Object and Action Detection from a Single Example

Size: px
Start display at page:

Download "Object and Action Detection from a Single Example"

Transcription

1 Object and Action Detection from a Single Example Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Hae Jong Seo AFOSR Program Review, June 4-5, 29

2 Take a look at this:

3 See it here?

4 How about here?

5 Or here?

6 Single Example, No Training! (Most) people can find the Dragon Fruit from one look. Even if they ve never seen it before.

7 Outline I. Motivation II. III. Overview Object Detection IV. Action Detection V. Conclusion and Future work

8 Fundamental Problems in Machine Vision Develop a unified framework that can robustly detect objects/actions of interest within images/videos without training query target image query target video 1) Whether objects (actions) are present or not, 2) How many objects (actions)? 3) Where are they located?

9 Challenges in Detection Objects Actions Besides, Contexts: Degradation: 1) different clothes, 2) different illumination, Medical imaging Underwater Raindrop Noise 3) different background 4) action speed Blur

10 Outline I. Motivation II. III. System Overview Object Detection IV. Action Detection V. Conclusion and Future work

11 Object Detection using Local Regression Kernels Local Steering Kernels as Descriptors Using a single example Resemblance Map Detected Similar Objects Query

12 Query Target Object Detection System Overview -.1 stage 1 Compute local steering kernels Descriptors ) Significance.5 Tests.1 3) Non-maxima Suppression Final result PCA stage 2 stage 3 1Image Feature 2Image Feature.1 1Image Feature 3Image 4Template Feature Feature Image 1Image compute feature images Image Feature.5 3Image Feature.1.2 2Image Feature.1 1Image Feature 4Image Feature -.5 3Image Feature -.1 4Template 2Image Feature Feature 4Image Feature 3Image Feature.1 1) Resemblance Map (RM).2 using Matrix Cosine Similarity 4Image Feature Image Feature 2Image Feature Image Feature 2Image Feature 3Image Feature 4Image Feature 3Image Feature 4Image Feature 1Image Fea 2Image Fea 3Image Fea.2 4Image Fea H. Seo and P. Milanfar, Training-free, Generic Object Detection using Locally Adaptive Regression Kernels, Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence

13 Stage 1: Calculation of Local Descriptors SVD

14 Robustness of LSK Descriptors Original Brightness Contrast WGN image change change sigma =

15 System Overview.1 : Stage 2 1Image Feature Query Target stage 1 Compute local steering kernels ) Significance.5 Tests.1 3) Non-maxima Suppression Final result PCA stage 2 compute feature images stage 3.1 1Image Fea.2 2Image Feature Image Feature Image Fea.2 1Image Feature Image 4Template Feature Feature Image 3Image Fea Image 2Image Feature Image Feature Image Feature.5 3Image Feature Image Feature Image Feature Image Feature Image Feature Image Feature Image Feature Image Feature.1 1) Resemblance Map (RM).2 using Matrix Cosine Similarity Image Feature Image Fea -.2 3Image Feature 2Image Feature Image Feature 3Image Feature Image Feature

16 Energy Stage 2: Feature Extraction from Descriptors Densely collected Vectorization Descriptors Apply PCA to for dimensionality reduction Retain the d largest principal components Project and onto d Eigenvalue rank

17 Stage 2: Salient features after PCA LSK Object: Helicopter Query 1Image Target Feature 1 st eigenvector 2 nd eigenvector 3 rd eigenvector 1Image Feature 1Image Feature 1Image Feature 2Image Feature 2Image Feature 2Image Feature 2Image Feature 3Image Feature 3Image Feature 3Image Feature 3Image Feature 1Image Feature 1Image Feature 1Image Feature 1Image Feature 2Image Feature 2Image Feature 2Image Feature 2Image Feature 3Image Feature 3Image Feature 3Image Feature 3Image Feature 4 th eigenvector 4Image Feature 4Image Feature 4Image Feature 4Image Feature 4Image Feature 4Image Feature 4Image Feature Eigenvectors 4Image Feature Query features Target features 11

18 Stage 2: Salient features after PCA LSK Object: Car Query Target st eigenvector nd.2.4 eigenvector rd.2.4 eigenvector th.2.4 eigenvector Eigenvectors Query features Target features 11

