11/26/17. directed graphs. CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10. undirected graphs

Size: px
Start display at page:

Download "11/26/17. directed graphs. CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10. undirected graphs"

Transcription

1 directed graphs S 220: iscrete Structures and their pplications collection of vertices and directed edges graphs zybooks chapter 10 collection of vertices and edges undirected graphs What can this represent? undirected vs directed edges Note the differences in how directed and undirected edges are represented: 1

2 directed / undirected graphs in applications constraint graphs irected or undirected graph? ü ü ü ü Facebook friend graph The "follow" graph The "like" graph Knowledge graph onsider the problem of classroom scheduling: given a set of classes and their times, assign them to classrooms without conflicts. xample: lass : MWF, 3:00PM - 4:00PM lass : W, 2:00PM - 4:00PM lass : F, 3:30PM - 5:00PM lass : MWF, 2:30-3:30PM Which is the constraint graph for this scheduling problem? undirected graphs terminology xamples: What is the set of edges for the graph on the right? G=(V, ) Vertices dges dges Two vertices are adjacent if they are connected by an edge. The vertices are the endpoints of an edge n edge is incident on two vertices. Vertices/ Nodes u e v Two vertices are neighbors if they are connected by an edge The number of neighbors of a vertex is its degree. 2

3 question undirected graphs What is the degree of c? b c d No "parallel" edges No self loops self loop: an edge that connects a vertex to itself a f e g simple graph: no self loops and no two edges that connect the same vertices. We will focus on simple graphs. the handshake theorem Theorem: Let G=(V,) be an undirected graph. Then deg(v) = 2 v V subgraphs graph H = (V H, H ) is a subgraph of a graph G = (V G, G ) if V H V G and H G. 3

4 complete graphs complete graphs is a simple graph that has an edge between every pair of vertices. cycles The cycle n, n 3, consists of n vertices v 1, v 2,, v n and n edges {v 1, v 2 }, {v 2, v 3 },, {v n-1, v n }, {v n, v 1 }. The complete graph with n vertices is denoted by K n K 4 : omplete Graph the n-dimensional hypercube regular graphs regular is a graph in which all vertices have the same degree. The Hypercube Q

5 looks can be misleading adjacency matrix of a graph onsider the following two graphs: re they the same? mapping of vertex labels to array indices Label Index For undirected graph, what would the adjacency matrix look like? djacency matrix: n x n matrix with entries that indicate if an edge between two vertices is present question adjacency matrix Is this the adjacency matrix of an undirected graph?. Yes. No djacency Matrix djacency matrix for an undirected graph

6 question djacency Matrix adjacency list for a directed graph oes this graph have self loops?. Yes. No Index Label adjacency list for an undirected graph which implementation Index Label mapping of vertex labels to list of edges djacency matrix dges are entries in a square matrix size: V 2 values: 1/0 to indicate presence/absence of edge in (un)directed graph useful for dense graphs djacency list linked-list of out-going edges per vertex useful for sparse graphs 6

7 which implementation walks Which implementation best supports common graph operations: Is there an edge between vertex i and vertex j? Find all vertices adjacent to vertex j What's the big O for each of these operations? v 0 e 1 walk from v 0 to v l in an undirected graph G is a sequence of alternating vertices and edges that starts and ends with a vertex: v 0,{v 0,v 1 },v 1,{v 1,v 2 },v 2,...,v l 1,{v l 1,v l },v l Which best uses space? v 1 e 2 v 2 e 3 v 3 walk can also be denoted by the sequence of vertices: v 0,v 1,...,v l. The sequence of vertices is a walk only if {v i-1, v i } for i = 1, 2,...,l. The length of a walk is l, the number of edges in the walk. walks, circuits, paths, cycles walks, circuits, paths, cycles v 0 e 1 v 1 e 2 v 3 circuit is a walk in which the first vertex is the same as the last vertex. sequence of one vertex, denoted <a>, is a circuit of length 0. walk is a path if no vertex is repeated in the walk. circuit is a cycle if there are no other repeated vertices, except the first and the last. circuit is a walk in which the first vertex is the same as the last vertex. walk is a path if no vertex is repeated in the walk. circuit is a cycle if there are no other repeated vertices, except the first and the last. ² What is the length of the longest possible walk in a graph with n vertices? ² What is the length of the longest possible path in a graph with n vertices? e 3 Same as in directed graphs. ² What is the length of the longest possible circuit in a graph with n vertices? v 2 ² What is the length of the longest possible cycle in a graph with n vertices? 7

