONCLUSION and FUTURE WORKS

5 1. METRIC LEARNING To maximize accuracy of knn by learning the distance measure Traditional metric space (Euclidean )lacks 1 : Consider correlation between features To provide curved as well as linear decision boundaries Metric Learning used to solve these limitations using Mahalanobis metric space 1 R. O. Duda, "Pattern Recognition for HCI," Department of Electrical Engineering San Jose State University, p

6 Mahalanobis Metric Space Where is the cone of symmetric PSD Euclidean Space Mahalanobis Space 1 Using Cholesky decomposition : And rewrite d M As follow: 1 6

7 Euclidean Vs Mahanalobis Space Age Euclidean Space Age Mahalanalobis Space M M=G T G Weight Weight 7

8 Metric Learning Algorithms Metric learning algorithms approaches: Driven by Nearest Neighbors Information -theoretical Online Etc Nearest Neighbor approaches MMC, Xing et al. (2002) NCA, leave-one out cross validation (LOO), Goldberger et al.(2004) MCML, Globerson and Roweis (2005) LMNN, Weinberger et al. (2005) 8

9 Euclidean Metric LMNN Local neighborhood Mahanalobis Metric G M=G T G Target Neighbor Impostors Margin 9

10 Summary LMNN 1 Scales to large datasets Has fast test-time performance Convex optimization Can solve efficiently No assumption about the data Number of target, prior assignment Euclidean Space, Multi-Pass LMNN 1 Sensitive to outliers Dimension Reduction Principle Component Analysis (PCA)

11 PCA Dimension Reduction In the mean-square error sense Linear dimension reduction Based on covariance matrix of the variables Used to reduce computation time and avoid overfitting PCA 11

12 Test, 30% Dataset (labeled ) Build, 70% Training set Metric Learning Testing set Normalize and dimension reduction Plug LMNN Best PSD, M=G T G Build Model Model Build model using LMNN Test model Evaluation Intra/Inter distance ratio knn Error ratio Model 12

13 Intra/Inter Distance Ratio intra/inter ratio Mahalanobis Euclidean E Class Mnist, has 10 classes, intra/inter ratio, number of target = 3 13

14 Test, 30% Dataset (labeled ) Build, 70% Training set Metric Learning Testing set Normalize and dimension reduction Plug LMNN Best PSD, M=G T G Build Model Model Build model using LMNN Test model Evaluation Intra/Inter distance ratio knn Error ratio Model 14

15 knn Error Ratio Mnist Dat tasets ISOLET Bal Faces Mahanalobis Euclidean Iris Error rate Error rate LMNN Vs Euclidean Metrics, (k =5), number of target = 3 15

16 Statistics Mnist Letters Isolet Bal Wines Iris #inputs #features #reduced dimensions #training examples #testing examples #classes knn Comparison Euclidean 2, PCA RCA MMC N/A N/A N/A NCA N/A N/A N/A LMNN PCA Multiple Passes Weinberger, K. Q. and L. K. Saul (2009). "Distance metric learning for large margin nearest neighbor classification." The Journal of Machine Learning Research 10:

17 Image Database Classification using knn Intractable Solution Time Complexity Approximate Nearest Neighbor (ANN) 17

18 Out-line 1) METRIC LEARNING 2) INDEXING 3) OBJECTIVES and CONTRIBUTIONS 4) EXPERIMENT RESULTS 5) DISCUSSION,CONCLUSION and FUTURE WORKS

19 2. Locality Sensitive Hashing Idea: hash functions that similar objects are more likely tohavethesamehash 1,Sub-lineartimesearch Hashing methods to do fast ApproximateNearest Neighbor (ANN) Search, :-approximation ratio, P=4, LSHs have been designed for Cosine Similarity L P Distance Measure Hamming distance Jaccard index for set similarity 1 [Indyk-Motwani 98] Q r, radius 19

20 Example, LSH Take random projections of data Quantize each projection with few bits Feature vector

21 Cosine Similarity LSH r is d-dimensional random hyperplane, Gaussian distribution Basic Hashing Function 1 Learned Hashing Function h r1 rb series of b randomized LSH functions Image database G h r1 r4 Q h r1 r4 Q Both cases Colliding instances are searched <<n 1 Jain, B. Kulis, and K. Grauman. Fast Image Search for Learned Metrics. In CVPR,

