Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Size: px
Start display at page:

Download "Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University"

Transcription

1 Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

2 Outline An overview on classification Basics of classification How to choose appropriate features (feature set) How to perform classification Classifiers

3 Where are we right now? Figure: Classification in image processing.

4 What is intelligence? Ability to separate relevant information Ability to learn from examples and to generalize knowledge so that it can be used in other situations Ability to draw conclusions from incomplete information

5 What is classification? Classification is a process in which individual items (objects/patterns/image regions/pixels) are grouped based on the similarity between the item and the description of the group Figure: Classification process.

6 What is classification? Distinguish between different types of objects Determine which parts of the image belong to the object of interest We would like to create an intelligent system that can draw conclusions from our image data Often used as the last stage in automated image analysis task

7 Classification example 1 Figure: Classification of leaves.

8 Classification example 2 Figure: Histological bone implant images.

9 Some important concepts Arrangements of descriptors are often called patterns Descriptors are often called features The most common pattern arrangement is a feature vector with n dimensions Patterns are placed in classes of objects which share common properties A collection of N classes are denoted ω 1, ω 2,..., ω N

10 Terminology Object = pattern = point = sample = vector Feature = attribute = measurement Classifier = decision function (boundary) Class Cluster

11 Dataset By measuring the features of many objects we construct dataset Object Perimeter Area Label Apple Apple Apple Pear Pear Pear

12 Data set and a representation in the feature space

13 Features Features are the individual measurable heuristic properties of the phenomena Discriminating (effective) features Independent features Features: area, perimeter texture color...

14 What are good features? Each pattern is represented in terms of n features x = (x 1,..., x n ) The goal is to choose those features that allow pattern vectors belonging to different classes to occupy compact and disjoint regions It is application dependent You might try many, many features, until you find the right ones Often, people compute 100s of features, and put them all in a classifier The classifier will figure out which ones are good This is wrong!!!

15 Peaking phenomenon (Curse of dimensionality) Additional features may actually degrade the performance of a classifier This paradox is called peaking phenomenon (curse of dimensionality) Figure: Curse of dimensionality.

16 Feature set Colour? Area? Perimeter?...

17 Dimensionality reduction Keep the number of features as small as possible Measurements cost Accuracy Simplify pattern representation The resulting classifier will be faster and will use less memory A reduction in the number of features may lead to a loss in the discriminatory power and thereby lower the accuracy

18 Feature extraction Feature extraction is the process of generating features to be used in the selection and classification tasks Reduce dimensionality by (linear or non-linear) projection of n dimensional vector onto m dimensional vector (m < n) May have not clear physical meaning Figure: Feature extraction.

19 Feature selection Feature selection methods choose features from the original set based on some criteria Reduce dimensionality by selecting subset of original features Have clear physical meaning Figure: Feature selection.

20 Choice of a criterion function The main issues in dimensionality reduction is the choice of a criterion function A most commonly used is the classification error of a feature subset Example: A measure of distance between two distributions f 1 and f 2 Mahalanobis distance: Main assumption is that Gaussian distributions have equal covariance matrix Σ D M (f 1, f 2 ) = (m 1 m 2 ) T Σ 1 (m 1 m 2 ) m 1 is a mean of objects in class 1 m 2 is a mean of objects in class 2

21 Feature selection methods Exhaustive search Best individual features Sequential forward selection Sequential backward selection

22 Exhaustive search Evaluate all ( n m) possible subsets Guaranteed to find the optimal subset Very expensive! Example: If n = 50, m = 5 then there are possible subset (classifications) to evaluate

23 Best individual features Evaluate all n features individually Select the best m n individual features Simple and not likely to lead to an optimal subset Example: Feature 1 is best Feature 2 is best Maybe features 3 and 4 outperform features 1 and 2!

24 Sequential forward selection Selects the best feature and then add one feature at a time Once a feature is retained, it cannot be discarded Computationally fast (for a subset of size 2 examine n 1 possible subsets)

25 Sequential backward selection Starts with all n features and successive delete one feature at a time Once a feature is deleted, it cannot be brought back into the optimal subset Require more computation time than sequential forward selection

26 Search algorithms The presented algorithms are suboptimal When should we use forward selection? When should we use backward selection? Is there any optimal algorithms? Branch and bound (divide and conquer method) Genetic algorithms Simulated annealing

27 Supervised vs. Unsupervised classification Supervised First apply knowledge, then classify Unsupervised First classify, then apply knowledge Figure: Supervised and unsupervised classification.