19 Image Feature.2 System Overview.1 : Stage Query Target.1 1Image Fea.2 2Image Feature Image Feature Image Fea.2 1Image Feature stage 1 stage 2 3Image 4Template Feature Feature Image 3Image Fea Image.2.1 PCA -.5 2Image Feature Image Feature Image Fea Image Feature Image Feature.5 3Image Feature.1.1 2Image Feature Image Feature Image Feature Compute local steering kernels ) Significance Tests.5.1 3) Non-maxima Suppression -.5 Final result compute feature images stage Image Feature 3Image Feature.1.5 4Image Feature Image Feature Image Feature 4Image Feature Image Feature 3Image Feature.1 1) Resemblance Map (RM).2 using Matrix Cosine Similarity Image Feature

20 Stage 3: Finding similarity between features Target image is divided into a set of overlapping patches Query Target Query Target

21 Stage 3: Correlation based Metric The vector cosine similarity Query Target patch Inner product between two normalized vectors Measures angle while discarding the magnitude

22 Stage 3: Correlation based Metric The vector cosine similarity Query Target patch Inner product between two normalized vectors Measures angle while discarding the magnitude

23 Stage 3: Matrix Cosine Similarity What about a set of vectors? Matrix Cosine Similarity Frobenius Inner product between normalized matrices Query Target patch

24 Stage 3: Matrix Cosine Similarity What about a set of vectors? Matrix Cosine Similarity Frobenius Inner product between normalized matrices Query Target patch A weighted sum of the column-wise vector cosine similarities We can prove optimality of this approach in a naïve Bayes sense.

25 Stage 3: Generate Resemblance Map Resemblance Map (RM) Describes the proportion of variance in common between two features Lawley-Hotelling Trace statistic

26 Stage 3: Non-parametric Significance Tests 1. Is any sufficiently similar object present? i.e., 2. How many objects of interest are present? so that ~ 5 % of variance in common probability.4 Empirical PDF % confidence level Significance level

27 Experimental Results Query Targets Dataset from Weizmann Inst.

28 Experimental Results query query target:1 target target:3 target

29 Experimental Results query target target:2 target:1

30 Experimental Results query target:3 target target:1 target target:2 target 25

31 Experimental Results query Higher resemblance target target:1 target target:2 Lower resemblance

32 Detection rate Experimental Results Weizmann Inst. Object Test Set CIE L*a*b* channel Luminance channel only SIFT descriptor [1999] Shape Context [21] GLOH [25] x 1-4 Detection rate = TP/(TP+FN) False positive rate = FP/(FP+TN) False positive rate

33 Experimental Results The MIT-CMU Face Test Set Query

34 Detection rate Experimental Results 1 The MIT-CMU Face Test Set ROC curve x 1-4 False positive rate 36

35 Gallery Set:1 subjects x 25 different conditions Query Q

36 Gallery Set:1 subjects x 25 different conditions Query Q

37 query target output query target output

38 query target output query target output

39 Outline I. Motivation II. III. System Overview Object Detection IV. Action Detection V. Conclusion and Future work

40 Action Detection System Overview Query stage 1 stage 2 PCA Target Compute space-time local steering kernels compute feature volumes No Motion Estimation No Segmentation No Learning No Prior Information 2) Significance Tests 3) Non-maxima Suppression Final result Frame:256 stage 3 1) Resemblance Map (RM) using Matrix Cosine Similarity H. Seo and P. Milanfar, Generic Action Recognition from a Single Example, Submitted to International Journal of Computer Vision (IJCV), March 29

41 Stage 1: Space Time Descriptors : 3x3 local covariance matrix : space-time coordinates First frame Key frame Last frame 38

42 Experimental Results Shechtman s action test set (Beach walk) Query Typical run time for target (5 frames of 144 x 192) and query (13 frames of 9 x 11) : a little over 1 minute

43 Experimental Results (Multiple Actions) Multiple queries Automatic cropping Very Confusing Moving to the Left Very Confusing Very Confusing Very Confusing Moving to the Left Very Confusing Very Confusing Very Confusing Moving to the Left Very Confusing Very Confusing Very Confusing Moving to the Left Very Confusing Very Confusing Very Confusing Moving to the Left Very Confusing Very Confusing

