2012 Excellence in Mathematics Contest Team Project Level I (Precalculus and above) School Name: Group Members:

Size: px
Start display at page:

Download "2012 Excellence in Mathematics Contest Team Project Level I (Precalculus and above) School Name: Group Members:"

Transcription

1 01 Excellence in Mathematics Contest Team Project Level I (Precalculus and above) School Name: Group Members:

2 Reference Sheet Formulas and Facts You may need to use some of the following formulas and facts in working through this project. You may not need to use every formula or each fact. A bh C l w A r Area of a rectangle Perimeter of a rectangle Area of a circle 1 y y C r A bh m x x Circumference of a circle Area of a triangle Slope 1 1 a b c 580 feet = 1 mile feet = 1 yard Pythagorean Theorem 16 ounces = 1 pound.54 centimeters = 1 inch h 4.9t v0t h0 h 16t v0t h0 1 kilogram =. pounds 1 meter = inches 1 gigabyte = 1000 megabytes 1 mile = 1609 meters 1 gallon =.8 liters 1 square mile = 640 acres 1 sq. yd. = 9 sq. ft 1 cu. ft. of water = 7.48 gallons 1 ml = 1 cu. cm. 4 V r h V Area of Base height V r Volume of cylinder Volume Volume of a sphere Lateral SA = r h Lateral surface area of cylinder b b 4ac x a Quadratic Formula tan sin cos This team project is taken from The Mathematics Teacher, volume 105, Number 5, December 011, National Council of Teachers of Mathematics (nctm.org)

3 TEAM PROJECT Level I 01 Excellence in Mathematics Contest The Team Project is a group activity in which the students are presented an open ended, problem situation relating to a specific theme. The team members are to solve the problems and write a narrative about the theme which answers all the mathematical questions posed. Teams are graded on accuracy of mathematical content, clarity of explanations, and creativity in their narrative. We encourage the use of a graphing calculator. During a visit with his sister s family, Ron Lancaster was shown an unusual bottle of Coca-Cola that consisted of a sphere with a cap. Placing this bottle beside a can of Pepsi cola revealed the contrast (see photograph). Ron s nephew Matt challenged Ron to pick the container that held the most liquid without touching either or making any measurements. Ron studied the bottle and can from a distance, picked the one he thought had the greater volume, and then found out he was wrong. Ron then mailed his colleague Doug Wilcock the spherical bottle with this challenge: Set it beside a Pepsi can and choose the container with the greater volume. Not only did Doug pick the right container, but he also devised the following set of questions related to the bottle and the can. Your task in this team project is to respond to these questions as clearly and accurately as possible. Have fun! Part 1 Begin the Exploration If you were given the same challenge as Ron Lancaster, which container would you choose as having the greater volume? That is, without making any measurements or calculations, what does your gut instinct say? Explain. All the following calculations involve quantities that were measured. Because the measurements are not exact, we should be aware that all the following answers are approximations. We are certain that students will choose either the Coca-Cola bottle or the Pepsi can or that they decided that the volumes were the same. Look at their explanation and judge accordingly.

4 Part With Measurements and Calculations 1. We can think of the Pepsi can as being a cylinder with a top in the shape of a frustum (A frustum is the portion of a cone or pyramid that remains after its upper part has been cut off by a plane parallel to its base. See the figure below). Use the measurements provided to determine the volume of the can. The volume of the cylinder is given by V r h. Since the height is 10 cm and the radius is.5 cm, it follows that the volume is approximately 1.8 cm. The next step is to calculate the volume of the frustum. To do so, we need to find x in the figure. Using similar triangles, we get x x Solving, we find that x = 5.. Therefore, the volume of the frustum is V ( ) ( R H r h), giving a volume of approximately 5.1 cm. Thus, the total volume is 66.9 cm. The Pepsi can says that it holds 55 cm. Our answer is slightly larger because we assumed that the can is completely filled, but it is not. 4

5 Part continued. We now request that you use calculus to find the volume of the Coca-Cola bottle. If your team does not have a member with the necessary calculus background, then estimate the volume of the bottle by assuming it is a perfect sphere. a. A cross-section view of half the Coca-Cola bottle along with its measurements is shown in the figure. Use calculus to estimate the volume of a solid of revolution that models the spherical bottle. Referring to the figure and applying the Pythagorean Theorem, we find that the rounded length of AB is 4. cm. We will determine the volume V of the truncated sphere by thinking of it as a solid of revolution. With the x-axis at the tabletop, the general equation of the semicircle with a flat bottom that will be revolved around the y-axis is x r ( y a) We use circular disks, replacing a with 4. and using = 8.5 as the upper limit of the integrand, so that we have the following: 8.5 V 4.6 ( y 4.) dy ( y 4.) ( y 4.) 1.16y Therefore, the volume is approximately 404. cm. dy

6 Part continued b. The answer for part a. over-estimates the actual volume of the contents of the Coca-Cola bottle. The reason: The base is not flat but indented to provide more stability. A side view of the indentation is shown in the figure. Measuring indicates that AF 0.96 cm and AE 1.9 cm. What is the volume of the indented section? The figure shows the indentation at the bottom of the bottle. To determine the bottle s volume, we use the measurements shown in figure 9. Let r represent the lengths of GF and GE. Note that r is the radius of a circle from which the indentation is formed. Using the Pythagorean Theorem in triangle AEG, we have (r 0.96) = r. Solving, we find that r.6 cm. We can determine the volume of the indentation by again considering it a solid rotated about the y-axis V.6 ( y 1.4) dy 5.9 cm 6