8 connected components n undirected graph is called connected if there is a path between every pair of vertices. connected component is a maximal set of vertices that is connected. The word "maximal" means that if any vertex is added to a connected component, then the set of vertices will no longer be connected. example How many connected components does this graph have? a e c d f b The facebook graph u 721 million active accounts u 68.7 billion friendship edges (median number of friends = 99) u The largest connected component of facebook users contains 99.9% of the users u verage distance between any pair of users: 4.7 source: 8

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

Reading. Graph Terminology. Graphs. What are graphs? Varieties. Motivation for Graphs. Reading. CSE 373 Data Structures. Graphs are composed of.

Reading. Graph Terminology. Graphs. What are graphs? Varieties. Motivation for Graphs. Reading. CSE 373 Data Structures. Graphs are composed of. Reading Graph Reading Goodrich and Tamassia, hapter 1 S 7 ata Structures What are graphs? Graphs Yes, this is a graph. Graphs are composed of Nodes (vertices) dges (arcs) node ut we are interested in a

More information

Lesson 22: Basic Graph Concepts

Lesson 22: Basic Graph Concepts Lesson 22: asic Graph oncepts msc 175 iscrete Mathematics 1. Introduction graph is a mathematical object that is used to model different relations between objects and processes: Linked list Flowchart of

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Chapter 9: Elementary Graph Algorithms Basic Graph Concepts

Chapter 9: Elementary Graph Algorithms Basic Graph Concepts hapter 9: Elementary Graph lgorithms asic Graph oncepts msc 250 Intro to lgorithms graph is a mathematical object that is used to model different situations objects and processes: Linked list Tree (partial

More information

Reading. Graph Introduction. What are graphs? Graphs. Motivation for Graphs. Varieties. Reading. CSE 373 Data Structures Lecture 18

Reading. Graph Introduction. What are graphs? Graphs. Motivation for Graphs. Varieties. Reading. CSE 373 Data Structures Lecture 18 Reading Graph Introduction Reading Section 9.1 S 373 ata Structures Lecture 18 11/25/02 Graph Introduction - Lecture 18 2 What are graphs? Yes, this is a graph. Graphs Graphs are composed of Nodes (vertices)

More information

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v. Graph Adjacent Endpoint of an edge Incident Neighbors of a vertex Degree of a vertex Theorem Graph relation Order of a graph Size of a graph Maximum and minimum degree Let G = (V, E) be a graph. If u,

More information

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

Paths. Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Paths Path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph. Formal Definition of a Path (Undirected) Let n be a nonnegative integer

More information

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1 CS200: Graphs Prichard Ch. 14 Rosen Ch. 10 CS200 - Graphs 1 Graphs A collection of nodes and edges What can this represent? n A computer network n Abstraction of a map n Social network CS200 - Graphs 2

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

CMSC 380. Graph Terminology and Representation

CMSC 380. Graph Terminology and Representation CMSC 380 Graph Terminology and Representation GRAPH BASICS 2 Basic Graph Definitions n A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. n Each edge is a pair (v,w)

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

Introduction to Graphs

Introduction to Graphs Graphs Introduction to Graphs Graph Terminology Directed Graphs Special Graphs Graph Coloring Representing Graphs Connected Graphs Connected Component Reading (Epp s textbook) 10.1-10.3 1 Introduction

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

CPCS Discrete Structures 1

CPCS Discrete Structures 1 Let us switch to a new topic: Graphs CPCS 222 - Discrete Structures 1 Introduction to Graphs Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Graphs V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Graphs V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Graphs and Trees 1 Graphs (simple) graph G = (V, ) consists of V, a nonempty set of vertices and, a set of unordered pairs of distinct vertices called edges. xamples V={,,,,} ={ (,),(,),(,), (,),(,),(,)}