44 Action Recognition Query Automatic cropping of a short action clip (25 frames) Action Category 1 5 Action Detection 2 6 Scoring Rank least similar most similar

45 Action Classification Performance Average confusion matrices Classification rate: 96 % Classification rate: % Bend Jack Jump box hclp Pjump Run Side Skip Walk hwav jog run Wave1 Wave walk (Weizmann dataset) (KTH dataset) 9 video sequences 6 video sequences Classification rate = 1 (# of miss classification) / (total # of sequences) Evaluation setting: Leave-one-out Classify each testing video as one of the predefined classes by 3-NN (nearest neighbor)

46 Action Classification Performance Comparison with state-of-the art methods (KTH dataset) Our Approach (1-NN) Our Approach (2-NN) Our Approach (3-NN) 89% 93% 95.66% Our Approach (3-NN) 95.66% Kim et al. (28) 95.33% Ali et al.(28) 87.7% Dollar et al. (25) 81.17% Ning et al. (28) 92.31% Niebles et al. (28) 81.5% Wong et al. (27) 71.16% Classification rate = 1 (# of miss classification) / (total # of sequences) We outperform all the state-of-the art methods on KTH dataset.

47 Publications H. Seo and P. Milanfar, Training-free, Generic Object Detection using Locally Adaptive Regression Kernels, Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 H. Seo and P. Milanfar, Generic Action Recognition from a Single Example, Submitted to International Journal of Computer Vision (IJCV), March 29 H. Seo and P. Milanfar, Static and Space-time Visual Saliency Detection by Self- Resemblance, Submitted to Journal of Vision (JoV), May 29 H. Seo and P. Milanfar, Detection of Human Actions from a Single Example, Accepted for publication in International Conference on Computer Vision (ICCV), March 29 H. Seo and P. Milanfar, Nonparametric Bottom-Up Saliency Detection by Self- Resemblance, Accepted for IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1st International Workshop on Visual Scene Understanding (ViSU 9), Miami, June, 29 H. Seo and P. Milanfar, Using Local Regression Kernels for Statistical Object Detection, Proceedings of IEEE International Conference on Image Processing (ICIP), San Diego, 28

48 Conclusions & Future Work Local Steering Kernels are Very Effective Descriptors Simple Approach: PCA + Matrix Cosine Similarity Excellent Detection and Recognition is Achieved without Training Make algorithm scalable for image and (video) retrieval Increase accuracy by incorporating context Detect /recognize objects of interest in general degraded data without explicit restoration

Locally Adaptive Regression Kernels with (many) Applications

Locally Adaptive Regression Kernels with (many) Applications Locally Adaptive Regression Kernels with (many) Applications Peyman Milanfar EE Department University of California, Santa Cruz Joint work with Hiro Takeda, Hae Jong Seo, Xiang Zhu Outline Introduction/Motivation

More information

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIENCE, VOL.32, NO.9, SEPTEMBER 2010 Hae Jong Seo, Student Member,

More information

Action Recognition from One Example

Action Recognition from One Example Action Recognition from One Example 1 Hae Jong Seo, Student Member, IEEE, and Peyman Milanfar, Senior Member, IEEE Abstract We present a novel action recognition method based on space-time locally adaptive

More information

Generic Human Action Recognition from a Single Example

Generic Human Action Recognition from a Single Example Noname manuscript No. (will be inserted by the editor) Generic Human Action Recognition from a Single Example Hae Jong Seo Peyman Milanfar Received: date / Accepted: date Abstract We present a novel human

More information

Locally Adaptive Regression Kernels with (many) Applications

Locally Adaptive Regression Kernels with (many) Applications Locally Adaptive Regression Kernels with (many) Applications Peyman Milanfar EE Department University of California, Santa Cruz Joint work with Hiro Takeda, Hae Jong Seo, Xiang Zhu Outline Introduction/Motivation

More information

Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels

Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels Action Recognition in Video by Sparse Representation on Covariance Manifolds of Silhouette Tunnels Kai Guo, Prakash Ishwar, and Janusz Konrad Department of Electrical & Computer Engineering Motivation