22 Euclidean Space Hashing Basic Euclidean Space Learned Euclidean Space Where a is a d-dimensional vector chosen independently from a p-stable distribution, Chose random line and partition into equi-width segments w, and bisarealnumberchosenrandomlyfromrange[0,w] To guarantee accuracy, L hash table(s) are used to probe near neighbors in each Buckets, under K hash functions. 22

23 Euclidean Space Hashing Image Database No indexing involved L = 3, number of hash Table K, number of hash function L 1 Hash Table Key Values X Y W R S L 2 Hash Table Key Values X Y R S key Y W R L 3 Hash Table Values Q 23

24 Out-line 1) METRIC LEARNING 2) INDEXING 3) OBJECTIVES and CONTRIBUTIONS 4) EXPERIMENT RESULTS 5) DISCUSSION,CONCLUSION and FUTURE WORKS

25 3. OBJECTIVES and CONTRIBUTIONS The main objectives of this thesis are:- To study and implement metric learning algorithm dimension reduction technique LSH in different metric space To establish and implement machine learning evaluation techniques The original contribution of the thesis are Formulate a fresh learned approach for both Cosine similarity and Euclidean metric space hashing 25

26 Out-line 1) METRIC LEARNING 2) INDEXING 3) OBJECTIVES and CONTRIBUTIONS 4) EXPERIMENTAL RESULTS 5) DISCUSSION,CONCLUSION and FUTURE WORKS

27 Test, 10% Dataset (labeled ) Build, 90% Training set Metric Learning Query set Normalize and dimension reduction Plug LMNN Decompose, M Best PSD, M Hashing (LSH) Cosine Similarity Hashing Euclidean Space Hashing Transform, M=G T G Learned Basic Original Learned Test model Model Evaluation Time Complexity Computational Complexity Query Accuracy 27

28 Time Complexity Exhaustive Vs Euclidean Space Hashing, 3NN time (Msecond) Exhaustive Euclidean Hashing LetterRecognition Isolet Mnist Datasets 49 Dataset LetterRecognitioon Isolet Mnist Instances 20, ,000 Dimension

29 Computation Complexity We use to guarantee searching of NN Steps CosineLSH CosineLSH +LMNN E2LSH LMNN + E2LSH Metric learning (offline) projection Euclidean LMNN O(d) O(d 2 ) O(d) O(d 2 ) O(d) O(d 2 ) Hash functions O(b) O(b) O(Lk) O(Lk) O(0) O(0) Signature (to represent the data point) O(1) O(1) O(L) O(L) O(1) O(1) Hashing: compute O(bd) O(bd) O(dLk) O(dLk) O(0) O(0) Search: identity the query's ANNs O(Md) O(Md) O(LMd) O(LMd) O(dN) O(dN) M. S. Charikar, "Similarity estimation techniques from rounding algorithms," in Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, 2002, pp

30 Test, 10% Dataset (labeled ) Build, 90% Training set Metric Learning Query set Normalize and dimension reduction Plug LMNN Decompose, M Best PSD, M Hashing (LSH) Cosine Similarity Hashing Euclidean Space Hashing Transform, M=G T G Learned Randomized Original Learned Test model Evaluation Time Complexity Computational Complexity Query Accuracy Model K = 10 30

31 Accuracy Rate(Cosine Similarity Hashing) 1 ISOLET 0.8 Accuracy Rate Randomized Learned Bit 31

32 Accuracy Rate(Cosine Similarity Hashing) 1 MNIST 0.8 Accuracy Rate Randomized Learned Bit 32

33 Accuracy Rate(Cosine Similarity Hashing) 0.8 Cifer Accuracy Rate 0.4 Randomized Learned Bit 33

34 Accuracy Rate(Euclidean Space Hashing) Datasets cifar-100 Accuracy Rate: E2LSH Vs LMNN+E2LSH Letter Mnist ISOLET OliverFaces Accuracy rate LMNN+E2LSH E2LSH 34