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin King Saud University College of Science Department of Mathematics 151 Math Exercises (5.2) Graph Terminology and Special Types of Graphs Malek Zein AL-Abidin ه Basic Terminology First, we give some terminology

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

Lecture 4: Walks, Trails, Paths and Connectivity

Lecture 4: Walks, Trails, Paths and Connectivity Lecture 4: Walks, Trails, Paths and Connectivity Rosa Orellana Math 38 April 6, 2015 Graph Decompositions Def: A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one

More information

Note. Out of town Thursday afternoon. Willing to meet before 1pm, me if you want to meet then so I know to be in my office

Note. Out of town Thursday afternoon. Willing to meet before 1pm,  me if you want to meet then so I know to be in my office raphs and Trees Note Out of town Thursday afternoon Willing to meet before pm, email me if you want to meet then so I know to be in my office few extra remarks about recursion If you can write it recursively

More information

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES DEFINITION OF GRAPH GRAPH THEORY Prepared by Engr. JP Timola Reference: Discrete Math by Kenneth H. Rosen A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Graphs Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Warmup Discuss with your neighbors: Come up with as many kinds of relational data as you can (data that can be represented with a graph).

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Graphs. Ric Glassey

Graphs. Ric Glassey Graphs Ric Glassey glassey@kth.se Overview Graphs Aim: Introduce graphs as a fundamental data structure that can be applied in many real-world problems Applications of graphs Definition and types of graphs

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Induction Review. Graphs. EECS 310: Discrete Math Lecture 5 Graph Theory, Matching. Common Graphs. a set of edges or collection of two-elt subsets

Induction Review. Graphs. EECS 310: Discrete Math Lecture 5 Graph Theory, Matching. Common Graphs. a set of edges or collection of two-elt subsets EECS 310: Discrete Math Lecture 5 Graph Theory, Matching Reading: MIT OpenCourseWare 6.042 Chapter 5.1-5.2 Induction Review Basic Induction: Want to prove P (n). Prove base case P (1). Prove P (n) P (n+1)

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Graph Theory Frist, KandMa, IT 010 10 1 Problem sheet 4 Exam questions Solve a subset of, say, four questions to the problem session on friday.

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

CSE 373: Data Structures and Algorithms. Graphs. Autumn Shrirang (Shri) Mare

CSE 373: Data Structures and Algorithms. Graphs. Autumn Shrirang (Shri) Mare SE 373: Data Structures and lgorithms Graphs utumn 2018 Shrirang (Shri) Mare shri@cs.washington.edu Thanks to Kasey hampion, en Jones, dam lank, Michael Lee, Evan Mcarty, Robbie Weber, Whitaker rand, Zora

More information

Today s Outline CSE 221: Algorithms and Data Structures Graphs (with no Axes to Grind)

Today s Outline CSE 221: Algorithms and Data Structures Graphs (with no Axes to Grind) Today s Outline S : lgorithms and ata Structures raphs (with no xes to rind) Steve Wolfman 0W Topological Sort: etting to Know raphs with a Sort raph T and raph Representations raph Terminology (a lot

More information

Data Structures Lecture 14

Data Structures Lecture 14 Fall 2018 Fang Yu Software Security Lab. ept. Management Information Systems, National hengchi University ata Structures Lecture 14 Graphs efinition, Implementation and Traversal Graphs Formally speaking,

More information

Digraphs ( 12.4) Directed Graphs. Digraph Application. Digraph Properties. A digraph is a graph whose edges are all directed.

