Eulerian Cycle (2A) Young Won Lim 5/25/18

Size: px
Start display at page:

Download "Eulerian Cycle (2A) Young Won Lim 5/25/18"

Transcription

1 ulerian ycle (2)

2 opyright (c) Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU ree ocumentation License, Version 1.2 or any later version published by the ree Software oundation; with no nvariant Sections, no ront-over Texts, and no ack-over Texts. copy of the license is included in the section entitled "GNU ree ocumentation License". Please send corrections (or suggestions) to This document was produced by using LibreOffice and Octave.

3 Path and Trail path is a trail in which all vertices are distinct. (except possibly the first and last) trail is a walk in which all edges are distinct. Vertices dges Walk may may (losed/open) repeat repeat Trail may cannot (Open) repeat repeat Path cannot cannot (Open) repeat repeat ircuit may cannot (losed) repeat repeat ycle cannot cannot (losed) repeat repeat ulerian ycles (2) 3

4 Simple Paths and ycles Most literatures require that all of the edges and vertices of a path be distinct from one another. ut, some do not require this and instead use the term simple path to refer to a path which contains no repeated vertices. simple cycle may be defined as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex There is considerable variation of terminology!!! Make sure which set of definitions are used... ulerian ycles (2) 4

5 Simple Paths and ycles Most literatures some other literatures trail circuit path cycle path cycle simple path simple cycle narrow sense path & cycle wide sense path & cycle ulerian ycles (2) 5

6 Paths and ycles e 1 e 2 e 3 e k v 0 v 1 v 2 v 3 v k One of a kind path v 0, e 1, v 1, e 2,, e k, v k path cycle cycle v 0, e 1, v 1, e 2,, e k, v k (v 0 = v k ) path v 0, e 1, v 1, e 2,, e k, v k (v 0 v k ) path cycle cycle v 0, e 1, v 1, e 2,, e k, v k (v 0 = v k ) Two different kinds ulerian ycles (2) 6

7 uler ycle Some people reserve the terms path and cycle to mean non-self-intersecting path and cycle. (potentially) self-intersecting path is known as a trail or an open walk; and a (potentially) self-intersecting cycle, a circuit or a closed walk. This ambiguity can be avoided by using the terms ulerian trail and ulerian circuit when self-intersection is allowed no repeating vertices repeating vertices repeating vertices repeating vertices ulerian ycles (2) 7

8 uler ycle visits every edge exactly once the existence of ulerian cycles all vertices in the graph have an even degree connected graphs with all vertices of even degree h ave an ulerian cycles non-repeating edges repeatable vertices circuit ulerian circuit : more suitable terminology ulerian ycles (2) 8

9 uler Path visits every edge exactly once the existence of ulerian paths all the vertices in the graph have an even degree except only two vertices with an odd degree n ulerian path starts and ends at different vertices n ulerian cycle starts and ends at the same vertex. non-repeating edges repeatable vertices trail ulerian trail : more suitable terminology ulerian ycles (2) 9

10 onditions for ulerian ycles and Paths n odd vertex = a vertex with an odd degree n even vertex = a vertex with an even degree # of odd vertices ulerian Path ulerian ycle 0 No Yes 2 Yes No 4,6,8, No No 1,3,5,7, No such graph No such graph f the graph is connected ulerian ycles (2) 10

11 The number of odd vertices # of odd vertices ulerian Path ulerian ycle 0 No Yes 2 Yes No # of odd vertices = 0 # of odd vertices = 2 ulerian ycle ulerian Path No ulerian Path No ulerian ycle ulerian ycles (2) 11

12 ulerian Graph ulerian graph : a graph with an ulerian cycle a graph with every vertex of even degree (the number of odd vertices is 0) These definitions coincide for connected graphs ulerian ycles (2) 12

13 Odd egree and ven egree ll odd degree vertices ll even degree vertices ulerian ycles (2) 13

14 uler ycle xample H H J G GHJK J G K a path denoted by the edge names K en.wikipedia.org ll even degree vertices ulerian ycles ulerian ycles (2) 14

15 ulerian ycles (2) 15 uler ycle xample en.wikipedia.org GHJK K J G H K J G H K J G H K J G H K J G H K J G H K J G H K J G H K J G H K J G H K J G H K J G H