35 Summary Time Euclidean LMNN Exhaustive techniques E2LSH LMNN + E2LSH Euclidean space hashing Basic Cosine Learned Cosine Cosine space hashing knn classification accuracy Accuracy 35

36 Out-line 1) METRIC LEARNING 2) INDEXING 3) OBJECTIVES and CONTRIBUTIONS 4) EXPERIMENTAL RESULTS 5) DISCUSSION,CONCLUSION and FUTURE WORKS

37 5. DISCUSSION and CONCLUSION Metric Learning, is used to learn metric distance using Mahanalobis metric space, LMNN E2LSH outperforms both unlearned and learned Cosine similarity hashing. Incorporating metric learning algorithm (LMNN) into both metric space hashing (Cosine and Euclidean, E2LSH) has a competence to improve the performance significantly. LMNN into E2LSH (LMNN +E2LSH), improves E2LSH 37

38 5. DISCUSSION and CONCLUSION The main goal of this research is to devise classifier by breeding metric learning algorithm and hashing technique in the context of large-scale image classification. Java, Eclipse IDE used to implement 38

39 FUTURE WORKS Future Future work(s) Extend this research work by adding feature extraction technique on top, to set up input data Use other LMNN extension algorithms and compare results of this thesis. Propose to advance this study using unsupervised (clustering) metric learning algorithms. 39

40 THANK YOU!!! Q A 40

Metric Learning Applied for Automatic large Scale Image Classification

Metric Learning Applied for Automatic large Scale Image Classification Universitat Politècnica de Catalunya (UPC) Master in Information Technology for Business Intelligence Metric Learning Applied for Automatic large Scale Image Classification THESIS SUBMITTED IN PARTIAL

More information

Distance metric learning: A two-phase approach

Distance metric learning: A two-phase approach ESANN 07 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 6-8 April 07, i6doc.com publ., ISBN 978-8758709-. Distance metric

More information

Global Metric Learning by Gradient Descent

Global Metric Learning by Gradient Descent Global Metric Learning by Gradient Descent Jens Hocke and Thomas Martinetz University of Lübeck - Institute for Neuro- and Bioinformatics Ratzeburger Allee 160, 23538 Lübeck, Germany hocke@inb.uni-luebeck.de

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Locality-Sensitive Hashing

Locality-Sensitive Hashing Locality-Sensitive Hashing & Image Similarity Search Andrew Wylie Overview; LSH given a query q (or not), how do we find similar items from a large search set quickly? Can t do all pairwise comparisons;

More information

Instances on a Budget

Instances on a Budget Retrieving Similar or Informative Instances on a Budget Kristen Grauman Dept. of Computer Science University of Texas at Austin Work with Sudheendra Vijayanarasimham Work with Sudheendra Vijayanarasimham,

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Fast Indexing and Search Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Motivation Object categorization? http://www.cs.utexas.edu/~grauman/slides/jain_et_al_cvpr2008.ppt Motivation

More information

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 Vector visual representation Fixed-size image representation High-dim (100 100,000) Generic, unsupervised: BoW,

More information

Learning Better Data Representation using Inference-Driven Metric Learning

Learning Better Data Representation using Inference-Driven Metric Learning Learning Better Data Representation using Inference-Driven Metric Learning Paramveer S. Dhillon CIS Deptt., Univ. of Penn. Philadelphia, PA, U.S.A dhillon@cis.upenn.edu Partha Pratim Talukdar Search Labs,

More information

Neighbourhood Components Analysis

Neighbourhood Components Analysis Neighbourhood Components Analysis Jacob Goldberger, Sam Roweis, Geoff Hinton, Ruslan Salakhutdinov Department of Computer Science, University of Toronto {jacob,rsalakhu,hinton,roweis}@cs.toronto.edu Abstract

More information

Large Margin Component Analysis

Large Margin Component Analysis DRAFT (November 2, 26) Final version to appear in Proc. NIPS 26 Large Margin Component Analysis Lorenzo Torresani Riya, Inc. lorenzo@riya.com Kuang-chih Lee Riya, Inc. kclee@riya.com Abstract Metric learning