28 Object-wise and pixel-wise classification Object-wise classification Uses shape information to describe patterns Size, mean intensity, mean color, etc. Pixel-wise classification Uses information from individual pixels Intensity, color, texture, spectral information

29 Object-wise classification Lab 2

30 Object-wise classification Segment the image into regions and label them Extract features for each pattern Train classifier on examples with known class to find discriminant function in the feature space For new examples decide their class using the discriminant function

31 Pixel-wise classification 256*256 patterns (pixels) 3 features (red, green and blue color) Four classes (stamen, leaf, stalk and background)

32 Pixel-wise classification The pattern is a pixel in a non-segmented image Extract (calculate) features for each pattern (pixel) e.g., color, gray-level representation of texture, temporal changes. Train classifier New samples are classified by classifier

33 Train and classify Training Find rules and discriminant function that separate patterns in different classes using known examples Classification Take a new unknown example and put it into the correct class using discriminant function

34 Training data Training data can be obtained from available training samples Classify patterns which are not used during the training stage The performance of classifier depends on the number of available training samples as well as the specific values of the samples Number of training samples should not be too small!

35 Training data Conditional densities are unknown and they have to be learned from available training data Maybe density is known (for example multivariate Gaussian) A common strategy is to replace unknown parameters by the their estimated values Less available information - the difficulty of classification problem increases

36 How to choose appropriate training set?

37 How to choose appropriate training set? Figure: Original image and training image.

38 How to choose appropriate training set? Figure: Original image and training image.

39 Classifiers Once a feature selection finds a proper representation, a classifier can be designed using a number of possible approaches The performance of classifier depends on the interrelationship between sample size, number of features and classifier complexity The choice of a classifier is a difficult problem!!! It is often based on which classifier(s) happen to be available or best known to the user

40 Most commonly used classifiers The user can modify several associated parameters and criterion function There exist some classification problem for which they are the best choice Classifiers (covered in this lecture): Minimal distance classifier Maximal likelihood classifier Nearest neighbour classifier

41 Discriminant functions A discriminant function for a class is a function that will yield larger values than functions for other classes if the pattern belongs to the class d j (x) > d j (x) j = 1, 2,..., N; j i For N pattern classes, we have N discriminant functions The decision boundary between class i and class j is d j (x) d i (x) = 0

42 Decision boundary

43 Decision boundary Figure: Decision boundary.

44 Linear and quadratic classifier Figure: Linear (left) and quadratic (right) classifier.

45 Thresholding - simple classification Classify image into foreground and background Figure: Original image and tresholded image.

46 Box classification Generalized thresholding (multispectral thresholding) Interval for each class and feature All objects with feature vector within the same box belong to the same class

47 Bayesian classifiers Based on a priori knowledge of class probability Cost of errors Minimum distance classifier Maximum likelihood classifier

48 Minimum distance classifier Each class is represented by its mean vector Training is done using the objects (pixels) of known class Mean of the feature vectors for the object within the class is calculated New objects are classified by finding the closest mean vector

49 Minimum distance classifier

50 Limitations of Minimum distance classifier Useful when distance between means is large compared to randomness of each class with respect to its mean Optimal performance when distributions of the classes form spherical shape

51 Maximal likelihood classifier Classify according to the largest probability (taking variance and covariance into consideration) Assume that distribution within each class is Gaussian The distribution in each class can be described by a mean vector and covariance matrix

52 Maximal likelihood classifier For each class from training data compute: Mean vector Covariance matrix Form decision function for each class New objects are classified to class with highest probability

53 Variance and covariance Variance : spread a randomness for class Covariance : influence (dependency) between different features Described by covariance matrix Feature 1 Feature 2 Feature 3 Feature 1 1 1&2 1&3 Feature 2 1&2 2 2&3 Feature 3 1&3 2&3 3