Digraphs ( 12.4) Directed Graphs. Digraph Application. Digraph Properties. A digraph is a graph whose edges are all directed. igraphs ( 12.4) irected Graphs OR OS digraph is a graph whose edges are all directed Short for directed graph pplications one- way streets flights task scheduling irected Graphs 1 irected Graphs 2 igraph

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs CS 311 Discrete Math for Computer Science Dr. William C. Bulko Graphs 2014 Definitions Definition: A graph G = (V,E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia) 15-251 Great Ideas in Theoretical Computer Science Lecture 12: Graphs I: The Basics February 22nd, 2018 Crossing bridges Königsberg (Prussia) Now Kaliningrad (Russia) Is there a way to walk through the

More information

Minimum Spanning Trees My T. UF

Minimum Spanning Trees My T. UF Introduction to Algorithms Minimum Spanning Trees @ UF Problem Find a low cost network connecting a set of locations Any pair of locations are connected There is no cycle Some applications: Communication

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

Ma/CS 6b Class 10: Ramsey Theory

Ma/CS 6b Class 10: Ramsey Theory Ma/CS 6b Class 10: Ramsey Theory By Adam Sheffer The Pigeonhole Principle The pigeonhole principle. If n items are put into m containers, such that n > m, then at least one container contains more than

More information

Eulerian Cycle (2A) Young Won Lim 5/25/18

Eulerian Cycle (2A) Young Won Lim 5/25/18 ulerian ycle (2) opyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU ree ocumentation License, Version 1.2 or any later

More information

The vertex set is a finite nonempty set. The edge set may be empty, but otherwise its elements are two-element subsets of the vertex set.

The vertex set is a finite nonempty set. The edge set may be empty, but otherwise its elements are two-element subsets of the vertex set. Math 3336 Section 10.2 Graph terminology and Special Types of Graphs Definition: A graph is an object consisting of two sets called its vertex set and its edge set. The vertex set is a finite nonempty

More information

ECE 242. Data Structures

ECE 242. Data Structures ECE 242 Data Structures Lecture 28 Introduction to Graphs Overview Problem: How do we represent irregular connections between locations? Graphs Definition Directed and Undirected graph Simple path and

More information

Majority and Friendship Paradoxes

Majority and Friendship Paradoxes Majority and Friendship Paradoxes Majority Paradox Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against. Consider a poll asking the

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

GRAPH THEORY. What are graphs? Why graphs? Graphs are usually used to represent different elements that are somehow related to each other.

GRAPH THEORY. What are graphs? Why graphs? Graphs are usually used to represent different elements that are somehow related to each other. GRPH THEORY Hadrian ng, Kyle See, March 2017 What are graphs? graph G is a pair G = (V, E) where V is a nonempty set of vertices and E is a set of edges e such that e = {a, b where a and b are vertices.

More information

Ma/CS 6b Class 12: Ramsey Theory

Ma/CS 6b Class 12: Ramsey Theory Ma/CS 6b Class 12: Ramsey Theory By Adam Sheffer The Pigeonhole Principle The pigeonhole principle. If n items are put into m containers, such that n > m, then at least one container contains more than

More information

CS 561, Lecture 9. Jared Saia University of New Mexico

CS 561, Lecture 9. Jared Saia University of New Mexico CS 561, Lecture 9 Jared Saia University of New Mexico Today s Outline Minimum Spanning Trees Safe Edge Theorem Kruskal and Prim s algorithms Graph Representation 1 Graph Definition A graph is a pair of

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees trees CS 220: Discrete Structures and their Applications A tree is an undirected graph that is connected and has no cycles. Trees Chapter 11 in zybooks rooted trees Rooted trees. Given a tree T, choose

More information

Adjacency Matrix Undirected Graph. » Matrix [ p, q ] is 1 (True) if < p, q > is an edge in the graph. Graphs Representation & Paths

Adjacency Matrix Undirected Graph. » Matrix [ p, q ] is 1 (True) if < p, q > is an edge in the graph. Graphs Representation & Paths djacency Matrix Undirected Graph Row and column indices are vertex numbers Graphs Representation & Paths Mixture of Chapters 9 & 0» Matrix [ p, q ] is (True) if < p, q > is an edge in the graph if < p,

More information

L10 Graphs. Alice E. Fischer. April Alice E. Fischer L10 Graphs... 1/37 April / 37

L10 Graphs. Alice E. Fischer. April Alice E. Fischer L10 Graphs... 1/37 April / 37 L10 Graphs lice. Fischer pril 2016 lice. Fischer L10 Graphs... 1/37 pril 2016 1 / 37 Outline 1 Graphs efinition Graph pplications Graph Representations 2 Graph Implementation 3 Graph lgorithms Sorting