7 Part continued c. If we take the calculated volume of the spherical bottle and subtract the volume of the indentation, we get the approximate net volume of the bottle. Doing so, can we reach a conclusion about the relative sizes of the spherical bottle and the cylindrical can? Explain. With the tabletop as the x-axis, the volume of the indentation is ( 1.4) V y dy Evaluating the integral, we find that V 5.9 cm. Subtracting this result from our answer to problem, we find that the volume is 98. cm. Therefore, the volume of the round bottle is greater than the volume of the cylindrical can. In case you are wondering, Coca- Cola labels the bottle as 400 ml (400 cm ). 7

8 Part Selling Soft Drinks Suppose that Coca-Cola were to sell these special bottles in packages of six arranged as shown in the photograph (two rows of three bottles). 1. If we define area efficiency as the ratio of the area of the bottles to the area of the container that will hold the bottles (see the figure below), how efficient is the rectangular six-pack? Express your answer as a simple ratio. The area of the bottles (their footprint ) is cm. The area of the rectangular container is cm. The ratio is Alternatively, we can say that the bottles footprint is the ratio is simply. 4 6 r, whereas the container s area is 6r 4r = 4r. Thus, 8

9 Part continued. A second way to consider efficiency is to consider the ratio of the volume of the liquid in the containers to the volume of the packages (volumetric efficiency). The volume of soda in each bottle is 400 ml (400 cm ). The bottles are 11.4 cm high. What is the volumetric efficiency of the rectangular six-pack? For the volumetric efficiency, the volume of the bottles is 400 cm.the volume of the container is cm, so the volumetric efficiency is

10 Part continued. Another way of packaging the six bottles is to arrange them in the shape of a triangle (see photograph ). (a) Determine the area efficiency of the triangular sixpack (see fig. 5). The package that will contain this triangular six-pack has a side of length 4r r r 4. Since it is an equilateral triangle, we calculate its area as Thus, the desired ratio is 6r 6. r A s. 4 This result is approximately 0.781, a configuration slightly less efficient than the standard six-pack. (b) Determine the volumetric efficiency of the triangular sixpack. The volumetric efficiency is likewise slightly less efficient than that of the rectangular six-pack. The total volume of the container is cm. This result gives a ratio of about

11 Part continued 4. A creative idea for packaging the six bottles is to stack them in pairs to form barbells (see photograph 4). (a) What is the area efficiency of the barbell six-pack? In answering this question, remember that there are six bottles, not simply the three we see when we look at a plan of the package, as shown in figure 6. If we look at the bottom of the container, its area is 4 6 The area of the bases of the six bottles is again efficiency could be argued to be r. 6 r, so the area If we take the more traditional approach of simply looking at the three bottles that form the base of the barbells, the ratio is about (b) What is the volumetric efficiency of the barbell six-pack? For the volumetric efficiency, we need the volume of the container. It V cm. This gives an will be efficiency of around

12 Part continued 5. Suppose that Coca-Cola decided to sell these unusual bottles in a highly original pack of seven, arranged as shown in photograph 5. (a) What is the area efficiency of the heptahex-pack (see fig. 7)? The heptahex-pack container has an area of 18 r. The answer can be determined by taking six of the triangles that make up the heptahex-pack (see fig. 10). Since CB = r and triangle ABC is a right triangle, AB = r. Thus, the side of the triangle is r, and the triangle s area is 18r r, and the area ratio is. Thus, the hexagon has area 7 r 18r (b) What is the volumetric efficiency of the heptahex-pack? The volume will be cm. This gives a volumetric efficiency ratio of

13 Part continued 6. What type of package might you use for eight bottles? A possible design is shown. 1

2011 Excellence in Mathematics Contest Team Project Level II (Below Precalculus) School Name: Group Members:

2011 Excellence in Mathematics Contest Team Project Level II (Below Precalculus) School Name: Group Members: 011 Excellence in Mathematics Contest Team Project Level II (Below Precalculus) School Name: Group Members: Reference Sheet Formulas and Facts You may need to use some of the following formulas and facts

More information

2010 Excellence in Mathematics Contest Team Project Level II (Below Precalculus) School Name: Group Members:

2010 Excellence in Mathematics Contest Team Project Level II (Below Precalculus) School Name: Group Members: 010 Excellence in Mathematics Contest Team Project Level II (Below Precalculus) School Name: Group Members: Reference Sheet Formulas and Facts You may need to use some of the following formulas and facts

More information

2010 Excellence in Mathematics Contest Team Project Level I (Precalculus and above) School Name: Group Members:

2010 Excellence in Mathematics Contest Team Project Level I (Precalculus and above) School Name: Group Members: 010 Excellence in Mathematics Contest Team Project Level I (Precalculus and above) School Name: Group Members: Reference Sheet Formulas and Facts You may need to use some of the following formulas and

More information

Volume and Surface Area Unit 28 Remember Volume of a solid figure is calculated in cubic units and measures three dimensions.