More information

Constrained Metric Learning via Distance Gap Maximization

Constrained Metric Learning via Distance Gap Maximization Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Constrained Metric Learning via Distance Gap Maximization Wei Liu, Xinmei Tian, Dacheng Tao School of Computer Engineering

More information

Approximate Nearest Neighbor Search. Deng Cai Zhejiang University

Approximate Nearest Neighbor Search. Deng Cai Zhejiang University Approximate Nearest Neighbor Search Deng Cai Zhejiang University The Era of Big Data How to Find Things Quickly? Web 1.0 Text Search Sparse feature Inverted Index How to Find Things Quickly? Web 2.0, 3.0

More information

Metric Learning for Large-Scale Image Classification:

Metric Learning for Large-Scale Image Classification: Metric Learning for Large-Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Florent Perronnin 1 work published at ECCV 2012 with: Thomas Mensink 1,2 Jakob Verbeek 2 Gabriela Csurka

More information

Locally Smooth Metric Learning with Application to Image Retrieval

Locally Smooth Metric Learning with Application to Image Retrieval Locally Smooth Metric Learning with Application to Image Retrieval Hong Chang Xerox Research Centre Europe 6 chemin de Maupertuis, Meylan, France hong.chang@xrce.xerox.com Dit-Yan Yeung Hong Kong University

More information

Supervised Distance Metric Learning

Supervised Distance Metric Learning Supervised Distance Metric Learning A Retrospective Nan Xiao Stat. Dept., Central South Univ. Q4 2013 Outline Theory Algorithms Applications What is a metric? A metric is a function. Function satisfies:

More information

A Gradient-based Metric Learning Algorithm for k-nn Classifiers

A Gradient-based Metric Learning Algorithm for k-nn Classifiers A Gradient-based Metric Learning Algorithm for k-nn Classifiers Nayyar A. Zaidi 1, David McG. Squire 1, and David Suter 2 1 Clayton School of Information Technology, Monash University, VIC 38, Australia,

More information

Adaptive Binary Quantization for Fast Nearest Neighbor Search

Adaptive Binary Quantization for Fast Nearest Neighbor Search IBM Research Adaptive Binary Quantization for Fast Nearest Neighbor Search Zhujin Li 1, Xianglong Liu 1*, Junjie Wu 1, and Hao Su 2 1 Beihang University, Beijing, China 2 Stanford University, Stanford,

More information

Regularized Large Margin Distance Metric Learning

Regularized Large Margin Distance Metric Learning 2016 IEEE 16th International Conference on Data Mining Regularized Large Margin Distance Metric Learning Ya Li, Xinmei Tian CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application

More information

Convergence of Multi-Pass Large Margin Nearest Neighbor Metric Learning

Convergence of Multi-Pass Large Margin Nearest Neighbor Metric Learning Convergence of Multi-Pass Large Margin Nearest Neighbor Metric Learning Christina Göpfert Benjamin Paassen Barbara Hammer CITEC center of excellence Bielefeld University - Germany (This is a preprint of

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence COMP307 Machine Learning 2: 3-K Techniques Yi Mei yi.mei@ecs.vuw.ac.nz 1 Outline K-Nearest Neighbour method Classification (Supervised learning) Basic NN (1-NN)

More information

Hashing with Graphs. Sanjiv Kumar (Google), and Shih Fu Chang (Columbia) June, 2011

Hashing with Graphs. Sanjiv Kumar (Google), and Shih Fu Chang (Columbia) June, 2011 Hashing with Graphs Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Sanjiv Kumar (Google), and Shih Fu Chang (Columbia) June, 2011 Overview Graph Hashing Outline Anchor Graph Hashing Experiments Conclusions

More information

Metric Learning for Large Scale Image Classification:

Metric Learning for Large Scale Image Classification: Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Thomas Mensink 1,2 Jakob Verbeek 2 Florent Perronnin 1 Gabriela Csurka 1 1 TVPA - Xerox Research Centre

More information

Learning Models of Similarity: Metric and Kernel Learning. Eric Heim, University of Pittsburgh