More information

BIL694-Lecture 1: Introduction to Graphs

BIL694-Lecture 1: Introduction to Graphs BIL694-Lecture 1: Introduction to Graphs Lecturer: Lale Özkahya Resources for the presentation: http://www.math.ucsd.edu/ gptesler/184a/calendar.html http://www.inf.ed.ac.uk/teaching/courses/dmmr/ Outline

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

Graph ADT. Lecture18: Graph II. Adjacency Matrix. Representation of Graphs. Data Vertices and edges. Methods

Graph ADT. Lecture18: Graph II. Adjacency Matrix. Representation of Graphs. Data Vertices and edges. Methods Graph T S33: ata Structures (0) Lecture8: Graph II ohyung Han S, POSTH bhhan@postech.ac.kr ata Vertices and edges endvertices(e): an array of the two endvertices of e opposite(v,e): the vertex opposite

More information

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function.

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function. Graph Definitions Definition 1. (V,E) where An undirected graph G is a pair V is the set of vertices, E V 2 is the set of edges (unordered pairs) E = {(u, v) u, v V }. In a directed graph the edges have

More information

Graph (1A) Young Won Lim 4/19/18

Graph (1A) Young Won Lim 4/19/18 Graph (1A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Introduction to Graphs. common/notes/ppt/

Introduction to Graphs.   common/notes/ppt/ Introduction to Graphs http://people.cs.clemson.edu/~pargas/courses/cs212/ common/notes/ppt/ Introduction Graphs are a generalization of trees Nodes or verticies Edges or arcs Two kinds of graphs irected

More information

Graphs. Tessema M. Mengistu Department of Computer Science Southern Illinois University Carbondale Room - Faner 3131

Graphs. Tessema M. Mengistu Department of Computer Science Southern Illinois University Carbondale Room - Faner 3131 Graphs Tessema M. Mengistu Department of Computer Science Southern Illinois University Carbondale tessema.mengistu@siu.edu Room - Faner 3131 1 Outline Introduction to Graphs Graph Traversals Finding a

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 12:00, Friday 17 th February 2012 Outline 1 Graphs 2 Paths and cycles 3 Graphs and

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

Today. Types of graphs. Complete Graphs. Trees. Hypercubes.

Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Complete Graph. K n complete graph on n vertices. All edges are present. Everyone is my neighbor. Each vertex is adjacent to every other vertex.

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 15 Graphs: Motivations

More information

SAMPLE. MODULE 5 Undirected graphs

SAMPLE. MODULE 5 Undirected graphs H P T R MOUL Undirected graphs How do we represent a graph by a diagram and by a matrix representation? How do we define each of the following: graph subgraph vertex edge (node) loop isolated vertex bipartite

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

CSE 332: Data Structures & Parallelism Lecture 19: Introduction to Graphs. Ruth Anderson Autumn 2018

CSE 332: Data Structures & Parallelism Lecture 19: Introduction to Graphs. Ruth Anderson Autumn 2018 SE 332: ata Structures & Parallelism Lecture 19: Introduction to Graphs Ruth nderson utumn 2018 Today Graphs Intro & efinitions 11/19/2018 2 Graphs graph is a formalism for representing relationships among

More information

Multidimensional Arrays & Graphs. CMSC 420: Lecture 3

Multidimensional Arrays & Graphs. CMSC 420: Lecture 3 Multidimensional Arrays & Graphs CMSC 420: Lecture 3 Mini-Review Abstract Data Types: List Stack Queue Deque Dictionary Set Implementations: Linked Lists Circularly linked lists Doubly linked lists XOR

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

Konigsberg Bridge Problem

Konigsberg Bridge Problem Graphs Konigsberg Bridge Problem c C d g A Kneiphof e D a B b f c A C d e g D a b f B Euler s Graph Degree of a vertex: the number of edges incident to it Euler showed that there is a walk starting at