More information

Action Recognition & Categories via Spatial-Temporal Features

Action Recognition & Categories via Spatial-Temporal Features Action Recognition & Categories via Spatial-Temporal Features 华俊豪, 11331007 huajh7@gmail.com 2014/4/9 Talk at Image & Video Analysis taught by Huimin Yu. Outline Introduction Frameworks Feature extraction

More information

BEING able to automatically detect people in videos is

BEING able to automatically detect people in videos is 1 Using Local Steering Kernels to Detect People in Videos Arthur Louis Alaniz II, Christina Marianne G. Mantaring Department of Electrical Engineering, Stanford University {aalaniz, cmgmant} @stanford.edu

More information

Motion illusion, rotating snakes

Motion illusion, rotating snakes Motion illusion, rotating snakes Local features: main components 1) Detection: Find a set of distinctive key points. 2) Description: Extract feature descriptor around each interest point as vector. x 1

More information

EVENT DETECTION AND HUMAN BEHAVIOR RECOGNITION. Ing. Lorenzo Seidenari

EVENT DETECTION AND HUMAN BEHAVIOR RECOGNITION. Ing. Lorenzo Seidenari EVENT DETECTION AND HUMAN BEHAVIOR RECOGNITION Ing. Lorenzo Seidenari e-mail: seidenari@dsi.unifi.it What is an Event? Dictionary.com definition: something that occurs in a certain place during a particular

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Evaluation of Local Space-time Descriptors based on Cuboid Detector in Human Action Recognition

Evaluation of Local Space-time Descriptors based on Cuboid Detector in Human Action Recognition International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 9 No. 4 Dec. 2014, pp. 1708-1717 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Evaluation

More information

Lecture 18: Human Motion Recognition

Lecture 18: Human Motion Recognition Lecture 18: Human Motion Recognition Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Introduction Motion classification using template matching Motion classification i using spatio

More information

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Features Points Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Finding Corners Edge detectors perform poorly at corners. Corners provide repeatable points for matching, so

More information

Linear Discriminant Analysis for 3D Face Recognition System

Linear Discriminant Analysis for 3D Face Recognition System Linear Discriminant Analysis for 3D Face Recognition System 3.1 Introduction Face recognition and verification have been at the top of the research agenda of the computer vision community in recent times.

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

Local Image Features

Local Image Features Local Image Features Computer Vision Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Flashed Face Distortion 2nd Place in the 8th Annual Best

More information

SUPERVISED NEIGHBOURHOOD TOPOLOGY LEARNING (SNTL) FOR HUMAN ACTION RECOGNITION

SUPERVISED NEIGHBOURHOOD TOPOLOGY LEARNING (SNTL) FOR HUMAN ACTION RECOGNITION SUPERVISED NEIGHBOURHOOD TOPOLOGY LEARNING (SNTL) FOR HUMAN ACTION RECOGNITION 1 J.H. Ma, 1 P.C. Yuen, 1 W.W. Zou, 2 J.H. Lai 1 Hong Kong Baptist University 2 Sun Yat-sen University ICCV workshop on Machine

More information

Local Image Features

Local Image Features Local Image Features Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial This section: correspondence and alignment

More information

IMPROVING SPATIO-TEMPORAL FEATURE EXTRACTION TECHNIQUES AND THEIR APPLICATIONS IN ACTION CLASSIFICATION. Maral Mesmakhosroshahi, Joohee Kim

IMPROVING SPATIO-TEMPORAL FEATURE EXTRACTION TECHNIQUES AND THEIR APPLICATIONS IN ACTION CLASSIFICATION. Maral Mesmakhosroshahi, Joohee Kim IMPROVING SPATIO-TEMPORAL FEATURE EXTRACTION TECHNIQUES AND THEIR APPLICATIONS IN ACTION CLASSIFICATION Maral Mesmakhosroshahi, Joohee Kim Department of Electrical and Computer Engineering Illinois Institute

More information

The SIFT (Scale Invariant Feature

The SIFT (Scale Invariant Feature The SIFT (Scale Invariant Feature Transform) Detector and Descriptor developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004 Review: Matt Brown s Canonical

More information

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER A.Shabbir 1, 2 and G.Verdoolaege 1, 3 1 Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium 2 Max Planck Institute