54 Computation of covariance Features : x 1, x 2,..., x n Feature vector for object i: x 1,i, x 2,i,..., x n,i Mean for each class x mean1, x mean2,..., x meanm n Covariance: cov(x i, x j ) = 1 n 1 (x i,k x meani )(x j,k x meanj ) k=1 cov(x 1, x 1 ) cov(x 1, x 2 ) cov(x 1, x 3 ) Σ = cov(x 2, x 1 ) cov(x 2, x 2 ) cov(x 2, x 3 ) cov(x 3, x 1 ) cov(x 3, x 2 ) cov(x 3, x 3 )

55 Density functions Equal variance Different variance Covariance is different from zero

56 Assumptions on covariance matrix 1 Case 1 (Minimal distance) No covariance, equal variance 2 Case 2 (Equal covariance) Same covariance for all classes 3 Case 3 (Uncorrelated) No covariance, different variance 4 Case 4 (General) Different covariances

57 Case 1 Independent features Equal variance Minimal distance classifier

58 Case 2 Equal covariances for all classes

59 Case 3 Independent features - no covariance Different variance for different features

60 Case 4 General Complicated decision boundaries

61 Nearest neighbour Stores all training samples Assigns pattern to majority class among k nearest neighbour

62 k nearest neighbour Assigns pattern to majority class among k nearest neighbour

63 k nearest neighbour Metric dependent Lazy The function is approximated only locally The best choice of k depends on data Sensitive to outliers Larger values of k reduce effects of noise, but make boundaries between the classes less distinct

64 Combine classifiers! Each of the classifiers can be developed in a different context and for entirely different representation/description (identification of persons by their voice, face as well as hand writing) More than a single training set is available

65 Combine classifiers! Different classifiers trained on the same data may only differ in their global performances May show strong local differences Combination is very useful if the individual classifiers are independent

66 Combination Parallel All classifiers are evaluated independently Their results are combined (first weight then combine!!!) Serial - linear sequence The number of possible classes for a given pattern are gradually reduced as more classifiers in the sequence has be involved First consider simple classifiers (low computational and measurements cost) More accurate and expensive classifiers apply after Hierarchical (tree-like) Individual classifiers are combined into a structure (a tree-like structure) Advantage high efficiently and flexibility

67 Unsupervised classification Difficult, expensive or even impossible to rely label training sample with its true category (It is not possible to obtain ground truth) Patterns within a cluster are more similar to each other than are patterns belonging to different clusters

68 Unsupervised classification Difficult How to determine the number of clusters K? The number of clusters often depends on resolution (fine vs. coarse)

69 K means Step 1. Select an initial partition with K clusters. Repeat steps 2 through 4 until the cluster membership stabilizes Step 2. Generate a new partition by assigning each pattern to its closest cluster center Step 3. Compute new cluster centres as the centroids of the clusters Step 4. Repeat steps 2 and 3 until an optimum value of the criterion function is found (the cluster are stabilized)

70 K means

71 K means

72 K means - disadvantages Different initialization can result in different final clusters Fixed number of clusters can make it difficult to predict what K should be It is helpful to rerun the classification using the same as well as different K values, to compare the achieved results 10 different initializations for 2D data For N-dimensional data 10 different initializations is often not enough!

73 How to determine K? Davies-Bouldin index (DB index) It works for spherical clusters Intra-cluster and inter-cluster measure

74 Hierarchical clustering Hierarchical clustering - construct clustering tree (dendrogram) Start with each object/pixel as its own class Merge the classes that are closest according to some distance measure Continue until only one class is achieved Decide the number of classes based on the distances in the tree

75 Simple dendrogram

76 Distances measure and linking rules Distance measures: Euclidean City block Mahalonobis Linking rules - how distances are measured when cluster contains more than one object Single linkage (nearest neighbours) Complete linkage (furthest neighbours) Mean linkage (distance between cluster centres)

77 Linking rules Dependent on metric d complete - red d single - blue

78 Summary and conclusions Classification is needed in image processing It is highly application dependent Features and classifiers Using more features does not guarantee a better result!