Learning Models of Similarity: Metric and Kernel Learning. Eric Heim, University of Pittsburgh Learning Models of Similarity: Metric and Kernel Learning Eric Heim, University of Pittsburgh Standard Machine Learning Pipeline Manually-Tuned Features Machine Learning Model Desired Output for Task Features

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2

A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation. Kwanyong Lee 1 and Hyeyoung Park 2 A Distance-Based Classifier Using Dissimilarity Based on Class Conditional Probability and Within-Class Variation Kwanyong Lee 1 and Hyeyoung Park 2 1. Department of Computer Science, Korea National Open

More information

Online Metric Learning and Fast Similarity Search

Online Metric Learning and Fast Similarity Search Online Metric Learning and Fast Similarity Search Prateek Jain, Brian Kulis, Inderjit S. Dhillon, and Kristen Grauman Department of Computer Sciences University of Texas at Austin Austin, TX 78712 {pjain,kulis,inderjit,grauman}@cs.utexas.edu

More information

CSC 411: Lecture 05: Nearest Neighbors

CSC 411: Lecture 05: Nearest Neighbors CSC 411: Lecture 05: Nearest Neighbors Raquel Urtasun & Rich Zemel University of Toronto Sep 28, 2015 Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 1 / 13 Today Non-parametric models

More information

Isometric Mapping Hashing

Isometric Mapping Hashing Isometric Mapping Hashing Yanzhen Liu, Xiao Bai, Haichuan Yang, Zhou Jun, and Zhihong Zhang Springer-Verlag, Computer Science Editorial, Tiergartenstr. 7, 692 Heidelberg, Germany {alfred.hofmann,ursula.barth,ingrid.haas,frank.holzwarth,

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

Feature Selection for Image Retrieval and Object Recognition

Feature Selection for Image Retrieval and Object Recognition Feature Selection for Image Retrieval and Object Recognition Nuno Vasconcelos et al. Statistical Visual Computing Lab ECE, UCSD Presented by Dashan Gao Scalable Discriminant Feature Selection for Image

More information

Fast Solvers and Efficient Implementations for Distance Metric Learning

Fast Solvers and Efficient Implementations for Distance Metric Learning Fast Solvers and Efficient Implementations for Distance Metric Learning Kilian Q. Weinberger kilian@yahoo-inc.com Yahoo! Research, 2821 Mission College Blvd, Santa Clara, CA 9505 Lawrence K. Saul saul@cs.ucsd.edu

More information

Intro to Artificial Intelligence

Intro to Artificial Intelligence Intro to Artificial Intelligence Ahmed Sallam { Lecture 5: Machine Learning ://. } ://.. 2 Review Probabilistic inference Enumeration Approximate inference 3 Today What is machine learning? Supervised

More information

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012 Supervised Hashing with Kernels Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), and Shih Fu Chang (Columbia Columbia) June, 2012 Outline Motivations Problem

More information

An Improvement of Centroid-Based Classification Algorithm for Text Classification

An Improvement of Centroid-Based Classification Algorithm for Text Classification An Improvement of Centroid-Based Classification Algorithm for Text Classification Zehra Cataltepe, Eser Aygun Istanbul Technical Un. Computer Engineering Dept. Ayazaga, Sariyer, Istanbul, Turkey cataltepe@itu.edu.tr,

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 4. Instance-Based Learning. Introduction to Data Mining, 2 nd Edition Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 4 Instance-Based Learning Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Instance Based Classifiers

More information

CLSH: Cluster-based Locality-Sensitive Hashing

CLSH: Cluster-based Locality-Sensitive Hashing CLSH: Cluster-based Locality-Sensitive Hashing Xiangyang Xu Tongwei Ren Gangshan Wu Multimedia Computing Group, State Key Laboratory for Novel Software Technology, Nanjing University xiangyang.xu@smail.nju.edu.cn

