WRITING, STRUCTURING AND DEVELOPING MONTE CARLO RADIATIVE TRANSFER CODES ANTONIA BEVAN, UCL ST ANDREWS MONTE CARLO SUMMER SCHOOL 2017

Size: px
Start display at page:

Download "WRITING, STRUCTURING AND DEVELOPING MONTE CARLO RADIATIVE TRANSFER CODES ANTONIA BEVAN, UCL ST ANDREWS MONTE CARLO SUMMER SCHOOL 2017"

Transcription

1 WRITING, STRUCTURING AND DEVELOPING MONTE CARLO RADIATIVE TRANSFER CODES ANTONIA BEVAN, UCL ST ANDREWS MONTE CARLO SUMMER SCHOOL 2017

2 Me in Oct 2012 just after I started my PhD

3 Herschel, Planck and Spitzer imaging data for Cas A (De Looze+ 17)

4 FLUX DOPPLER VELOCITY observer dust clumps DUST IN CCSN EJECTA CAUSES BLUE- SHIFTED EMISSION LINE PROFILES IN OPTICAL AND IR

5 First observed in SN 1987A [OI] 6300,6363Å (d529) (d739) Lucy et al. 1989

6 CHALLENGE: WRITE A MONTE CARLO RADIATIVE TRANSFER CODE THAT WILL?

7 Dust absorption and scattering Smooth or clumped dust distribution 3D Monte Carlo radiative transfer code Smooth or clumped emissivity distribution Dust A ffected Models O f C haracteristic L ine E mission in S upernovae Simple electron scattering Velocity field v α r at fixed time Any dust grain size distribution Any combination of dust species

8 ASK YOURSELF QUESTIONS Where will this go? Will I want to add capacity in future? Is there anything I can do now to make that easier? What are the inputs? What are the outputs? Which processes/physics/stats/magic will take you from your inputs to your outputs? What can/can t you assume? What are you going to do with your outputs?

9 MAP OUT YOUR PROBLEM MCRT CODES: SAME BASIC PREMISE DIFFERENT PHYSICS/ PROCESSES/PRO DUCTS ETC.

10 Read inputs any user defined variables, optical constants etc. Set up general variables such as loop counters, physical constants etc. Set any default values Write out outputs Perform any comparison to observations/experimental results? Turn written outputs (grids, lists of numbers etc.) into graphics, images, plots etc.

11 INITIALISE Initialise

12 What now? You re going to need to make some decisions about your tools Fortran or C or Python or or or? [you may choose to use multiple] OpenMP or MPI? IDE? text editor? Compiler? Computer! Which version control Git, SVN etc.? QUESTIONS TO ASK USE VERSION CONTROL

13 DAMOCLES development: Fortran 95 + Python (historically also matlab) Tools I use: Eclipse IDE with Photran Sublime Text & emacs for text editing GitHub for version control gcc compilers DAMOCLES Develop on my macbook and run on servers at UCL

14 USE MODULES

15 USE MODULES

16 USE MODULES

17 USE MODULES

18 USE MODULES

19 USE MODULES

20 MODULAR STRUCTURE We re building up the program block by block Program file runs the main body of the code calling functions and subroutines Break up your code into sections and save them in different files FORTRAN if module A uses module B, then all variables, subroutines and functions declared in module B can be seen and updated by module A I put all my variables, subroutines and functions in modules grouped by categories e.g. dust RECAP

21 DESCRIBE THE ENVIRONMENT Initialise

22 What is it made of? Dust? Gas? Skin? Rocks? Can I describe how light interacts with it? Where is it? Density distribution Smooth? Clumpy? Layered? Physical extent how big is it [and how do I want to describe that]? How should I describe it? Formula? Grid? QUESTIONS TO ASK

23 Cartesian grid of dust densities Each grid cell has constant properties Can describe any distribution with some defaults included: Shell with a smooth power-law Any fraction of dust in clumps Arbitrary distributions Mie theory gives extinction efficiencies Velocity proportional to radius DAMOCLES