16 uler Path and ycle xamples ulerian Path uerian ycle 1. uerian ycle 2. a path denoted by the vertex names ulerian ycles (2) 16

17 ulerian ycles of Undirected Graphs n undirected graph has an ulerian cycle if and only if every vertex has even degree, and all of its vertices with nonzero degree belong to a single connected component n undirected graph can be decomposed into edge-disjoint cycles if and only if all of its vertices have even degree. So, a graph has an ulerian cycle if and only if it can be decomposed into edge-disjoint cycles and its nonzero-degree vertices belong to a single connected component ulerian ycles (2) 17

18 dge isjoint ycle ecomposition H G J K ll even vertices uerian ycle dge isjoint ycles ulerian ycles (2) 18

19 ulerian Paths of Undirected Graphs n undirected graph has an ulerian trail if and only if exactly zero or two vertices have odd degree, and all of its vertices with nonzero degree belong to a single connected component. Here, the following definitions are used. Trail : walk without repeated edges. (closed or open) This definition includes trail (open walk) and circuit (closed walk) ll of which contain no repeating edges. ulerian ycles (2) 19

20 ulerian ycles of igraphs directed graph has an ulerian cycle if and only if every vertex has equal in degree and out degree, and all of its vertices with nonzero degree belong to a single strongly connected component. quivalently, a directed graph has an ulerian cycle if and only if it can be decomposed into edge-disjoint directed cycles and all of its vertices with nonzero degree belong to a single strongly connected component. ulerian ycles (2) 20

21 ulerian Paths of igraphs directed graph has an ulerian path if and only if at most one vertex has (out-degree) (in-degree) = 1, at most one vertex has (in-degree) (out-degree) = 1, every other vertex has equal in-degree and out-degree, and all of its vertices with nonzero degree belong to a single connected component of the underlying undirected graph. ulerian ycles (2) 21

22 igraph ulerian ycle xamples 1:1 2:2 1:1 a b c 1:1 e 2:2 d a 2:2 e d c b 1:1 1:1 2:2 1:1 abcdbea edabcdcae ulerian ycles (2) 22

23 igraph ulerian Path xamples 2:2 2:1 a b e 1:1 d 1:2 dbadeab ulerian ycles (2) 23

24 Seven ridges of Königsberg The problem was to devise a walk through the city that would cross each of those bridges once and only once. ulerian ycles (2) 24

25 Seven and ight ridges Problems 7 bridges problem 8 bridges problem G H 4 ulerian Path HG ulerian ycles (2) 25

26 Nine and Ten ridges Problems 9 bridges problem 10 bridges problem G J G H H 5 ulerian Path 6 ulerian ycle HG HGJ ulerian ycles (2) 26

27 8 bridges ulerian Path G H G H G H G H G H G H G H G H G H ulerian Path HG ulerian ycles (2) 27

28 9 bridges ulerian Path G H G H G H G H G H G H G H G H G H G H ulerian Path HG ulerian ycles (2) 28

29 10 bridges ulerian ycle J G H J G H J G H J G H J G H J G H J G H J G H J G H J G H J G H ulerian ycle HGJ ulerian ycles (2) 29

30 leury s lgorithm To find an ulerian path or an ulerian cycle: 1. make sure the graph has either 0 or 2 odd vertices 2. if there are 0 odd vertex, start anywhere. f there are 2 odd vertices, start at one of the two vertices 3. follow edges one at a time. f you have a choice between a bridge and a non-bridge, lways choose the non-bridge 4. stop when you run out of edge ulerian ycles (2) 30

31 ridges bridge edge Removing a single edge from a connected graph can make it disconnected Non-bridge edges Loops cannot be bridges Multiple edges cannot be bridges ulerian ycles (2) 31

32 ridge examples in a graph ulerian ycles (2) 32

33 ridges must be avoided, if possible bridge f there exists other choice other than a bridge The bridge must not be chosen. bridge ulerian ycles (2) 33

34 leury s lgorithm (1) ulerian ycles (2) 34

35 leury s lgorithm (2) : bridge : bridge :bridge : bridge : chosen : chosen :chosen no other choice : chosen no other choice ulerian ycles (2) 35

36 leury s lgorithm (3) : bridge : chosen no other choice : bridge : chosen no other choice ulerian ycles (2) 36