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Scale Invariant Feature Transform Why do we care about matching features? Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Image

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

Adaptive Kernel Regression for Image Processing and Reconstruction

Adaptive Kernel Regression for Image Processing and Reconstruction Adaptive Kernel Regression for Image Processing and Reconstruction Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Sina Farsiu, Hiro Takeda AFOSR Sensing Program Review,

More information

METHODS FOR TARGET DETECTION IN SAR IMAGES

METHODS FOR TARGET DETECTION IN SAR IMAGES METHODS FOR TARGET DETECTION IN SAR IMAGES Kaan Duman Supervisor: Prof. Dr. A. Enis Çetin December 18, 2009 Bilkent University Dept. of Electrical and Electronics Engineering Outline Introduction Target

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

Evaluation and comparison of interest points/regions

Evaluation and comparison of interest points/regions Introduction Evaluation and comparison of interest points/regions Quantitative evaluation of interest point/region detectors points / regions at the same relative location and area Repeatability rate :

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford Image matching Harder case by Diva Sian by Diva Sian by scgbt by swashford Even harder case Harder still? How the Afghan Girl was Identified by Her Iris Patterns Read the story NASA Mars Rover images Answer

More information

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang International Science Index, Electrical and Computer Engineering waset.org/publication/0007607

More information

3D Object Recognition using Multiclass SVM-KNN

3D Object Recognition using Multiclass SVM-KNN 3D Object Recognition using Multiclass SVM-KNN R. Muralidharan, C. Chandradekar April 29, 2014 Presented by: Tasadduk Chowdhury Problem We address the problem of recognizing 3D objects based on various

More information

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1 Feature Detection Raul Queiroz Feitosa 3/30/2017 Feature Detection 1 Objetive This chapter discusses the correspondence problem and presents approaches to solve it. 3/30/2017 Feature Detection 2 Outline

More information

Salient Region Detection and Segmentation in Images using Dynamic Mode Decomposition

Salient Region Detection and Segmentation in Images using Dynamic Mode Decomposition Salient Region Detection and Segmentation in Images using Dynamic Mode Decomposition Sikha O K 1, Sachin Kumar S 2, K P Soman 2 1 Department of Computer Science 2 Centre for Computational Engineering and

More information

Final Project Face Detection and Recognition

Final Project Face Detection and Recognition Final Project Face Detection and Recognition Submission Guidelines: 1. Follow the guidelines detailed in the course website and information page.. Submission in pairs is allowed for all students registered

More information

Learning Human Actions with an Adaptive Codebook

Learning Human Actions with an Adaptive Codebook Learning Human Actions with an Adaptive Codebook Yu Kong, Xiaoqin Zhang, Weiming Hu and Yunde Jia Beijing Laboratory of Intelligent Information Technology School of Computer Science, Beijing Institute

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

A performance evaluation of local descriptors

A performance evaluation of local descriptors MIKOLAJCZYK AND SCHMID: A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS A performance evaluation of local descriptors Krystian Mikolajczyk and Cordelia Schmid Dept. of Engineering Science INRIA Rhône-Alpes

More information

LAPLACIAN OBJECT: ONE-SHOT OBJECT DETECTION BY LOCALITY PRESERVING PROJECTION Sujoy Kumar Biswas and Peyman Milanfar

LAPLACIAN OBJECT: ONE-SHOT OBJECT DETECTION BY LOCALITY PRESERVING PROJECTION Sujoy Kumar Biswas and Peyman Milanfar LAPLACIAN OBJECT: ONE-SHOT OBJECT DETECTION BY LOCALITY PRESERVING PROJECTION Sujoy Kumar Biswas and Peyman Milanfar Electrical Engineering Department University of California, Santa Cruz 1156 High Street,

More information

Vision and Image Processing Lab., CRV Tutorial day- May 30, 2010 Ottawa, Canada

Vision and Image Processing Lab., CRV Tutorial day- May 30, 2010 Ottawa, Canada Spatio-Temporal Salient Features Amir H. Shabani Vision and Image Processing Lab., University of Waterloo, ON CRV Tutorial day- May 30, 2010 Ottawa, Canada 1 Applications Automated surveillance for scene