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Lecture 11: Classification

Lecture 11: Classification Lecture 11: Classification 1 2009-04-28 Patrik Malm Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapters for this lecture 12.1 12.2 in

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Unsupervised Learning : Clustering

Unsupervised Learning : Clustering Unsupervised Learning : Clustering Things to be Addressed Traditional Learning Models. Cluster Analysis K-means Clustering Algorithm Drawbacks of traditional clustering algorithms. Clustering as a complex

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

Understanding Clustering Supervising the unsupervised

Understanding Clustering Supervising the unsupervised Understanding Clustering Supervising the unsupervised Janu Verma IBM T.J. Watson Research Center, New York http://jverma.github.io/ jverma@us.ibm.com @januverma Clustering Grouping together similar data

More information

10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2

10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2 161 Machine Learning Hierarchical clustering Reading: Bishop: 9-9.2 Second half: Overview Clustering - Hierarchical, semi-supervised learning Graphical models - Bayesian networks, HMMs, Reasoning under

More information

Intro to Artificial Intelligence

Intro to Artificial Intelligence Intro to Artificial Intelligence Ahmed Sallam { Lecture 5: Machine Learning ://. } ://.. 2 Review Probabilistic inference Enumeration Approximate inference 3 Today What is machine learning? Supervised

More information

Clustering and Dissimilarity Measures. Clustering. Dissimilarity Measures. Cluster Analysis. Perceptually-Inspired Measures

Clustering and Dissimilarity Measures. Clustering. Dissimilarity Measures. Cluster Analysis. Perceptually-Inspired Measures Clustering and Dissimilarity Measures Clustering APR Course, Delft, The Netherlands Marco Loog May 19, 2008 1 What salient structures exist in the data? How many clusters? May 19, 2008 2 Cluster Analysis

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Clustering. Supervised vs. Unsupervised Learning

Clustering. Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

AN IMPROVED K-MEANS CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION

AN IMPROVED K-MEANS CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION AN IMPROVED K-MEANS CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION WILLIAM ROBSON SCHWARTZ University of Maryland, Department of Computer Science College Park, MD, USA, 20742-327, schwartz@cs.umd.edu RICARDO

More information

Lecture 10: Semantic Segmentation and Clustering

Lecture 10: Semantic Segmentation and Clustering Lecture 10: Semantic Segmentation and Clustering Vineet Kosaraju, Davy Ragland, Adrien Truong, Effie Nehoran, Maneekwan Toyungyernsub Department of Computer Science Stanford University Stanford, CA 94305

More information

Introduction to digital image classification

Introduction to digital image classification Introduction to digital image classification Dr. Norman Kerle, Wan Bakx MSc a.o. INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Purpose of lecture Main lecture topics Review

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Unsupervised Learning Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Content Motivation Introduction Applications Types of clustering Clustering criterion functions Distance functions Normalization Which

More information

Cluster Analysis: Agglomerate Hierarchical Clustering

Cluster Analysis: Agglomerate Hierarchical Clustering Cluster Analysis: Agglomerate Hierarchical Clustering Yonghee Lee Department of Statistics, The University of Seoul Oct 29, 2015 Contents 1 Cluster Analysis Introduction Distance matrix Agglomerative Hierarchical

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Lesson 3. Prof. Enza Messina

Lesson 3. Prof. Enza Messina Lesson 3 Prof. Enza Messina Clustering techniques are generally classified into these classes: PARTITIONING ALGORITHMS Directly divides data points into some prespecified number of clusters without a hierarchical

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Unsupervised learning, Clustering CS434

Unsupervised learning, Clustering CS434 Unsupervised learning, Clustering CS434 Unsupervised learning and pattern discovery So far, our data has been in this form: We will be looking at unlabeled data: x 11,x 21, x 31,, x 1 m x 12,x 22, x 32,,

More information

PARALLEL CLASSIFICATION ALGORITHMS

PARALLEL CLASSIFICATION ALGORITHMS PARALLEL CLASSIFICATION ALGORITHMS By: Faiz Quraishi Riti Sharma 9 th May, 2013 OVERVIEW Introduction Types of Classification Linear Classification Support Vector Machines Parallel SVM Approach Decision