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

MODULE 7 Nearest Neighbour Classifier and its Variants LESSON 12

MODULE 7 Nearest Neighbour Classifier and its Variants LESSON 12 MODULE 7 Nearest Neighbour Classifier and its Variants LESSON 2 Soft Nearest Neighbour Classifiers Keywords: Fuzzy, Neighbours in a Sphere, Classification Time Fuzzy knn Algorithm In Fuzzy knn Algorithm,

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg Spectral Clustering Aarti Singh Machine Learning 10-701/15-781 Apr 7, 2010 Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg 1 Data Clustering Graph Clustering Goal: Given data points X1,, Xn and similarities

More information

SVMs and Data Dependent Distance Metric

SVMs and Data Dependent Distance Metric SVMs and Data Dependent Distance Metric N. Zaidi, D. Squire Clayton School of Information Technology, Monash University, Clayton, VIC 38, Australia Email: {nayyar.zaidi,david.squire}@monash.edu Abstract

More information

Learning to Hash with Binary Reconstructive Embeddings

Learning to Hash with Binary Reconstructive Embeddings Learning to Hash with Binary Reconstructive Embeddings Brian Kulis and Trevor Darrell UC Berkeley EECS and ICSI Berkeley, CA {kulis,trevor}@eecs.berkeley.edu Abstract Fast retrieval methods are increasingly

More information

Stepwise Metric Adaptation Based on Semi-Supervised Learning for Boosting Image Retrieval Performance

Stepwise Metric Adaptation Based on Semi-Supervised Learning for Boosting Image Retrieval Performance Stepwise Metric Adaptation Based on Semi-Supervised Learning for Boosting Image Retrieval Performance Hong Chang & Dit-Yan Yeung Department of Computer Science Hong Kong University of Science and Technology

More information

Compact Data Representations and their Applications. Moses Charikar Princeton University

Compact Data Representations and their Applications. Moses Charikar Princeton University Compact Data Representations and their Applications Moses Charikar Princeton University Lots and lots of data AT&T Information about who calls whom What information can be got from this data? Network router

More information

Local Linear Embedding. Katelyn Stringer ASTR 689 December 1, 2015

Local Linear Embedding. Katelyn Stringer ASTR 689 December 1, 2015 Local Linear Embedding Katelyn Stringer ASTR 689 December 1, 2015 Idea Behind LLE Good at making nonlinear high-dimensional data easier for computers to analyze Example: A high-dimensional surface Think

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Machine Learning: k-nearest Neighbors. Lecture 08. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning: k-nearest Neighbors. Lecture 08. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning: k-nearest Neighbors Lecture 08 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Nonparametric Methods: k-nearest Neighbors Input: A training dataset

More information

Regression-based Metric Learning

Regression-based Metric Learning Regression-based Metric Learning Panagiotis Moutafis, Mengjun Leng, and Ioannis A. Kakadiaris Computer Science, University of Houston, Houston, Texas 77004 {pmoutafis, mleng2, ioannisk}@uh.edu Abstract

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors State-of-the-Art Yury Lifshits Steklov Institute of Mathematics at St.Petersburg Yandex Tech Seminar, April 2007 1 / 28 Outline 1 Problem Statement Applications Data Models

More information

Supervised Hashing for Image Retrieval via Image Representation Learning

Supervised Hashing for Image Retrieval via Image Representation Learning Supervised Hashing for Image Retrieval via Image Representation Learning Rongkai Xia, Yan Pan, Cong Liu (Sun Yat-Sen University) Hanjiang Lai, Shuicheng Yan (National University of Singapore) Finding Similar

More information

CS 340 Lec. 4: K-Nearest Neighbors

CS 340 Lec. 4: K-Nearest Neighbors CS 340 Lec. 4: K-Nearest Neighbors AD January 2011 AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 1 / 23 K-Nearest Neighbors Introduction Choice of Metric Overfitting and Underfitting Selection

More information

Overview of Clustering

Overview of Clustering based on Loïc Cerfs slides (UFMG) April 2017 UCBL LIRIS DM2L Example of applicative problem Student profiles Given the marks received by students for different courses, how to group the students so that

More information

Learning to Hash with Binary Reconstructive Embeddings

Learning to Hash with Binary Reconstructive Embeddings Learning to Hash with Binary Reconstructive Embeddings Brian Kulis Trevor Darrell Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-0