Volume and Surface Area Unit 28 Remember Volume of a solid figure is calculated in cubic units and measures three dimensions. Volume and Surface Area Unit 28 Remember Volume of a solid figure is calculated in cubic units and measures three dimensions. Surface Area is calculated in square units and measures two dimensions. Prisms

More information

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius. NAME DATE PER. REVIEW #18: SPHERES, COMPOSITE FIGURES, & CHANGING DIMENSIONS PART 1: SURFACE AREA & VOLUME OF SPHERES Find the measure(s) indicated. Answers to even numbered problems should be rounded

More information

Lesson 10T ~ Three-Dimensional Figures

Lesson 10T ~ Three-Dimensional Figures Lesson 10T ~ Three-Dimensional Figures Name Period Date Use the table of names at the right to name each solid. 1. 2. Names of Solids 3. 4. 4 cm 4 cm Cone Cylinder Hexagonal prism Pentagonal pyramid Rectangular

More information

Chapter 12 Review Period:

Chapter 12 Review Period: Chapter 12 Review Name: Period: 1. Find the number of vertices, faces, and edges for the figure. 9. A polyhedron has 6 faces and 7 vertices. How many edges does it have? Explain your answer. 10. Find the

More information

422 UNIT 12 SOLID FIGURES. The volume of an engine s cylinders affects its power.

422 UNIT 12 SOLID FIGURES. The volume of an engine s cylinders affects its power. UNIT 12 Solid Figures The volume of an engine s cylinders affects its power. 422 UNIT 12 SOLID FIGURES Gas-powered engines are driven by little explosions that move pistons up and down in cylinders. When

More information

Additional Practice. Name Date Class

Additional Practice. Name Date Class Additional Practice Investigation 1 1. The four nets below will fold into rectangular boxes. Net iii folds into an open box. The other nets fold into closed boxes. Answer the following questions for each

More information

12-3 Surface Areas of Pyramids and Cones

12-3 Surface Areas of Pyramids and Cones 18. MOUNTAINS A conical mountain has a radius of 1.6 kilometers and a height of 0.5 kilometer. What is the lateral area of the mountain? The radius of the conical mountain is 1.6 kilometers and the height

More information

Lesson 9. Three-Dimensional Geometry

Lesson 9. Three-Dimensional Geometry Lesson 9 Three-Dimensional Geometry 1 Planes A plane is a flat surface (think tabletop) that extends forever in all directions. It is a two-dimensional figure. Three non-collinear points determine a plane.

More information

OML Sample Problems 2017 Meet 7 EVENT 2: Geometry Surface Areas & Volumes of Solids

OML Sample Problems 2017 Meet 7 EVENT 2: Geometry Surface Areas & Volumes of Solids OML Sample Problems 2017 Meet 7 EVENT 2: Geometry Surface Areas & Volumes of Solids Include: Ratios and proportions Forms of Answers Note: Find exact answers (i.e. simplest pi and/or radical form) Sample

More information

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 14 Number/Computation addend Any number being added algorithm A step-by-step method for computing array A picture that shows a number of items arranged in rows and columns to form a rectangle associative

More information

11.6 Start Thinking Warm Up Cumulative Review Warm Up

11.6 Start Thinking Warm Up Cumulative Review Warm Up 11.6 Start Thinking The diagrams show a cube and a pyramid. Each has a square base with an area of 25 square inches and a height of 5 inches. How do the volumes of the two figures compare? Eplain your

More information

Lesson Polygons

Lesson Polygons Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

More information

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S )

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) G r a d e 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 0 S ) Midterm Practice Exam Answer Key G r a d e 0 I n t r o d u c t i o n t o A p p l i e d

More information

ACCELERATED MATHEMATICS CHAPTER 11 DIMENSIONAL GEOMETRY TOPICS COVERED:

ACCELERATED MATHEMATICS CHAPTER 11 DIMENSIONAL GEOMETRY TOPICS COVERED: ACCELERATED MATHEMATICS CHAPTER DIMENSIONAL GEOMETRY TOPICS COVERED: Naming 3D shapes Nets Volume of Prisms Volume of Pyramids Surface Area of Prisms Surface Area of Pyramids Surface Area using Nets Accelerated

More information

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth.

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth. Volume of Cylinders As with prisms, the area of the base of a cylinder tells the number of cubic units in one layer. The height tells how many layers there are in the cylinder. The volume V of a cylinder

More information

Geometry 10 and 11 Notes

Geometry 10 and 11 Notes Geometry 10 and 11 Notes Area and Volume Name Per Date 10.1 Area is the amount of space inside of a two dimensional object. When working with irregular shapes, we can find its area by breaking it up into

More information

Math 10 C Measurement Unit

Math 10 C Measurement Unit Math 10 C Measurement Unit Name: Class: Date: ID: A Chapter Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which imperial unit is most appropriate

More information

2. a. approximately cm 3 or 9p cm b. 20 layers c. approximately cm 3 or 180p cm Answers will vary.