More information

Introduction to Computer Science

Introduction to Computer Science DM534 Introduction to Computer Science Clustering and Feature Spaces Richard Roettger: About Me Computer Science (Technical University of Munich and thesis at the ICSI at the University of California at

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

http://www.xkcd.com/233/ Text Clustering David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Administrative 2 nd status reports Paper review

More information

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22 INF4820 Clustering Erik Velldal University of Oslo Nov. 17, 2009 Erik Velldal INF4820 1 / 22 Topics for Today More on unsupervised machine learning for data-driven categorization: clustering. The task

More information

Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures

Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures Pattern recognition Classification/Clustering GW Chapter 12 (some concepts) Textures Patterns and pattern classes Pattern: arrangement of descriptors Descriptors: features Patten class: family of patterns

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Cluster Analysis. Angela Montanari and Laura Anderlucci

Cluster Analysis. Angela Montanari and Laura Anderlucci Cluster Analysis Angela Montanari and Laura Anderlucci 1 Introduction Clustering a set of n objects into k groups is usually moved by the aim of identifying internally homogenous groups according to a

More information

(Refer Slide Time: 0:51)

(Refer Slide Time: 0:51) Introduction to Remote Sensing Dr. Arun K Saraf Department of Earth Sciences Indian Institute of Technology Roorkee Lecture 16 Image Classification Techniques Hello everyone welcome to 16th lecture in

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Segmentation of Images

Segmentation of Images Segmentation of Images SEGMENTATION If an image has been preprocessed appropriately to remove noise and artifacts, segmentation is often the key step in interpreting the image. Image segmentation is a

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

MSA220 - Statistical Learning for Big Data

MSA220 - Statistical Learning for Big Data MSA220 - Statistical Learning for Big Data Lecture 13 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Clustering Explorative analysis - finding groups

More information

What to come. There will be a few more topics we will cover on supervised learning

What to come. There will be a few more topics we will cover on supervised learning Summary so far Supervised learning learn to predict Continuous target regression; Categorical target classification Linear Regression Classification Discriminative models Perceptron (linear) Logistic regression

More information

Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures

Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures Pattern recognition Classification/Clustering GW Chapter 12 (some concepts) Textures Patterns and pattern classes Pattern: arrangement of descriptors Descriptors: features Patten class: family of patterns

More information

Machine learning Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures

Machine learning Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures Machine learning Pattern recognition Classification/Clustering GW Chapter 12 (some concepts) Textures Patterns and pattern classes Pattern: arrangement of descriptors Descriptors: features Patten class:

More information

Lab 9. Julia Janicki. Introduction

Lab 9. Julia Janicki. Introduction Lab 9 Julia Janicki Introduction My goal for this project is to map a general land cover in the area of Alexandria in Egypt using supervised classification, specifically the Maximum Likelihood and Support

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

Figure 1: Workflow of object-based classification

Figure 1: Workflow of object-based classification Technical Specifications Object Analyst Object Analyst is an add-on package for Geomatica that provides tools for segmentation, classification, and feature extraction. Object Analyst includes an all-in-one

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Unsupervised: no target value to predict

Unsupervised: no target value to predict Clustering Unsupervised: no target value to predict Differences between models/algorithms: Exclusive vs. overlapping Deterministic vs. probabilistic Hierarchical vs. flat Incremental vs. batch learning

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Clustering part II 1

Clustering part II 1 Clustering part II 1 Clustering What is Cluster Analysis? Types of Data in Cluster Analysis A Categorization of Major Clustering Methods Partitioning Methods Hierarchical Methods 2 Partitioning Algorithms:

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Clustering & Classification (chapter 15)

Clustering & Classification (chapter 15) Clustering & Classification (chapter 5) Kai Goebel Bill Cheetham RPI/GE Global Research goebel@cs.rpi.edu cheetham@cs.rpi.edu Outline k-means Fuzzy c-means Mountain Clustering knn Fuzzy knn Hierarchical

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM. Center of Atmospheric Sciences, UNAM November 16, 2016 Cluster Analisis Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster)