More information

Convex Optimizations for Distance Metric Learning and Pattern Classification

Convex Optimizations for Distance Metric Learning and Pattern Classification Convex Optimizations for Distance Metric Learning and Pattern Classification Kilian Q. Weinberger Department of Computer Science and Engineering Washington University, St. Louis, MO 63130 kilian@seas.wustl.edu

More information

Parametric Local Metric Learning for Nearest Neighbor Classification

Parametric Local Metric Learning for Nearest Neighbor Classification Parametric Local Metric Learning for Nearest Neighbor Classification Jun Wang Department of Computer Science University of Geneva Switzerland Jun.Wang@unige.ch Adam Woznica Department of Computer Science

More information

Object and Action Detection from a Single Example

Object and Action Detection from a Single Example Object and Action Detection from a Single Example Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Hae Jong Seo AFOSR Program Review, June 4-5, 29 Take a look at this:

More information

Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval

Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval Steven C.H. Hoi School of Computer Engineering Nanyang Technological University chhoi@ntu.edu.sg Wei Liu and Shih-Fu Chang Department

More information

Cluster Analysis: Agglomerate Hierarchical Clustering

Cluster Analysis: Agglomerate Hierarchical Clustering Cluster Analysis: Agglomerate Hierarchical Clustering Yonghee Lee Department of Statistics, The University of Seoul Oct 29, 2015 Contents 1 Cluster Analysis Introduction Distance matrix Agglomerative Hierarchical

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

Nonparametric Clustering of High Dimensional Data

Nonparametric Clustering of High Dimensional Data Nonparametric Clustering of High Dimensional Data Peter Meer Electrical and Computer Engineering Department Rutgers University Joint work with Bogdan Georgescu and Ilan Shimshoni Robust Parameter Estimation:

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri

Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Near Neighbor Search in High Dimensional Data (1) Dr. Anwar Alhenshiri Scene Completion Problem The Bare Data Approach High Dimensional Data Many real-world problems Web Search and Text Mining Billions

More information

Searching in one billion vectors: re-rank with source coding

Searching in one billion vectors: re-rank with source coding Searching in one billion vectors: re-rank with source coding Hervé Jégou INRIA / IRISA Romain Tavenard Univ. Rennes / IRISA Laurent Amsaleg CNRS / IRISA Matthijs Douze INRIA / LJK ICASSP May 2011 LARGE

More information

Efficient Algorithm for Distance Metric Learning

Efficient Algorithm for Distance Metric Learning Efficient lgorithm for Distance Metric Learning Yipei Wang Language Technologies Institute, Carnegie Mellon University Pittsburgh, P 15232 yipeiw@cmu.edu bstract Distance metric learning provides an approach

More information

SYDE 372 Introduction to Pattern Recognition. Distance Measures for Pattern Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Distance Measures for Pattern Classification: Part I SYDE 372 Introduction to Pattern Recognition Distance Measures for Pattern Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline Distance Measures

More information

Random Grids: Fast Approximate Nearest Neighbors and Range Searching for Image Search

Random Grids: Fast Approximate Nearest Neighbors and Range Searching for Image Search Random Grids: Fast Approximate Nearest Neighbors and Range Searching for Image Search Dror Aiger, Efi Kokiopoulou, Ehud Rivlin Google Inc. aigerd@google.com, kokiopou@google.com, ehud@google.com Abstract

More information

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER A.Shabbir 1, 2 and G.Verdoolaege 1, 3 1 Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium 2 Max Planck Institute

More information

Non-linear dimension reduction

Non-linear dimension reduction Sta306b May 23, 2011 Dimension Reduction: 1 Non-linear dimension reduction ISOMAP: Tenenbaum, de Silva & Langford (2000) Local linear embedding: Roweis & Saul (2000) Local MDS: Chen (2006) all three methods

More information

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions CAMCOS Report Day December 9th, 2015 San Jose State University Project Theme: Classification The Kaggle Competition