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

EigenJoints-based Action Recognition Using Naïve-Bayes-Nearest-Neighbor

EigenJoints-based Action Recognition Using Naïve-Bayes-Nearest-Neighbor EigenJoints-based Action Recognition Using Naïve-Bayes-Nearest-Neighbor Xiaodong Yang and YingLi Tian Department of Electrical Engineering The City College of New York, CUNY {xyang02, ytian}@ccny.cuny.edu

More information

Action recognition in videos

Action recognition in videos Action recognition in videos Cordelia Schmid INRIA Grenoble Joint work with V. Ferrari, A. Gaidon, Z. Harchaoui, A. Klaeser, A. Prest, H. Wang Action recognition - goal Short actions, i.e. drinking, sit

More information

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

SCALE INVARIANT FEATURE TRANSFORM (SIFT) 1 SCALE INVARIANT FEATURE TRANSFORM (SIFT) OUTLINE SIFT Background SIFT Extraction Application in Content Based Image Search Conclusion 2 SIFT BACKGROUND Scale-invariant feature transform SIFT: to detect

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Applications Video Surveillance (On-line or off-line)

Applications Video Surveillance (On-line or off-line) Face Face Recognition: Dimensionality Reduction Biometrics CSE 190-a Lecture 12 CSE190a Fall 06 CSE190a Fall 06 Face Recognition Face is the most common biometric used by humans Applications range from

More information

Human Action Recognition Using Independent Component Analysis

Human Action Recognition Using Independent Component Analysis Human Action Recognition Using Independent Component Analysis Masaki Yamazaki, Yen-Wei Chen and Gang Xu Department of Media echnology Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577,

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

Wikipedia - Mysid

Wikipedia - Mysid Wikipedia - Mysid Erik Brynjolfsson, MIT Filtering Edges Corners Feature points Also called interest points, key points, etc. Often described as local features. Szeliski 4.1 Slides from Rick Szeliski,

More information

Face Recognition Using SIFT- PCA Feature Extraction and SVM Classifier

Face Recognition Using SIFT- PCA Feature Extraction and SVM Classifier IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 2, Ver. II (Mar. - Apr. 2015), PP 31-35 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Face Recognition Using SIFT-

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition

Linear Discriminant Analysis in Ottoman Alphabet Character Recognition Linear Discriminant Analysis in Ottoman Alphabet Character Recognition ZEYNEB KURT, H. IREM TURKMEN, M. ELIF KARSLIGIL Department of Computer Engineering, Yildiz Technical University, 34349 Besiktas /

More information

NIST. Support Vector Machines. Applied to Face Recognition U56 QC 100 NO A OS S. P. Jonathon Phillips. Gaithersburg, MD 20899

NIST. Support Vector Machines. Applied to Face Recognition U56 QC 100 NO A OS S. P. Jonathon Phillips. Gaithersburg, MD 20899 ^ A 1 1 1 OS 5 1. 4 0 S Support Vector Machines Applied to Face Recognition P. Jonathon Phillips U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Information

More information

Learning video saliency from human gaze using candidate selection

Learning video saliency from human gaze using candidate selection Learning video saliency from human gaze using candidate selection Rudoy, Goldman, Shechtman, Zelnik-Manor CVPR 2013 Paper presentation by Ashish Bora Outline What is saliency? Image vs video Candidates

More information

Face Recognition for Mobile Devices

Face Recognition for Mobile Devices Face Recognition for Mobile Devices Aditya Pabbaraju (adisrinu@umich.edu), Srujankumar Puchakayala (psrujan@umich.edu) INTRODUCTION Face recognition is an application used for identifying a person from

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Shape Matching. Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007

Shape Matching. Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007 Shape Matching Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007 Outline Introduction and Background Uses of shape matching Kinds of shape matching Support Vector Machine (SVM) Matching with

More information

Face Recognition using Eigenfaces SMAI Course Project

Face Recognition using Eigenfaces SMAI Course Project Face Recognition using Eigenfaces SMAI Course Project Satarupa Guha IIIT Hyderabad 201307566 satarupa.guha@research.iiit.ac.in Ayushi Dalmia IIIT Hyderabad 201307565 ayushi.dalmia@research.iiit.ac.in Abstract