37 egree of a vertex the degree (or valency) of a vertex is the number of edges incident to the vertex, with loops counted twice. The degree of a vertex v is denoted deg(v) the maximum degree of a graph G, denoted by Δ(G) the minimum degree of a graph, denoted by δ(g) Δ(G) = 5 δ(g) = 0 n a regular graph, all degrees are the same 1 a g 0 3 b f 2 3 c e 5 2 d ulerian ycles (2) 37

38 Regular Graphs a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. ulerian ycles (2) 38

39 Handshake Lemma The degree sum formula states that, given a graph G = ( V, ) 1 a 3 b 3 c 2 d This statement (as well as the degree sum formula) is known as the handshaking lemma. g 0 f 2 e 5 deg(a) = 1 deg(b) = 3 deg(c) = 3 deg(d ) = 2 deg(e) = 5 deg(f ) = 2 deg(g) = 0 16 = 8 2 = 16 ulerian ycles (2) 39

40 dding odd vertex ulerian ycles (2) 40

41 The number of odd vertices ven vertices : {x 1, x 2,,x m } Odd vertices : {y 1, y 2,, y n } S = deg(x 1 ) + deg(x 2 ) + + deg(x m ) T = deg( y 1 ) + deg( y 2 ) + + deg( y n ) deg(x i ) : even deg( y i ) : odd S = even + even + + even T = odd + odd + + odd S : even S+T : even T : even = n odd numbers n : even in any graph, the number of vertices with odd degree is even. ulerian ycles (2) 41

42 uler ycle ny connected graph with even degree vertices n uler cycle proof by induction on the number of edges in G connected graph G with even degree vertices only and k edges (k < n) n uler cycle ssume this is true connected graph G with even degree vertices only and n edges n uler cycle Then this holds true Johnsonbough, iscrete Mathematics ulerian ycles (2) 42

43 uler ycle ny connected graph with even degree vertices which has n edge n uler cycle ny connected graph with even degree vertices which has n-1 edge ny connected graph with even degree vertices which has n-2 edge n uler cycle n uler cycle ny connected graph with even degree vertices which has 2 edge ny connected graph with even degree vertices which has 1 edge n uler cycle n uler cycle Johnsonbough, iscrete Mathematics ulerian ycles (2) 43

44 uler ycle ase ases n = 0 edge n = 1 edge all even degree vertices n = 2 edge an uler cycle Johnsonbough, iscrete Mathematics ulerian ycles (2) 44

45 uler ycle decrease the number of edges by one connected graph G with even degree vertices only and n edges (k < n) e 1 e 2 v 1 v 2 v 3 all even degree vertices P: a path from v to v 1 connected graph G' with even degree vertices only and n-1 edges (k < n) P': a portion of the path P that are in G' e v 1 v 2 v 3 all even degree vertices Johnsonbough, iscrete Mathematics ulerian ycles (2) 45

46 uler ycle a path from v to v 1 ase 1: P ends at v 1 ase 2: P ends at v 2 ase 3: P ends at v 3 v 1 v 2 v 3 v 1 v 2 v 3 v 1 v 2 v 3 P P P v v v v 1 v 2 v 3 v 1 v 2 v 3 v 1 v 2 v 3 P ' P ' P ' v v v Johnsonbough, iscrete Mathematics ulerian ycles (2) 46

47 uler ycle H J G GHJK K en.wikipedia.org ulerian ycles (2) 47

48 uler ycle G G' v 1 v 3 v 1 v 3 v 2 v 2 2 components ulerian ycles (2) 48

49 uler ycle G G' v 1 v 3 v 1 v 3 v 2 v 2 1 component ulerian ycles (2) 49

50 uler ycle G G' v 1 v 3 v 1 v 3 v 2 v 2 2 components ulerian ycles (2) 50

51 uler ycle G G' v 1 v 3 v 1 v 3 v 2 v 2 1 component ulerian ycles (2) 51

52 References [1] [2]

Eulerian Cycle (2A) Young Won Lim 5/11/18

Eulerian Cycle (2A) Young Won Lim 5/11/18 ulerian ycle (2) opyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the NU ree ocumentation License, Version 1.2 or any later