2. a. approximately cm 3 or 9p cm b. 20 layers c. approximately cm 3 or 180p cm Answers will vary. Answers Investigation ACE Assignment Choices Problem. Core Other Connections Problem. Core,, Other Applications 7, ; Connections 7 0; unassigned choices from previous problems Problem. Core 7 Other Connections,

More information

Unit 8 Syllabus: Surface Area & Volume

Unit 8 Syllabus: Surface Area & Volume Date Period Day Unit 8 Syllabus: Surface Area & Volume Topic 1 Space Figures and Cross Sections Surface Area and Volume of Spheres 3 Surface Area of Prisms and Cylinders Surface Area of Pyramids and Cones

More information

Applications. 38 Filling and Wrapping

Applications. 38 Filling and Wrapping Applications 1. Cut a sheet of paper in half so you have two identical half-sheets of paper. Tape the long sides of one sheet together to form a cylinder. Tape the short sides from the second sheet together

More information

USING THE DEFINITE INTEGRAL

USING THE DEFINITE INTEGRAL Print this page Chapter Eight USING THE DEFINITE INTEGRAL 8.1 AREAS AND VOLUMES In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral by slicing up the region,

More information

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces.

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces. Lesson 3 Lesson 3, page 1 of 10 Glencoe Geometry Chapter 11. Nets & Surface Area When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all

More information

Geometry. Unit 9 Equations of Circles, Circle Formulas, and Volume

Geometry. Unit 9 Equations of Circles, Circle Formulas, and Volume Geometry Unit 9 Equations of Circles, Circle Formulas, and Volume 0 Warm-up 1. Use the Pythagorean Theorem to find the length of a right triangle s hypotenuse if the two legs are length 8 and 14. Leave

More information

C in. 2. D in Find the volume of a 7-inch tall drinking glass with a 4-inch diameter. C lateral faces. A in. 3 B in.

C in. 2. D in Find the volume of a 7-inch tall drinking glass with a 4-inch diameter. C lateral faces. A in. 3 B in. Standardized Test A For use after Chapter Multiple Choice. Which figure is a polyhedron? A B 7. Find the surface area of the regular pyramid. A 300 ft 2 B 340 ft 2 C 400 ft 2 C D D 700 ft 2 2. A polyhedron

More information

Study Guide and Review

Study Guide and Review State whether each sentence is or false. If false, replace the underlined term to make a sentence. 1. Euclidean geometry deals with a system of points, great circles (lines), and spheres (planes). false,

More information

UNIT 4: LENGTH, AREA, AND VOLUME WEEK 16: Student Packet

UNIT 4: LENGTH, AREA, AND VOLUME WEEK 16: Student Packet Name Period Date UNIT 4: LENGTH, AREA, AND VOLUME WEEK 16: Student Packet 16.1 Circles: Area Establish the area formula for a circle. Apply the area formula for a circle to realistic problems. Demonstrate

More information

Practice A Introduction to Three-Dimensional Figures

Practice A Introduction to Three-Dimensional Figures Name Date Class Identify the base of each prism or pyramid. Then choose the name of the prism or pyramid from the box. rectangular prism square pyramid triangular prism pentagonal prism square prism triangular

More information

The Geometry of Solids

The Geometry of Solids CONDENSED LESSON 10.1 The Geometry of Solids In this lesson you will Learn about polyhedrons, including prisms and pyramids Learn about solids with curved surfaces, including cylinders, cones, and spheres

More information

Name: Target 12.2: Find and apply surface of Spheres and Composites 12.2a: Surface Area of Spheres 12.2b: Surface Area of Composites Solids

Name: Target 12.2: Find and apply surface of Spheres and Composites 12.2a: Surface Area of Spheres 12.2b: Surface Area of Composites Solids Unit 12: Surface Area and Volume of Solids Target 12.0: Euler s Formula and Introduction to Solids Target 12.1: Find and apply surface area of solids 12.1a: Surface Area of Prisms and Cylinders 12.1b:

More information

Mathematics Background

Mathematics Background Measurement All measurements are approximations. In their work in this Unit, students explore ways to find measures for two and three dimensional figures. Even using exact formulas depends on how students

More information

CHAPTER 12. Extending Surface Area and Volume

CHAPTER 12. Extending Surface Area and Volume CHAPTER 12 Extending Surface Area and Volume 0 1 Learning Targets Students will be able to draw isometric views of three-dimensional figures. Students will be able to investigate cross-sections of three-dimensional

More information

Measurement and Geometry

Measurement and Geometry 8A A Family Letter: Area Dear Family, The student will learn how to convert between units within the customary and metric measuring systems. The table below shows the conversions for the customary system.

More information

MODULE 18 VOLUME FORMULAS

MODULE 18 VOLUME FORMULAS MODULE 18 VOLUME FORMULAS Objectives Use formulas routinely for finding the perimeter and area of basic prisms, pyramids, cylinders, cones, and spheres. Vocabulary: Volume, right vs oblique Assignments:

More information

1. AREAS. Geometry 199. A. Rectangle = base altitude = bh. B. Parallelogram = base altitude = bh. C. Rhombus = 1 product of the diagonals = 1 dd

1. AREAS. Geometry 199. A. Rectangle = base altitude = bh. B. Parallelogram = base altitude = bh. C. Rhombus = 1 product of the diagonals = 1 dd Geometry 199 1. AREAS A. Rectangle = base altitude = bh Area = 40 B. Parallelogram = base altitude = bh Area = 40 Notice that the altitude is different from the side. It is always shorter than the second

More information

Geometry 2: 2D and 3D shapes Review

Geometry 2: 2D and 3D shapes Review Geometry 2: 2D and 3D shapes Review G-GPE.7 I can use the distance formula to compute perimeter and area of triangles and rectangles. Name Period Date 3. Find the area and perimeter of the triangle with