24

25 USE LIBRARIES AND PACKAGES

26 USE LIBRARIES AND PACKAGES

27 TEST TWICE (AT LEAST!)

28 TEST TWICE (AT LEAST!)

29 Build up each section of code as you go Test each section as you go Use benchmark tests and analytical results Use sense checks and count checks Consider writing unit tests Calculate the properties of your medium in advance and store Grids allow for flexibility properties in a given grid cell are constant RECAP

30 LAUNCH PACKETS Initialise

31 Frequency distribution P(υ) α? Blackbody? Monochromatic? Emissivity distribution i(x,y,z) α? Proportional to density? Radial distribution? Point source? Arbitrary distribution? Propagation direction Isotropic? Non-isotropic? Plane parallel? QUESTIONS TO ASK

32 DAMOCLES uses monochromatic (i.e. line photons) Emissivity distribution is default coupled to the dust density distribution with i(x,y,z) α ρ 2? Can have an arbitrary distribution Packets are emitted isotropically Packets must be frequency shifted when launched (moving atmosphere) DAMOCLES

33

34 PROPAGATION DIRECTION: E.G. SAMPLE FROM AN ISOTROPIC DISTRIBUTION cosq = 2z -1 f = 2px

35 POSITION: E.G. RADIAL POWER LAW IN 1D For P(r) = Cr n where r Î [r min,r max ] CARE WITH RANDOM NUMBERS r =[(r n+1 max - r n+1 min )g +r n+1 n+1 min ] 1 UNIFORM RANDOM NUMBERS IN [0,1) CAN BE CONVERTED TO OTHER DISTRIBUTIONS

36

37 RECAP Packets should be instantiated with a position, a direction and any other properties Frequency? Weight? Flags? (e.g. continuum packet, line packet etc.) Random numbers can be used to sample position and direction vectors Take care with random numbers (seeds, parallel s )

38 PROPAGATE PACKETS & ABSORPTION/SCATTERING/RE-EMISSION Initialise

39 What happens to absorbed? Do I need to use weighted? With what direction are scattered reemitted? Isotropic? Phase function? Are ted immediately? Do I need to iterate? Update grid properties? Determine thermal balance? QUESTIONS TO ASK

40 DAMOCLES Absorbed removed from simulation since outside wavelength range Packets are weighted at each scattering event by ratio of frequencies Dust scattering is calculated using Henyey- Greenstein approximation (non-isotropic scattering) No need for iteration since dust opacities not temperature dependent

41 PARALLEL WORKS VERY WELL

42 PARALLEL WORKS VERY WELL

43 A PACKET S PATH THROUGH THE EJECTA IN DAMOCLES (note, no reemission )

44 Packets do not interact so RECAP can process one until it escapes before launching another can run multiple at once Monte Carlo very, very parallel (and fairly easy to do so) Lots of required ( typical): can be slow so parallelisation helps Random numbers determine random walk but also events along the way

45 COLLECT PACKETS & VISUALISE Initialise

46 What information should be collected? Weights, frequencies, positions, directions How should the information be collated? Binning what resolution? Viewing angles? QUESTIONS TO ASK What visualisation/analysis can be used to explore the results of the simulation? What graphics/images best represent the model? Convolve to observation?

47 All binned into a grid of frequencies (summation over their weights) All also binned into a number of lines of sight d as a line profile by plotting the outputted histogram DAMOCLES The profile flux is scaled to the observations and compared

48

49

50 VISUALISATION IS IMPORTANT It is how your model is seen by the outside world It allows you to easily assess and analyse the results Normally worth writing scripts for visualising then packaging with the code Many tools and libraries in e.g. Python, matlab

51 Important part of the code RECAP Normally worth investing time in writing postprocessing scripts for visualising results Try to collect as many outputs as you might be interested in Make output automated e.g. automated file names based on date/time or input parameters etc.