More information

Eulerian Cycle (2A) Young Won Lim 4/26/18

Eulerian Cycle (2A) Young Won Lim 4/26/18 Eulerian Cycle (2A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Eulerian Cycle (2A) Walk : vertices may repeat, edges may repeat (closed or open) Trail: vertices may repeat, edges cannot repeat (open)

Eulerian Cycle (2A) Walk : vertices may repeat, edges may repeat (closed or open) Trail: vertices may repeat, edges cannot repeat (open) Eulerian Cycle (2A) Walk : vertices may repeat, edges may repeat (closed or open) Trail: vertices may repeat, edges cannot repeat (open) circuit : vertices my repeat, edges cannot repeat (closed) path

More information

Graph (1A) Young Won Lim 4/19/18

Graph (1A) Young Won Lim 4/19/18 Graph (1A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin King Saud University College of Science Department of Mathematics 151 Math Exercises (5.2) Graph Terminology and Special Types of Graphs Malek Zein AL-Abidin ه Basic Terminology First, we give some terminology

More information

Introduction to Graphs

Introduction to Graphs Introduction to Graphs Historical Motivation Seven Bridges of Königsberg Königsberg (now Kaliningrad, Russia) around 1735 Problem: Find a walk through the city that would cross each bridge once and only

More information

Graph Overview (1A) Young Won Lim 5/9/18

Graph Overview (1A) Young Won Lim 5/9/18 Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Euler and Hamilton circuits. Euler paths and circuits

Euler and Hamilton circuits. Euler paths and circuits 1 7 16 2013. uler and Hamilton circuits uler paths and circuits o The Seven ridges of Konigsberg In the early 1700 s, Konigsberg was the capital of ast Prussia. Konigsberg was later renamed Kaliningrad

More information

CPCS Discrete Structures 1

CPCS Discrete Structures 1 Let us switch to a new topic: Graphs CPCS 222 - Discrete Structures 1 Introduction to Graphs Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

Introduction to Graphs

Introduction to Graphs Graphs Introduction to Graphs Graph Terminology Directed Graphs Special Graphs Graph Coloring Representing Graphs Connected Graphs Connected Component Reading (Epp s textbook) 10.1-10.3 1 Introduction

More information

Sec 2. Euler Circuits, cont.

Sec 2. Euler Circuits, cont. Sec 2. uler ircuits, cont. uler ircuits traverse each edge of a connected graph exactly once. Recall that all vertices must have even degree in order for an uler ircuit to exist. leury s lgorithm is a

More information

Graph Overview (1A) Young Won Lim 5/11/18

Graph Overview (1A) Young Won Lim 5/11/18 Graph Overview (1A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free ocumentation License, Version 1.2 or any

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1 CS200: Graphs Prichard Ch. 14 Rosen Ch. 10 CS200 - Graphs 1 Graphs A collection of nodes and edges What can this represent? n A computer network n Abstraction of a map n Social network CS200 - Graphs 2

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

A region is each individual area or separate piece of the plane that is divided up by the network.

A region is each individual area or separate piece of the plane that is divided up by the network. Math 135 Networks and graphs Key terms Vertex (Vertices) ach point of a graph dge n edge is a segment that connects two vertices. Region region is each individual area or separate piece of the plane that

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

GRAPH THEORY: AN INTRODUCTION

GRAPH THEORY: AN INTRODUCTION GRAPH THEORY: AN INTRODUCTION BEGINNERS 3/4/2018 1. GRAPHS AND THEIR PROPERTIES A graph G consists of two sets: a set of vertices V, and a set of edges E. A vertex is simply a labeled point. An edge is

More information

Reading. Graph Terminology. Graphs. What are graphs? Varieties. Motivation for Graphs. Reading. CSE 373 Data Structures. Graphs are composed of.