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

PPKE-ITK. Lecture

PPKE-ITK. Lecture PPKE-ITK Lecture 6-7. 2017.10.24. 1 What is on the image? This is maybe the most important question we want to answer about an image. For a human observer it is a trivial task, for a machine it is still

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Feature Selection for Image Retrieval and Object Recognition

Feature Selection for Image Retrieval and Object Recognition Feature Selection for Image Retrieval and Object Recognition Nuno Vasconcelos et al. Statistical Visual Computing Lab ECE, UCSD Presented by Dashan Gao Scalable Discriminant Feature Selection for Image

More information

SYDE 372 Introduction to Pattern Recognition. Distance Measures for Pattern Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Distance Measures for Pattern Classification: Part I SYDE 372 Introduction to Pattern Recognition Distance Measures for Pattern Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline Distance Measures

More information

Image Classification. RS Image Classification. Present by: Dr.Weerakaset Suanpaga

Image Classification. RS Image Classification. Present by: Dr.Weerakaset Suanpaga Image Classification Present by: Dr.Weerakaset Suanpaga D.Eng(RS&GIS) 6.1 Concept of Classification Objectives of Classification Advantages of Multi-Spectral data for Classification Variation of Multi-Spectra

More information

PAM algorithm. Types of Data in Cluster Analysis. A Categorization of Major Clustering Methods. Partitioning i Methods. Hierarchical Methods

PAM algorithm. Types of Data in Cluster Analysis. A Categorization of Major Clustering Methods. Partitioning i Methods. Hierarchical Methods Whatis Cluster Analysis? Clustering Types of Data in Cluster Analysis Clustering part II A Categorization of Major Clustering Methods Partitioning i Methods Hierarchical Methods Partitioning i i Algorithms:

More information

Data: a collection of numbers or facts that require further processing before they are meaningful

Data: a collection of numbers or facts that require further processing before they are meaningful Digital Image Classification Data vs. Information Data: a collection of numbers or facts that require further processing before they are meaningful Information: Derived knowledge from raw data. Something

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

6. Dicretization methods 6.1 The purpose of discretization

6. Dicretization methods 6.1 The purpose of discretization 6. Dicretization methods 6.1 The purpose of discretization Often data are given in the form of continuous values. If their number is huge, model building for such data can be difficult. Moreover, many

More information

High throughput Data Analysis 2. Cluster Analysis

High throughput Data Analysis 2. Cluster Analysis High throughput Data Analysis 2 Cluster Analysis Overview Why clustering? Hierarchical clustering K means clustering Issues with above two Other methods Quality of clustering results Introduction WHY DO

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Team 2 Prof. Anita Wasilewska CSE 634 Data Mining All Sources Used for the Presentation Olson CF. Parallel algorithms

More information

MUSI-6201 Computational Music Analysis

MUSI-6201 Computational Music Analysis MUSI-6201 Computational Music Analysis Part 4.3: Feature Post-Processing alexander lerch November 4, 2015 instantaneous features overview text book Chapter 3: Instantaneous Features (pp. 63 69) sources:

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Clustering Lecture 3: Hierarchical Methods

Clustering Lecture 3: Hierarchical Methods Clustering Lecture 3: Hierarchical Methods Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Features and Feature Selection Hamid R. Rabiee Jafar Muhammadi Spring 2012 http://ce.sharif.edu/courses/90-91/2/ce725-1/ Agenda Features and Patterns The Curse of Size and

More information

3. Cluster analysis Overview

3. Cluster analysis Overview Université Laval Multivariate analysis - February 2006 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

More information

Improving the Efficiency of Fast Using Semantic Similarity Algorithm

Improving the Efficiency of Fast Using Semantic Similarity Algorithm International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 1 Improving the Efficiency of Fast Using Semantic Similarity Algorithm D.KARTHIKA 1, S. DIVAKAR 2 Final year

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

Clustering & Dimensionality Reduction. 273A Intro Machine Learning

Clustering & Dimensionality Reduction. 273A Intro Machine Learning Clustering & Dimensionality Reduction 273A Intro Machine Learning What is Unsupervised Learning? In supervised learning we were given attributes & targets (e.g. class labels). In unsupervised learning

More information