52

53 It didn t quite go like that SPHERICAL GRID DUST ABSORPTION CARTESIAN GRID DUST SCATTERING SMOOTH + ELECTRON SCATTERING DUST + CLUMPED + CLUMPED DISTRIBUTION ANY DISTRIBUTION DUST YOU EMISSIVITY LIKE MONOCHROMATIC DISTRIBUTION DISTRIBUTION LINE PACKETS BUT ALSO AND DOUBLETS TRIPLETS BAYESIAN MCMC WRAPPER IN PYTHON

54 S U P E R N O V A 1987A ( I I P ) END RESULT! FITS TO THE SN 1987A [OI] DOUBLET

55 Bayesian Modelling SN 1987A Hα day 714 smooth gas & dust coupled

56

57 HINTS & TIPS Use version control Use modules Use libraries and packages Test twice (at least!) Take care with random numbers Parallelise Don t assume that only you will be using your code Comments Clear variable and module names Ask questions!

HYPERION: 3d dust continuum radiative transfer. Thomas Robitaille (Aperio Software)

HYPERION: 3d dust continuum radiative transfer. Thomas Robitaille (Aperio Software) HYPERION: 3d dust continuum radiative transfer (Aperio Software) Homepage: http://www.hyperion-rt.org Documentation: http://docs.hyperion-rt.org Code: https://github.com/hyperion-rt/hyperion Current version:

More information

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering

Today. Participating media. Participating media. Rendering Algorithms: Participating Media and. Subsurface scattering Today Rendering Algorithms: Participating Media and Subsurface Scattering Introduction Rendering participating media Rendering subsurface scattering Spring 2009 Matthias Zwicker Participating media Participating

More information

MCRT on a 3D Cartesian Grid

MCRT on a 3D Cartesian Grid MCRT on a 3D Cartesian Grid 3D linear cartesian grid code optical depth integration through grid, weighting & forcing, making images, intensity moments Show geometry, xmax, number of cells, faces, etc

More information

What is Monte Carlo Modeling*?

What is Monte Carlo Modeling*? What is Monte Carlo Modeling*? Monte Carlo Modeling is a statisitcal method used here to simulate radiative transfer by simulating photon (or more exactly light rays/beams) interaction with a medium. MC

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

Improvements to the SHDOM Radiative Transfer Modeling Package

Improvements to the SHDOM Radiative Transfer Modeling Package Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center

More information

Monte Carlo Radiation Transfer

Monte Carlo Radiation Transfer Monte Carlo Radiation Transfer 1 Introduction The purpose of this booklet is to introduce the reader to the basic concepts and techniques of radiation transfer using the Monte Carlo method. We shall endeavour

More information

The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the frame of international space missions

The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the frame of international space missions ITSC-21, Darmstadt, Germany, November 29th-December 5th, 2017 session 2a Radiative Transfer The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the

More information

RASCAS LEO MICHEL-DANSAC, JEREMY BLAIZOT, THIBAULT GAREL, ANNE VERHAMME. (aka MCLya v.2.0)

RASCAS LEO MICHEL-DANSAC, JEREMY BLAIZOT, THIBAULT GAREL, ANNE VERHAMME. (aka MCLya v.2.0) RASCAS (aka MCLya v.2.0) A massively parallel code for line transfer in AMR simulations. LEO MICHEL-DANSAC, JEREMY BLAIZOT, THIBAULT GAREL, ANNE VERHAMME INTRO SCIENCE MOTIVATIONS LAEs, EoR, LABs, (MUSE,

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Monte Carlo Simulation Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis

More information

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering University of Maryland Baltimore County - UMBC Phys650 - Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class

More information

Participating Media. Part I: participating media in general. Oskar Elek MFF UK Prague

Participating Media. Part I: participating media in general. Oskar Elek MFF UK Prague Participating Media Part I: participating media in general Oskar Elek MFF UK Prague Outline Motivation Introduction Properties of participating media Rendering equation Storage strategies Non-interactive