More information

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition

Technical Report. Title: Manifold learning and Random Projections for multi-view object recognition Technical Report Title: Manifold learning and Random Projections for multi-view object recognition Authors: Grigorios Tsagkatakis 1 and Andreas Savakis 2 1 Center for Imaging Science, Rochester Institute

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Spatial Outlier Detection

Spatial Outlier Detection Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1 Spatial Outlier A spatial data point

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Lorentzian Distance Classifier for Multiple Features

Lorentzian Distance Classifier for Multiple Features Yerzhan Kerimbekov 1 and Hasan Şakir Bilge 2 1 Department of Computer Engineering, Ahmet Yesevi University, Ankara, Turkey 2 Department of Electrical-Electronics Engineering, Gazi University, Ankara, Turkey

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images

Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images Cotutelle PhD thesis for Recognition, Indexing and Retrieval of Graphic Document Images presented by Muhammad Muzzamil LUQMAN mluqman@{univ-tours.fr, cvc.uab.es} Friday, 2 nd of March 2012 Directors of

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Classifiers and Detection. D.A. Forsyth

Classifiers and Detection. D.A. Forsyth Classifiers and Detection D.A. Forsyth Classifiers Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc) Detection with a classifier Search all windows at relevant scales Prepare features Classify

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Speeding up the Detection of Line Drawings Using a Hash Table

Speeding up the Detection of Line Drawings Using a Hash Table Speeding up the Detection of Line Drawings Using a Hash Table Weihan Sun, Koichi Kise 2 Graduate School of Engineering, Osaka Prefecture University, Japan sunweihan@m.cs.osakafu-u.ac.jp, 2 kise@cs.osakafu-u.ac.jp

More information

Metric learning approaches! for image annotation! and face recognition!

Metric learning approaches! for image annotation! and face recognition! Metric learning approaches! for image annotation! and face recognition! Jakob Verbeek" LEAR Team, INRIA Grenoble, France! Joint work with :"!Matthieu Guillaumin"!!Thomas Mensink"!!!Cordelia Schmid! 1 2

More information

A GENERIC FACE REPRESENTATION APPROACH FOR LOCAL APPEARANCE BASED FACE VERIFICATION

A GENERIC FACE REPRESENTATION APPROACH FOR LOCAL APPEARANCE BASED FACE VERIFICATION A GENERIC FACE REPRESENTATION APPROACH FOR LOCAL APPEARANCE BASED FACE VERIFICATION Hazim Kemal Ekenel, Rainer Stiefelhagen Interactive Systems Labs, Universität Karlsruhe (TH) 76131 Karlsruhe, Germany

More information

Python With Data Science

Python With Data Science Course Overview This course covers theoretical and technical aspects of using Python in Applied Data Science projects and Data Logistics use cases. Who Should Attend Data Scientists, Software Developers,

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

Kapitel 4: Clustering

Kapitel 4: Clustering Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases WiSe 2017/18 Kapitel 4: Clustering Vorlesung: Prof. Dr.

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

arxiv: v5 [cs.cv] 15 May 2018

arxiv: v5 [cs.cv] 15 May 2018 A Revisit of Hashing Algorithms for Approximate Nearest Neighbor Search The State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, China Alibaba-Zhejiang University Joint Institute

More information

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen

SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM. Olga Kouropteva, Oleg Okun and Matti Pietikäinen SELECTION OF THE OPTIMAL PARAMETER VALUE FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM Olga Kouropteva, Oleg Okun and Matti Pietikäinen Machine Vision Group, Infotech Oulu and Department of Electrical and

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Binary Embedding with Additive Homogeneous Kernels

Binary Embedding with Additive Homogeneous Kernels Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-7) Binary Embedding with Additive Homogeneous Kernels Saehoon Kim, Seungjin Choi Department of Computer Science and Engineering

More information

CPSC 340: Machine Learning and Data Mining. Finding Similar Items Fall 2017

CPSC 340: Machine Learning and Data Mining. Finding Similar Items Fall 2017 CPSC 340: Machine Learning and Data Mining Finding Similar Items Fall 2017 Assignment 1 is due tonight. Admin 1 late day to hand in Monday, 2 late days for Wednesday. Assignment 2 will be up soon. Start

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information