Reading. Graph Terminology. Graphs. What are graphs? Varieties. Motivation for Graphs. Reading. CSE 373 Data Structures. Graphs are composed of. Reading Graph Reading Goodrich and Tamassia, hapter 1 S 7 ata Structures What are graphs? Graphs Yes, this is a graph. Graphs are composed of Nodes (vertices) dges (arcs) node ut we are interested in a

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

Planar Graph (7A) Young Won Lim 6/20/18

Planar Graph (7A) Young Won Lim 6/20/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

8.2 Paths and Cycles

8.2 Paths and Cycles 8.2 Paths and Cycles Degree a b c d e f Definition The degree of a vertex is the number of edges incident to it. A loop contributes 2 to the degree of the vertex. (G) is the maximum degree of G. δ(g) is

More information

GRAPH THEORY - FUNDAMENTALS

GRAPH THEORY - FUNDAMENTALS GRAPH THEORY - FUNDAMENTALS http://www.tutorialspoint.com/graph_theory/graph_theory_fundamentals.htm Copyright tutorialspoint.com A graph is a diagram of points and lines connected to the points. It has

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

SAMPLE. MODULE 5 Undirected graphs

SAMPLE. MODULE 5 Undirected graphs H P T R MOUL Undirected graphs How do we represent a graph by a diagram and by a matrix representation? How do we define each of the following: graph subgraph vertex edge (node) loop isolated vertex bipartite

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

11.2 Eulerian Trails

11.2 Eulerian Trails 11.2 Eulerian Trails K.. onigsberg, 1736 Graph Representation A B C D Do You Remember... Definition A u v trail is a u v walk where no edge is repeated. Do You Remember... Definition A u v trail is a u

More information

Planar Graph (7A) Young Won Lim 5/21/18

Planar Graph (7A) Young Won Lim 5/21/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

11/26/17. directed graphs. CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10. undirected graphs

11/26/17. directed graphs. CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10. undirected graphs directed graphs S 220: iscrete Structures and their pplications collection of vertices and directed edges graphs zybooks chapter 10 collection of vertices and edges undirected graphs What can this represent?

More information

MATH 101: Introduction to Contemporary Mathematics

MATH 101: Introduction to Contemporary Mathematics MATH 101: Introduction to Contemporary Mathematics Sections 201-206 Instructor: H. R. Hughes Course web page: http://www.math.siu.edu/hughes/math101.htm Summer 2013 Lecture sessions meet: MTWF 12:10-1:10

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis TOM 50: Networking Theory & undamentals Lecture pril 6, 2003 Prof. Yannis. Korilis 2 Topics Routing in ata Network Graph Representation of a Network Undirected Graphs Spanning Trees and Minimum Weight

More information

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum Excursions in Modern Mathematics Sixth Edition Chapter 5 Peter Tannenbaum The Circuit Comes to Town 1 2 Outline/learning Objectives Outline/learning Objectives (cont.) To identify and model Euler circuit

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

Introduction to Graphs

Introduction to Graphs Introduction to Graphs Slides by Lap Chi Lau The Chinese University of Hong Kong This Lecture In this part we will study some basic graph theory. Graph is a useful concept to model many problems in computer

More information

Sarah Will Math 490 December 2, 2009

Sarah Will Math 490 December 2, 2009 Sarah Will Math 490 December 2, 2009 Euler Circuits INTRODUCTION Euler wrote the first paper on graph theory. It was a study and proof that it was impossible to cross the seven bridges of Königsberg once

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

Lecture 5: Graphs & their Representation

Lecture 5: Graphs & their Representation Lecture 5: Graphs & their Representation Why Do We Need Graphs Graph Algorithms: Many problems can be formulated as problems on graphs and can be solved with graph algorithms. To learn those graph algorithms,

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory Evelyne Smith-Roberge University of Waterloo March 22, 2017 What is a graph? Definition A graph G is: a set V (G) of objects called vertices together with: a set E(G), of

More information

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs CS 311 Discrete Math for Computer Science Dr. William C. Bulko Graphs 2014 Definitions Definition: A graph G = (V,E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

CS 5114: Theory of Algorithms. Graph Algorithms. A Tree Proof. Graph Traversals. Clifford A. Shaffer. Spring 2014

CS 5114: Theory of Algorithms. Graph Algorithms. A Tree Proof. Graph Traversals. Clifford A. Shaffer. Spring 2014 epartment of omputer Science Virginia Tech lacksburg, Virginia opyright c 04 by lifford. Shaffer : Theory of lgorithms Title page : Theory of lgorithms lifford. Shaffer Spring 04 lifford. Shaffer epartment

More information

Note. Out of town Thursday afternoon. Willing to meet before 1pm, me if you want to meet then so I know to be in my office