More information

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to:

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to: LECTURE #6: OPTICAL PROPERTIES OF SOLIDS Basic question: How do solids interact with light? The answers are linked to: Properties of light inside a solid Mechanisms behind light reflection, absorption

More information

STATUS OF FIRS DATA AND PROCESSING

STATUS OF FIRS DATA AND PROCESSING ? STATUS OF FIRS DATA AND PROCESSING Sarah Jaeggli, Haosheng Lin Institute for Astronomy, University of Hawai i S.Jaeggli -- VMCoW Stanford U. 2010-10-20 summary of comparisons comparison of observations

More information

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes 1. Particle Scattering Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes Generally gas and particles do not scatter isotropically. The phase function, scattering efficiency, and single scattering

More information

Simulation of Diffuse Optical Tomography using COMSOL Multiphysics

Simulation of Diffuse Optical Tomography using COMSOL Multiphysics Simulation of Diffuse Optical Tomography using COMSOL Multiphysics SAM Kirmani *1 L Velmanickam 1 D Nawarathna 1 SS Sherif 2 and IT Lima Jr 1 1 Department of Electrical and Computer Engineering North Dakota

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1 Outline 1. Monte Carlo integration

More information

Hyperion Manual. Release Thomas Robitaille

Hyperion Manual. Release Thomas Robitaille Hyperion Manual Release 0.9.8 Thomas Robitaille May 14, 2018 Contents 1 Introduction 1 2 Note on units and constants 3 3 Documentation 5 4 Advanced 95 5 Credits 209 i ii CHAPTER 1 Introduction This is

More information

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization Chapter 33 - Light Properties of Light 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization MFMcGraw-PHY 2426 Chap33-Light - Revised: 6-24-2012 2 Electromagnetic

More information

Evaluation of radiative power loading on WEST metallic in-vessel components

Evaluation of radiative power loading on WEST metallic in-vessel components Evaluation of radiative power loading on WEST metallic in-vessel components M-H. Aumeunier 1, P. Moreau, J. Bucalossi, M. Firdaouss CEA/IRFM F-13108 Saint-Paul-Lez-Durance, France E-mail: marie-helene.aumeunier@cea.fr

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

FloEFD 16 What s New. Alexey Kharitonovich Product Manager. Tatiana Trebunskikh Product Manager

FloEFD 16 What s New. Alexey Kharitonovich Product Manager. Tatiana Trebunskikh Product Manager FloEFD 16 What s New Alexey Kharitonovich Product Manager Tatiana Trebunskikh Product Manager FloEFD 16 Enhancements Phase Change for Refrigerants Flows of refrigerants with liquid to gas (cavitation/boiling)

More information

Monte-Carlo modeling used to simulate propagation of photons in a medium

Monte-Carlo modeling used to simulate propagation of photons in a medium Monte-Carlo modeling used to simulate propagation of photons in a medium Nils Haëntjens Ocean Optics Class 2017 based on lectures from Emmanuel Boss and Edouard Leymarie What is Monte Carlo Modeling? Monte

More information

Lesson 1 Scattering, Diffraction, and Radiation

Lesson 1 Scattering, Diffraction, and Radiation Lesson 1 Scattering, Diffraction, and Radiation Chen-Bin Huang Department of Electrical Engineering Institute of Photonics Technologies National Tsing Hua University, Taiwan Various slides under courtesy

More information

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan Monte Carlo Ray Tracing Simulation of Polarization Characteristics of Sea Water Which Contains Spherical and Non-Spherical Particles of Suspended Solid and Phytoplankton Kohei Arai 1 Graduate School of

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

Hyperion Manual. Release Thomas Robitaille

Hyperion Manual. Release Thomas Robitaille Hyperion Manual Release 0.9.1 Thomas Robitaille July 24, 2013 CONTENTS i ii CHAPTER ONE INTRODUCTION This is the documentation for Hyperion, a three-dimensional dust continuum Monte-Carlo radiative transfer