More information

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Detection Recognition Sally History Early face recognition systems: based on features and distances

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS

CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS 38 CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS 3.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 3.1.1 Introduction In the previous chapter, a brief literature review on conventional

More information

CS229: Action Recognition in Tennis

CS229: Action Recognition in Tennis CS229: Action Recognition in Tennis Aman Sikka Stanford University Stanford, CA 94305 Rajbir Kataria Stanford University Stanford, CA 94305 asikka@stanford.edu rkataria@stanford.edu 1. Motivation As active

More information

Aggregating Descriptors with Local Gaussian Metrics

Aggregating Descriptors with Local Gaussian Metrics Aggregating Descriptors with Local Gaussian Metrics Hideki Nakayama Grad. School of Information Science and Technology The University of Tokyo Tokyo, JAPAN nakayama@ci.i.u-tokyo.ac.jp Abstract Recently,

More information

Patch-based Object Recognition. Basic Idea

Patch-based Object Recognition. Basic Idea Patch-based Object Recognition 1! Basic Idea Determine interest points in image Determine local image properties around interest points Use local image properties for object classification Example: Interest

More information

An Implementation on Histogram of Oriented Gradients for Human Detection

An Implementation on Histogram of Oriented Gradients for Human Detection An Implementation on Histogram of Oriented Gradients for Human Detection Cansın Yıldız Dept. of Computer Engineering Bilkent University Ankara,Turkey cansin@cs.bilkent.edu.tr Abstract I implemented a Histogram

More information

Human pose estimation using Active Shape Models

Human pose estimation using Active Shape Models Human pose estimation using Active Shape Models Changhyuk Jang and Keechul Jung Abstract Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body

More information

Local invariant features

Local invariant features Local invariant features Tuesday, Oct 28 Kristen Grauman UT-Austin Today Some more Pset 2 results Pset 2 returned, pick up solutions Pset 3 is posted, due 11/11 Local invariant features Detection of interest

More information

Reconstruction of Images Distorted by Water Waves

Reconstruction of Images Distorted by Water Waves Reconstruction of Images Distorted by Water Waves Arturo Donate and Eraldo Ribeiro Computer Vision Group Outline of the talk Introduction Analysis Background Method Experiments Conclusions Future Work

More information

Human Motion Detection and Tracking for Video Surveillance

Human Motion Detection and Tracking for Video Surveillance Human Motion Detection and Tracking for Video Surveillance Prithviraj Banerjee and Somnath Sengupta Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur,

More information

Key properties of local features

Key properties of local features Key properties of local features Locality, robust against occlusions Must be highly distinctive, a good feature should allow for correct object identification with low probability of mismatch Easy to etract

More information

NOVEL PCA-BASED COLOR-TO-GRAY IMAGE CONVERSION. Ja-Won Seo and Seong Dae Kim

NOVEL PCA-BASED COLOR-TO-GRAY IMAGE CONVERSION. Ja-Won Seo and Seong Dae Kim NOVEL PCA-BASED COLOR-TO-GRAY IMAGE CONVERSION Ja-Won Seo and Seong Dae Kim Korea Advanced Institute of Science and Technology (KAIST) Department of Electrical Engineering 21 Daehak-ro, Yuseong-gu, Daejeon

More information

Human Activity Recognition Using a Dynamic Texture Based Method

Human Activity Recognition Using a Dynamic Texture Based Method Human Activity Recognition Using a Dynamic Texture Based Method Vili Kellokumpu, Guoying Zhao and Matti Pietikäinen Machine Vision Group University of Oulu, P.O. Box 4500, Finland {kello,gyzhao,mkp}@ee.oulu.fi

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

Face Detection and Recognition in an Image Sequence using Eigenedginess

Face Detection and Recognition in an Image Sequence using Eigenedginess Face Detection and Recognition in an Image Sequence using Eigenedginess B S Venkatesh, S Palanivel and B Yegnanarayana Department of Computer Science and Engineering. Indian Institute of Technology, Madras

More information

Selection of Scale-Invariant Parts for Object Class Recognition

Selection of Scale-Invariant Parts for Object Class Recognition Selection of Scale-Invariant Parts for Object Class Recognition Gy. Dorkó and C. Schmid INRIA Rhône-Alpes, GRAVIR-CNRS 655, av. de l Europe, 3833 Montbonnot, France fdorko,schmidg@inrialpes.fr Abstract

More information

Edge and corner detection

Edge and corner detection Edge and corner detection Prof. Stricker Doz. G. Bleser Computer Vision: Object and People Tracking Goals Where is the information in an image? How is an object characterized? How can I find measurements

More information

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian.