Note. Out of town Thursday afternoon. Willing to meet before 1pm,  me if you want to meet then so I know to be in my office raphs and Trees Note Out of town Thursday afternoon Willing to meet before pm, email me if you want to meet then so I know to be in my office few extra remarks about recursion If you can write it recursively

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

BIL694-Lecture 1: Introduction to Graphs

BIL694-Lecture 1: Introduction to Graphs BIL694-Lecture 1: Introduction to Graphs Lecturer: Lale Özkahya Resources for the presentation: http://www.math.ucsd.edu/ gptesler/184a/calendar.html http://www.inf.ed.ac.uk/teaching/courses/dmmr/ Outline

More information

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES DEFINITION OF GRAPH GRAPH THEORY Prepared by Engr. JP Timola Reference: Discrete Math by Kenneth H. Rosen A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each

More information

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010 Graphs Mandatory: hapter 3 Sections 3.1 & 3.2 Reading ssignment 2 Graphs bstraction of ata 3 t the end of this section, you will be able to: 1.efine directed and undirected graphs 2.Use graphs to model

More information

Graph Theory Mini-course

Graph Theory Mini-course Graph Theory Mini-course Anthony Varilly PROMYS, Boston University, Boston, MA 02215 Abstract Intuitively speaking, a graph is a collection of dots and lines joining some of these dots. Many problems in

More information

CMSC 380. Graph Terminology and Representation

CMSC 380. Graph Terminology and Representation CMSC 380 Graph Terminology and Representation GRAPH BASICS 2 Basic Graph Definitions n A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. n Each edge is a pair (v,w)

More information

RAM (1A) Young Won Lim 11/12/13

RAM (1A) Young Won Lim 11/12/13 RAM (1A) Young Won Lim 11/12/13 opyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright. Graph Theory

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright. Graph Theory About the Tutorial This tutorial offers a brief introduction to the fundamentals of graph theory. Written in a reader-friendly style, it covers the types of graphs, their properties, trees, graph traversability,

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Eulerian Tours and Fleury s Algorithm

Eulerian Tours and Fleury s Algorithm Eulerian Tours and Fleury s Algorithm CSE21 Winter 2017, Day 12 (B00), Day 8 (A00) February 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Vocabulary Path (or walk): describes a route from one vertex

More information

Chapter 1 Graph Theory

Chapter 1 Graph Theory Chapter Graph Theory - Representations of Graphs Graph, G=(V,E): It consists of the set V of vertices and the set E of edges. If each edge has its direction, the graph is called the directed graph (digraph).

More information

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010 Junior Circle Meeting 3 Circuits and Paths April 18, 2010 We have talked about insect worlds which consist of cities connected by tunnels. Here is an example of an insect world (Antland) which we saw last

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 An Introduction to Graphs A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem.

More information

Reading. Graph Introduction. What are graphs? Graphs. Motivation for Graphs. Varieties. Reading. CSE 373 Data Structures Lecture 18

Reading. Graph Introduction. What are graphs? Graphs. Motivation for Graphs. Varieties. Reading. CSE 373 Data Structures Lecture 18 Reading Graph Introduction Reading Section 9.1 S 373 ata Structures Lecture 18 11/25/02 Graph Introduction - Lecture 18 2 What are graphs? Yes, this is a graph. Graphs Graphs are composed of Nodes (vertices)

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

CHAPTER 10 GRAPHS AND TREES. Copyright Cengage Learning. All rights reserved.

CHAPTER 10 GRAPHS AND TREES. Copyright Cengage Learning. All rights reserved. CHAPTER 10 GRAPHS AND TREES Copyright Cengage Learning. All rights reserved. SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions and

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Graphs And Algorithms

Graphs And Algorithms Graphs nd lgorithms Mandatory: hapter 3 Sections 3.1 & 3.2 Reading ssignment 2 1 Graphs bstraction of ata 3 t the end of this section, you will be able to: 1. efine directed and undirected graphs 2. Use

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

Network Topology and Graph

Network Topology and Graph Network Topology Network Topology and Graph EEE442 Computer Method in Power System Analysis Any lumped network obeys 3 basic laws KVL KCL linear algebraic constraints Ohm s law Anawach Sangswang Dept.