More information

Perimeter, Area, Surface Area, & Volume

Perimeter, Area, Surface Area, & Volume Additional Options: Hide Multiple Choice Answers (Written Response) Open in Microsoft Word (add page breaks and/or edit questions) Generation Date: 11/25/2009 Generated By: Margaret Buell Copyright 2009

More information

Write Euler s Theorem. Solving Problems Using Surface Area and Volume. Figure Surface Area Volume. Cl V 5 1 } 3

Write Euler s Theorem. Solving Problems Using Surface Area and Volume. Figure Surface Area Volume. Cl V 5 1 } 3 CHAPTER SUMMARY Big Idea 1 BIG IDEAS Exploring Solids and Their Properties For Your Notebook Euler s Theorem is useful when finding the number of faces, edges, or vertices on a polyhedron, especially when

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the area. The figure is not drawn to scale. 7.6 cm 3.7 cm a. b. c. d. 2.

More information

Excel Math Glossary Fourth Grade

Excel Math Glossary Fourth Grade Excel Math Glossary Fourth Grade Mathematical Term [Lesson #] TE Page # A acute angle Acute Angle an angle that measures less than 90º [Lesson 78] 187 Addend any number being added [Lesson 1] 003 AM (ante

More information

Geometry Review Chapter 10: Volume PA Anchors: A3; B2; C1. 1. Name the geometric solid suggested by a frozen juice can.

Geometry Review Chapter 10: Volume PA Anchors: A3; B2; C1. 1. Name the geometric solid suggested by a frozen juice can. Geometry Review Chapter 10: Volume PA Anchors: A; B2; C1 1. Name the geometric solid suggested by a frozen juice can. 2. Name the geometric solid suggested by a beach ball.. Name the geometric solid suggested

More information

Class Generated Review Sheet for Math 213 Final

Class Generated Review Sheet for Math 213 Final Class Generated Review Sheet for Math 213 Final Key Ideas 9.1 A line segment consists of two point on a plane and all the points in between them. Complementary: The sum of the two angles is 90 degrees

More information

Math 6: Geometry 3-Dimensional Figures

Math 6: Geometry 3-Dimensional Figures Math 6: Geometry 3-Dimensional Figures Three-Dimensional Figures A solid is a three-dimensional figure that occupies a part of space. The polygons that form the sides of a solid are called a faces. Where

More information

Part I Multiple Choice

Part I Multiple Choice Oregon Focus on Surface Area and Volume Practice Test ~ Surface Area Name Period Date Long/Short Term Learning Targets MA.MS.07.ALT.05: I can solve problems and explain formulas involving surface area

More information

Reteaching. Solids. These three-dimensional figures are space figures, or solids. A cylinder has two congruent circular bases.

Reteaching. Solids. These three-dimensional figures are space figures, or solids. A cylinder has two congruent circular bases. 9- Solids These three-dimensional figures are space figures, or solids A B C D cylinder cone prism pyramid A cylinder has two congruent circular bases AB is a radius A cone has one circular base CD is

More information

11.4 Volume of Prisms and Cylinders

11.4 Volume of Prisms and Cylinders 11.4 Volume of Prisms and Cylinders Learning Objectives Find the volume of a prism. Find the volume of a cylinder. Review Queue 1. Define volume in your own words. 2. What is the surface area of a cube

More information

Understand the concept of volume M.TE Build solids with unit cubes and state their volumes.

Understand the concept of volume M.TE Build solids with unit cubes and state their volumes. Strand II: Geometry and Measurement Standard 1: Shape and Shape Relationships - Students develop spatial sense, use shape as an analytic and descriptive tool, identify characteristics and define shapes,

More information

3. Draw the orthographic projection (front, right, and top) for the following solid. Also, state how many cubic units the volume is.

3. Draw the orthographic projection (front, right, and top) for the following solid. Also, state how many cubic units the volume is. PAP Geometry Unit 7 Review Name: Leave your answers as exact answers unless otherwise specified. 1. Describe the cross sections made by the intersection of the plane and the solids. Determine if the shape

More information

Geometry: Notes

Geometry: Notes Geometry: 11.5-11.8 Notes NAME 11.5 Volumes of Prisms and Cylinders Date: Define Vocabulary: volume Cavalieri s Principle density similar solids Examples: Finding Volumes of Prisms 1 Examples: Finding

More information

3 Dimensional Solids. Table of Contents. 3 Dimensional Solids Nets Volume Prisms and Cylinders Pyramids, Cones & Spheres

3 Dimensional Solids. Table of Contents. 3 Dimensional Solids Nets Volume Prisms and Cylinders Pyramids, Cones & Spheres Table of Contents 3 Dimensional Solids Nets Volume Prisms and Cylinders Pyramids, Cones & Spheres Surface Area Prisms Pyramids Cylinders Spheres More Practice/ Review 3 Dimensional Solids Polyhedron A

More information

Unit 4 End-of-Unit Assessment Study Guide

Unit 4 End-of-Unit Assessment Study Guide Circles Unit 4 End-of-Unit Assessment Study Guide Definitions Radius (r) = distance from the center of a circle to the circle s edge Diameter (d) = distance across a circle, from edge to edge, through