More information

Discrete Structures CISC 2315 FALL Graphs & Trees

Discrete Structures CISC 2315 FALL Graphs & Trees Discrete Structures CISC 2315 FALL 2010 Graphs & Trees Graphs A graph is a discrete structure, with discrete components Components of a Graph edge vertex (node) Vertices A graph G = (V, E), where V is

More information

Definition Example Solution

Definition Example Solution Section 11.4 Spanning Trees Definition: Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G. Example: Find the spanning tree of this simple graph:

More information

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research Counting Triangles & The Curse of the Last Reducer Siddharth Suri Yahoo! Research Why Count Triangles? 2 Why Count Triangles? Clustering Coefficient: Given an undirected graph G =(V,E) cc(v) = fraction

More information

1 Random Walks on Graphs

1 Random Walks on Graphs Lecture 7 Com S 633: Randomness in Computation Scribe: Ankit Agrawal In the last lecture, we looked at random walks on line and used them to devise randomized algorithms for 2-SAT and 3-SAT For 2-SAT we

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

CHAPTER 14 GRAPH ALGORITHMS ORD SFO LAX DFW

CHAPTER 14 GRAPH ALGORITHMS ORD SFO LAX DFW SFO ORD CHAPTER 14 GRAPH ALGORITHMS LAX DFW ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016) GRAPH

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell omputer Science 91.404 nalysis of lgorithms Prof. Karen aniels Spring, 2013 hapter 22: raph lgorithms & rief Introduction to Shortest Paths [Source: ormen et al. textbook except where noted]

More information

Graphs and Isomorphisms

Graphs and Isomorphisms Graphs and Isomorphisms Discrete Structures (CS 173) Backyards of Old Houses in Antwerp in the Snow Van Gogh Madhusudan Parthasarathy, University of Illinois Proof techniques: Direct Contrapositive Disproving

More information

Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours)

Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours) Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours) Chih-Wei Yi Dept. of Computer Science National Chiao Tung University June 1, 2009 9.1 Graphs and Graph Models What are Graphs? General meaning

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Solving Linear Recurrence Relations (8.2)

Solving Linear Recurrence Relations (8.2) EECS 203 Spring 2016 Lecture 18 Page 1 of 10 Review: Recurrence relations (Chapter 8) Last time we started in on recurrence relations. In computer science, one of the primary reasons we look at solving

More information

Graph Theory. Network Science: Graph theory. Graph theory Terminology and notation. Graph theory Graph visualization

Graph Theory. Network Science: Graph theory. Graph theory Terminology and notation. Graph theory Graph visualization Network Science: Graph Theory Ozalp abaoglu ipartimento di Informatica Scienza e Ingegneria Università di ologna www.cs.unibo.it/babaoglu/ ranch of mathematics for the study of structures called graphs

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

Graphs: Definitions and Representations (Chapter 9)

Graphs: Definitions and Representations (Chapter 9) oday s Outline Graphs: efinitions and Representations (hapter 9) dmin: HW #4 due hursday, Nov 10 at 11pm Memory hierarchy Graphs Representations SE 373 ata Structures and lgorithms 11/04/2011 1 11/04/2011

More information

Course Introduction / Review of Fundamentals of Graph Theory

Course Introduction / Review of Fundamentals of Graph Theory Course Introduction / Review of Fundamentals of Graph Theory Hiroki Sayama sayama@binghamton.edu Rise of Network Science (From Barabasi 2010) 2 Network models Many discrete parts involved Classic mean-field

More information

An Early Problem in Graph Theory. Clicker Question 1. Konigsberg and the River Pregel

An Early Problem in Graph Theory. Clicker Question 1. Konigsberg and the River Pregel raphs Topic " Hopefully, you've played around a bit with The Oracle of acon at Virginia and discovered how few steps are necessary to link just about anybody who has ever been in a movie to Kevin acon,

More information

Section 10.1: Graphs and Graph Models. Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs

Section 10.1: Graphs and Graph Models. Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs Graphs Chapter 10 Section 10.1: Graphs and Graph Models Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs a b c e d Introduction to Graphs Graphs are Discrete Structures that

More information

Graph Overview (1A) Young Won Lim 5/9/18

Graph Overview (1A) Young Won Lim 5/9/18 Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information