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

Chapter 5: The Mathematics of Getting Around

Chapter 5: The Mathematics of Getting Around Euler Paths and Circuits Chapter 5: The Mathematics of Getting Around 5.1 Street-Routing Problem Our story begins in the 1700s in the medieval town of Königsberg, in Eastern Europe. At the time, Königsberg

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia) 15-251 Great Ideas in Theoretical Computer Science Lecture 12: Graphs I: The Basics February 22nd, 2018 Crossing bridges Königsberg (Prussia) Now Kaliningrad (Russia) Is there a way to walk through the

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Fundamentals of Graph Theory MATH Fundamentals of Graph Theory. Benjamin V.C. Collins, James A. Swenson MATH 2730

Fundamentals of Graph Theory MATH Fundamentals of Graph Theory. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Fundamentals of Graph Theory Benjamin V.C. Collins James A. Swenson The seven bridges of Königsberg Map: Merian-Erben [Public domain], via Wikimedia Commons The seven bridges of Königsberg Map:

More information

SAMPLE. Networks. A view of Königsberg as it was in Euler s day.

SAMPLE. Networks. A view of Königsberg as it was in Euler s day. ack to Menu >>> How are graphs used to represent networks? H P T R 10 Networks How do we analyse the information contained in graphs? How do we use graphs to represent everyday situations? 10.1 Graph theory

More information

GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) UNIT 1

GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) UNIT 1 GRAPH THEORY AND COMBINATORICS ( Common to CSE and ISE ) Sub code : 06CS42 UNIT 1 Introduction to Graph Theory : Definition and Examples Subgraphs Complements, and Graph Isomorphism Vertex Degree, Euler

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

North Bank. West Island. East Island. South Bank

North Bank. West Island. East Island. South Bank Lecture 11 Eulerian Multigraphs This section of the notes revisits the Königsberg Bridge Problem and generalises it to explore Eulerian multigraphs: those that contain a closed walk that traverses every

More information

Majority and Friendship Paradoxes

Majority and Friendship Paradoxes Majority and Friendship Paradoxes Majority Paradox Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against. Consider a poll asking the

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Minimum Spanning Tree (5A) Young Won Lim 5/11/18

Minimum Spanning Tree (5A) Young Won Lim 5/11/18 Minimum Spanning Tree (5A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink.

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink. Lecture 1 First Steps in Graph Theory This lecture introduces Graph Theory, the main subject of the course, and includes some basic definitions as well as a number of standard examples. Reading: Some of

More information

6.2. Paths and Cycles

6.2. Paths and Cycles 6.2. PATHS AND CYCLES 85 6.2. Paths and Cycles 6.2.1. Paths. A path from v 0 to v n of length n is a sequence of n+1 vertices (v k ) and n edges (e k ) of the form v 0, e 1, v 1, e 2, v 2,..., e n, v n,

More information

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III 1 Eulerian Graphs Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III Let s begin this section with a problem that you may remember from lecture 1. Consider the layout of land and water

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information

Sections 5.2, 5.3. & 5.4

Sections 5.2, 5.3. & 5.4 MATH 11008: Graph Theory Terminology Sections 5.2, 5.3. & 5.4 Routing problem: A routing problem is concerned with finding ways to route the delivery of good and/or services to an assortment of destinations.

More information

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grades 7 & 8, Math Circles 31 October/1/2 November, 2017 Graph Theory Introduction Graph Theory is the

More information

CS 5114: Theory of Algorithms. Graph Algorithms. A Tree Proof. Graph Traversals. Clifford A. Shaffer. Spring 2014

CS 5114: Theory of Algorithms. Graph Algorithms. A Tree Proof. Graph Traversals. Clifford A. Shaffer. Spring 2014 epartment of omputer Science Virginia Tech lacksburg, Virginia opyright c 04 by lifford. Shaffer : Theory of lgorithms Title page : Theory of lgorithms lifford. Shaffer Spring 04 lifford. Shaffer epartment

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Graph theory G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/37 Outline 1 Graph theory Undirected and directed graphs

More information

An Early Problem in Graph Theory. Clicker Question 1. Konigsberg and the River Pregel

An Early Problem in Graph Theory. Clicker Question 1. Konigsberg and the River Pregel raphs Topic " Hopefully, you've played around a bit with The Oracle of acon at Virginia and discovered how few steps are necessary to link just about anybody who has ever been in a movie to Kevin acon,

More information