More information

Student Outcomes. Classwork. Opening Exercises 1 2 (5 minutes)

Student Outcomes. Classwork. Opening Exercises 1 2 (5 minutes) Student Outcomes Students use the Pythagorean Theorem to determine an unknown dimension of a cone or a sphere. Students know that a pyramid is a special type of cone with triangular faces and a rectangular

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Park Forest Math Team. Meet #5. Self-study Packet. Problem Categories for this Meet (in addition to topics of earlier meets):

Park Forest Math Team. Meet #5. Self-study Packet. Problem Categories for this Meet (in addition to topics of earlier meets): Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet (in addition to topics of earlier meets): 1. Mystery: Problem solving 2. : Solid (Volume and Surface Area) 3. Number Theory:

More information

Assignment Guide: Chapter 11 Geometry (L3)

Assignment Guide: Chapter 11 Geometry (L3) Assignment Guide: Chapter 11 Geometry (L3) (136) 11.1 Space Figures and Cross Sections Page 692-693 #7-23 odd, 35 (137) 11.2/11.4 Surface Areas and Volumes of Prisms Page 703-705 #1, 2, 7-9, 11-13, 25,

More information

Circular Reasoning. Solving Area and Circumference. Problems. WARM UP Determine the area of each circle. Use 3.14 for π.

Circular Reasoning. Solving Area and Circumference. Problems. WARM UP Determine the area of each circle. Use 3.14 for π. Circular Reasoning Solving Area and Circumference 3 Problems WARM UP Determine the area of each circle. Use 3.14 for π. 1. 4 in. 2. 3.8 cm LEARNING GOALS Use the area and circumference formulas for a circle

More information

Name: DUE: HOUR: 2015/2016 Geometry Final Exam Review

Name: DUE: HOUR: 2015/2016 Geometry Final Exam Review Name: DUE: HOUR: 2015/2016 Geometry Final Exam Review 1. Find x. 2. Find y. x = 3. A right triangle is shown below. Find the lengths x, y, and z. y = 4. Find x. x = y = z = x = 5. Find x. x = 6. ABC ~

More information

12-6 Surface Area and Volumes of Spheres. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. SOLUTION: SOLUTION:

12-6 Surface Area and Volumes of Spheres. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. SOLUTION: SOLUTION: Find the surface area of each sphere or hemisphere. Round to the nearest tenth. 3. sphere: area of great circle = 36π yd 2 We know that the area of a great circle is r.. Find 1. Now find the surface area.

More information

1: #1 4, ACE 2: #4, 22. ACER 3: #4 6, 13, 19. ACE 4: #15, 25, 32. ACE 5: #5 7, 10. ACE

1: #1 4, ACE 2: #4, 22. ACER 3: #4 6, 13, 19. ACE 4: #15, 25, 32. ACE 5: #5 7, 10. ACE Homework Answers from ACE: Filling and Wrapping ACE Investigation 1: #1 4, 10 13. ACE Investigation : #4,. ACER Investigation 3: #4 6, 13, 19. ACE Investigation 4: #15, 5, 3. ACE Investigation 5: #5 7,

More information

G-GMD.1- I can explain the formulas for volume of a cylinder, pyramid, and cone by using dissection, Cavalieri s, informal limit argument.

G-GMD.1- I can explain the formulas for volume of a cylinder, pyramid, and cone by using dissection, Cavalieri s, informal limit argument. G.MG.2 I can use the concept of density in the process of modeling a situation. 1. Each side of a cube measures 3.9 centimeters. Its mass is 95.8 grams. Find the density of the cube. Round to the nearest

More information

Park Forest Math Team. Meet #5. Self-study Packet. Problem Categories for this Meet (in addition to topics of earlier meets):

Park Forest Math Team. Meet #5. Self-study Packet. Problem Categories for this Meet (in addition to topics of earlier meets): Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet (in addition to topics of earlier meets): 1. Mystery: Problem solving 2. : Solid (Volume and Surface Area) 3. Number Theory:

More information

Sect Volume. 3 ft. 2 ft. 5 ft

Sect Volume. 3 ft. 2 ft. 5 ft 199 Sect 8.5 - Volume Objective a & b: Understanding Volume of Various Solids The Volume is the amount of space a three dimensional object occupies. Volume is measured in cubic units such as in or cm.

More information

Mr. Whelan Name: Block:

Mr. Whelan Name: Block: Mr. Whelan Name: Block: Geometry/Trig Unit 10 Area and Volume of Solids Notes Packet Day 1 Notes - Prisms Rectangular Prism: How do we find Total Area? Example 1 6cm Find the area of each face: Front:

More information

Answer Key. 1.1 The Three Dimensions. Chapter 1 Basics of Geometry. CK-12 Geometry Honors Concepts 1. Answers

Answer Key. 1.1 The Three Dimensions. Chapter 1 Basics of Geometry. CK-12 Geometry Honors Concepts 1. Answers 1.1 The Three Dimensions 1. Possible answer: You need only one number to describe the location of a point on a line. You need two numbers to describe the location of a point on a plane. 2. vary. Possible

More information

CCM6+ Unit 12 Surface Area and Volume page 1 CCM6+ UNIT 12 Surface Area and Volume Name Teacher Kim Li

CCM6+ Unit 12 Surface Area and Volume page 1 CCM6+ UNIT 12 Surface Area and Volume Name Teacher Kim Li CCM6+ Unit 12 Surface Area and Volume page 1 CCM6+ UNIT 12 Surface Area and Volume Name Teacher Kim Li MAIN CONCEPTS Page(s) Unit 12 Vocabulary 2 3D Figures 3-8 Volume of Prisms 9-19 Surface Area 20-26

More information

Practice Test Unit 8. Note: this page will not be available to you for the test. Memorize it!