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian. Announcements Project 1 Out today Help session at the end of class Image matching by Diva Sian by swashford Harder case Even harder case How the Afghan Girl was Identified by Her Iris Patterns Read the

More information

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4 Advanced Video Content Analysis and Video Compression (5LSH0), Module 4 Visual feature extraction Part I: Color and texture analysis Sveta Zinger Video Coding and Architectures Research group, TU/e ( s.zinger@tue.nl

More information

Adaptive Action Detection

Adaptive Action Detection Adaptive Action Detection Illinois Vision Workshop Dec. 1, 2009 Liangliang Cao Dept. ECE, UIUC Zicheng Liu Microsoft Research Thomas Huang Dept. ECE, UIUC Motivation Action recognition is important in

More information

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford Image matching Harder case by Diva Sian by Diva Sian by scgbt by swashford Even harder case Harder still? How the Afghan Girl was Identified by Her Iris Patterns Read the story NASA Mars Rover images Answer

More information

Dynamic Human Shape Description and Characterization

Dynamic Human Shape Description and Characterization Dynamic Human Shape Description and Characterization Z. Cheng*, S. Mosher, Jeanne Smith H. Cheng, and K. Robinette Infoscitex Corporation, Dayton, Ohio, USA 711 th Human Performance Wing, Air Force Research

More information

A GENERIC FACE REPRESENTATION APPROACH FOR LOCAL APPEARANCE BASED FACE VERIFICATION

A GENERIC FACE REPRESENTATION APPROACH FOR LOCAL APPEARANCE BASED FACE VERIFICATION A GENERIC FACE REPRESENTATION APPROACH FOR LOCAL APPEARANCE BASED FACE VERIFICATION Hazim Kemal Ekenel, Rainer Stiefelhagen Interactive Systems Labs, Universität Karlsruhe (TH) 76131 Karlsruhe, Germany

More information

Automatic Gait Recognition. - Karthik Sridharan

Automatic Gait Recognition. - Karthik Sridharan Automatic Gait Recognition - Karthik Sridharan Gait as a Biometric Gait A person s manner of walking Webster Definition It is a non-contact, unobtrusive, perceivable at a distance and hard to disguise

More information

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm Group 1: Mina A. Makar Stanford University mamakar@stanford.edu Abstract In this report, we investigate the application of the Scale-Invariant

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Dimensionality Reduction and Classification through PCA and LDA

Dimensionality Reduction and Classification through PCA and LDA International Journal of Computer Applications (09 8887) Dimensionality Reduction and Classification through and Telgaonkar Archana H. PG Student Department of CS and IT Dr. BAMU, Aurangabad Deshmukh Sachin

More information

Prof. Feng Liu. Spring /26/2017

Prof. Feng Liu. Spring /26/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/26/2017 Last Time Re-lighting HDR 2 Today Panorama Overview Feature detection Mid-term project presentation Not real mid-term 6

More information

Visual Learning and Recognition of 3D Objects from Appearance

Visual Learning and Recognition of 3D Objects from Appearance Visual Learning and Recognition of 3D Objects from Appearance (H. Murase and S. Nayar, "Visual Learning and Recognition of 3D Objects from Appearance", International Journal of Computer Vision, vol. 14,

More information

Bag of Optical Flow Volumes for Image Sequence Recognition 1

Bag of Optical Flow Volumes for Image Sequence Recognition 1 RIEMENSCHNEIDER, DONOSER, BISCHOF: BAG OF OPTICAL FLOW VOLUMES 1 Bag of Optical Flow Volumes for Image Sequence Recognition 1 Hayko Riemenschneider http://www.icg.tugraz.at/members/hayko Michael Donoser

More information