Practice Test Unit 8. Note: this page will not be available to you for the test. Memorize it! Geometry Practice Test Unit 8 Name Period: Note: this page will not be available to you for the test. Memorize it! Trigonometric Functions (p. 53 of the Geometry Handbook, version 2.1) SOH CAH TOA sin

More information

PYRAMIDS AND CONES WHAT YOU LL LEARN. Ø Finding the surface areas and volume of pyramids Ø Finding the surface areas and volume of cones

PYRAMIDS AND CONES WHAT YOU LL LEARN. Ø Finding the surface areas and volume of pyramids Ø Finding the surface areas and volume of cones PYRAMIDS AND CONES A pyramid is a solid with a polygonal base and triangular lateral faces that meet at a vertex. In this lesson, you will work with regular pyramids. The base of a regular pyramid is a

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM INTRODUCTION In this Unit, we will use the idea of measuring volume that we studied to find the volume of various 3 dimensional figures. We will also learn about

More information

Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes

Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes Pre-Algebra, Unit 0: Measurement, Area, and Volume Notes Triangles, Quadrilaterals, and Polygons Objective: (4.6) The student will classify polygons. Take this opportunity to review vocabulary and previous

More information

Solid Figures. Name. 22 Topic 18. Reteaching Polyhedrons Prisms

Solid Figures. Name. 22 Topic 18. Reteaching Polyhedrons Prisms Solid Figures Polyhedrons Prisms Pyramids Reteaching 8- Properties of polyhedrons include vertices, edges, and faces, and base(s). Square Pyramid K Reteaching 8- Not Polyhedrons Cylinder Cone Sphere H

More information

Surface Area and Volume

Surface Area and Volume Name: Chapter Date: Surface Area and Volume Practice 1 Building Solids Using Unit Cubes Find the number of unit cubes used to build each solid. Some of the cubes may be hidden. 1. 2. unit cubes 3. 4. unit

More information

Geometry SIA #3. Name: Class: Date: Short Answer. 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1).

Geometry SIA #3. Name: Class: Date: Short Answer. 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1). Name: Class: Date: ID: A Geometry SIA #3 Short Answer 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1). 2. If the perimeter of a square is 72 inches, what

More information

Math 366 Chapter 13 Review Problems

Math 366 Chapter 13 Review Problems 1. Complete the following. Math 366 Chapter 13 Review Problems a. 45 ft = yd e. 7 km = m b. 947 yd = mi f. 173 cm = m c. 0.25 mi = ft g. 67 cm = mm d. 289 in. = yd h. 132 m = km 2. Given three segments

More information

Brunswick School Department: Grade 5

Brunswick School Department: Grade 5 Understandings Questions Mathematics Lines are the fundamental building blocks of polygons. Different tools are used to measure different things. Standard units provide common language for communicating

More information

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction Prerequisite Skills This lesson requires the use of the following skills: understanding and using formulas for the volume of prisms, cylinders, pyramids, and cones understanding and applying the formula

More information

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration.

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration. Objectives 7.1 Find the area of a region between two curves using integration. Find the area of a region between intersecting curves using integration. Describe integration as an accumulation process.

More information

To find the surface area of a pyramid and a cone

To find the surface area of a pyramid and a cone 11-3 Surface Areas of Pyramids and Cones Common Core State Standards G-MG.A.1 Use geometric shapes, their measures, and their properties to describe objects. MP 1, MP 3, MP 4, MP 6, MP 7 Objective To find

More information

FSA Mathematics Practice Test Questions

FSA Mathematics Practice Test Questions Geometry FSA Mathematics Practice Test Questions The purpose of these practice test materials is to orient teachers and students to the types of questions on paper-based FSA tests. By using these materials,

More information

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents Prisms and Cylinders Glossary & Standards Return to Table of Contents 1 Polyhedrons 3-Dimensional Solids A 3-D figure whose faces are all polygons Sort the figures into the appropriate side. 2. Sides are

More information

Pre-Algebra Notes Unit 10: Geometric Figures & Their Properties; Volume

Pre-Algebra Notes Unit 10: Geometric Figures & Their Properties; Volume Pre-Algebra Notes Unit 0: Geometric Figures & Their Properties; Volume Triangles, Quadrilaterals, and Polygons Syllabus Objectives: (4.6) The student will validate conclusions about geometric figures and

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Disk Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

SPRINGBOARD UNIT 5 GEOMETRY

SPRINGBOARD UNIT 5 GEOMETRY SPRINGBOARD UNIT 5 GEOMETRY 5.1 Area and Perimeter Perimeter the distance around an object. To find perimeter, add all sides. Area the amount of space inside a 2 dimensional object. Measurements for area

More information

Geometry EOC FSA Mathematics Reference Sheet

Geometry EOC FSA Mathematics Reference Sheet Geometry EOC FSA Mathematics Reference Sheet Customary Conversions 1 foot = 12 inches 1 yard = 3 feet 1 mile = 5,280 feet 1 mile = 1,760 yards 1 cup = 8 fluid ounces 1 pint = 2 cups 1 quart = 2 pints 1

More information

Page 1 CCM6+7+ UNIT 9 GEOMETRY 2D and 3D 2D & 3D GEOMETRY PERIMETER/CIRCUMFERENCE & AREA SURFACE AREA & VOLUME

Page 1 CCM6+7+ UNIT 9 GEOMETRY 2D and 3D 2D & 3D GEOMETRY PERIMETER/CIRCUMFERENCE & AREA SURFACE AREA & VOLUME Page 1 CCM6+7+ UNIT 9 GEOMETRY 2D and 3D UNIT 9 2016-17 2D & 3D GEOMETRY PERIMETER/CIRCUMFERENCE & AREA SURFACE AREA & VOLUME CCM6+7+ Name: Math Teacher: Projected Test Date: MAIN CONCEPT(S) PAGE(S) Vocabulary

More information

12-6 Surface Area and Volumes of Spheres. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. SOLUTION: ANSWER: 1017.

12-6 Surface Area and Volumes of Spheres. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. SOLUTION: ANSWER: 1017. Find the surface area of each sphere or hemisphere. Round to the nearest tenth. 3. sphere: area of great circle = 36π yd 2 We know that the area of a great circle is r.. Find 1. Now find the surface area.

More information

11.3 Surface Area of Pyramids and Cones

11.3 Surface Area of Pyramids and Cones 11.3 Surface Area of Pyramids and Cones Learning Objectives Find the surface area of a pyramid. Find the surface area of a cone. Review Queue 1. A rectangular prism has sides of 5 cm, 6 cm, and 7 cm. What

More information

VOLUME OF A REGION CALCULATOR EBOOK

VOLUME OF A REGION CALCULATOR EBOOK 19 March, 2018 VOLUME OF A REGION CALCULATOR EBOOK Document Filetype: PDF 390.92 KB 0 VOLUME OF A REGION CALCULATOR EBOOK How do you calculate volume. A solid of revolution is a solid formed by revolving

More information

Grades 7 & 8, Math Circles 20/21/22 February, D Geometry Solutions

Grades 7 & 8, Math Circles 20/21/22 February, D Geometry Solutions Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing D Geometry Review Grades 7 & 8, Math Circles 0/1/ February, 018 3D Geometry Solutions Two-dimensional shapes

More information

Use this space for computations. 3 In parallelogram QRST shown below, diagonal TR. is drawn, U and V are points on TS and QR,

Use this space for computations. 3 In parallelogram QRST shown below, diagonal TR. is drawn, U and V are points on TS and QR, 3 In parallelogram QRST shown below, diagonal TR is drawn, U and V are points on TS and QR, respectively, and UV intersects TR at W. Use this space for computations. If m S 60, m SRT 83, and m TWU 35,

More information

Geometry--Unit 10 Study Guide

Geometry--Unit 10 Study Guide Class: Date: Geometry--Unit 10 Study Guide Determine whether each statement is true or false. If false, give a counterexample. 1. Two different great circles will intersect in exactly one point. A) True

More information

Volume of Prisms & Cylinders

Volume of Prisms & Cylinders 4.4.D1 Volume of Prisms & Cylinders Recall that the volume of a three-dimensional figure is the number of nonoverlapping cubic units contained in the interior of the figure. For example, the prism at right

More information

Free Response. Test A. 1. What is the estimated area of the figure?

Free Response. Test A. 1. What is the estimated area of the figure? Test A 1. What is the estimated area of the 6. An 8.5 in. by 11 in. sheet of paper is enlarged to make a poster by doubling its length and width. What is the new perimeter? 7. How does the area of a square

More information

Ready To Go On? Skills Intervention 10-1 Solid Geometry

Ready To Go On? Skills Intervention 10-1 Solid Geometry 10A Find these vocabulary words in Lesson 10-1 and the Multilingual Glossary. Vocabulary Ready To Go On? Skills Intervention 10-1 Solid Geometry face edge vertex prism cylinder pyramid cone cube net cross

More information

Volume. 4. A box in the shape of a cube has a volume of 64 cubic inches. What is the length of a side of the box? A in B. 16 in. C. 8 in D.

Volume. 4. A box in the shape of a cube has a volume of 64 cubic inches. What is the length of a side of the box? A in B. 16 in. C. 8 in D. Name: ate: 1. In the accompanying diagram, a rectangular container with the dimensions 10 inches by 15 inches by 20 inches is to be filled with water, using a cylindrical cup whose radius is 2 inches and

More information

Geometry Vocabulary. Name Class

Geometry Vocabulary. Name Class Geometry Vocabulary Name Class Definition/Description Symbol/Sketch 1 point An exact location in space. In two dimensions, an ordered pair specifies a point in a coordinate plane: (x,y) 2 line 3a line

More information

Lincoln County Schools Patriot Day Instructional Expectations Patriot Day 4

Lincoln County Schools Patriot Day Instructional Expectations Patriot Day 4 Lincoln County Schools Patriot Day Instructional Expectations Patriot Day 4 School: LCHS Course/Subject: Geometry Teacher: Hamm, Harris, Napier, Dunn Learning Target: 2.08 I can use the distance formula

More information