More information

A 10-minute introduction to. SynRad+ A test-particle Monte Carlo simulator for synchrotron radiation

A 10-minute introduction to. SynRad+ A test-particle Monte Carlo simulator for synchrotron radiation A 10-minute introduction to SynRad+ A test-particle Monte Carlo simulator for synchrotron radiation 1 The basics First, let s learn the SynRad+ terminology and the interface in a few slides. Or, if you

More information

Application of the MCMC Method for the Calibration of DSMC Parameters

Application of the MCMC Method for the Calibration of DSMC Parameters Application of the MCMC Method for the Calibration of DSMC Parameters James S. Strand and David B. Goldstein Aerospace Engineering Dept., 1 University Station, C0600, The University of Texas at Austin,

More information

FLASH Code Tutorial. part IV radiation modules. Robi Banerjee Hamburger Sternwarte

FLASH Code Tutorial. part IV radiation modules. Robi Banerjee Hamburger Sternwarte FLASH Code Tutorial part IV radiation modules Robi Banerjee Hamburger Sternwarte banerjee@hs.uni-hamburg.de The Radiation transfer unit idea: get solution of the radiation transfer equation I(x,Ω,ν,t)

More information

Influence of light absorbing particles on snow albedo and radiation

Influence of light absorbing particles on snow albedo and radiation Introduction Modeling Impurities Influence of light absorbing particles on snow albedo and radiation Mark Flanner June 25, 2012 Alpine Summer School: Climate, Aerosols and the Cryosphere Valsavarenche,

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 2 - Waves Notes Name 1 Waves Revision You will remember the following equations related to Waves from National 5. d = vt f = n/t v = f T=1/f They form an integral

More information

6.1 Rendering Wet Sand

6.1 Rendering Wet Sand 6. Rendering Wet Sand 6.. Goals The primary goal of this project was to implement a method for rendering sand as a wet porous medium with water flowing into it from within PBRT. The final result was a

More information

Machine Learning Techniques for the Smart Grid Modeling of Solar Energy using AI

Machine Learning Techniques for the Smart Grid Modeling of Solar Energy using AI Machine Learning Techniques for the Smart Grid Modeling of Solar Energy using AI Professor Dr. Wilfried Elmenreich Dr. Tamer Khatib Networked and Embedded Systems Overview Scope of this tutorial Meta-heuristic

More information

Photon Monte Carlo Simulation for Radiative Transfer in Gaseous Media Represented by Discrete Particle Fields

Photon Monte Carlo Simulation for Radiative Transfer in Gaseous Media Represented by Discrete Particle Fields Anquan Wang Mem. ASME Michael F. Modest Fellow ASME e-mail: mfm6@psu.edu Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 680 Photon Monte Carlo Simulation

More information

The Laser Model in FLASH

The Laser Model in FLASH The Laser Model in FLASH Milad Fatenejad RAL Tutorial May 2012 1 of 31 Summary FLASH contains code for modeling laser energy deposition and radiation diffusion Laser ray tracing Radiation diffusion Example

More information

Improved Convergence Rates in Implicit Monte Carlo Simulations Through Stratified Sampling

Improved Convergence Rates in Implicit Monte Carlo Simulations Through Stratified Sampling Improved Convergence Rates in Implicit Monte Carlo Simulations Through Stratified Sampling ANS Winter Conference 2013 Alex Long and Ryan McClarren Texas A&M University Alex Long (Texas A&M) ANS Winter

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND TRIANGULAR APERTURES

RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND TRIANGULAR APERTURES DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND TRIANGULAR APERTURES Ian Cooper School of Physics, University of Sydney ian.cooper@sydney.edu.au

More information

ABSTRACT. data in 3D form from samples in both reflection and transmission modes. The current

ABSTRACT. data in 3D form from samples in both reflection and transmission modes. The current ABSTRACT The hyperspectral imaging system has the capability to collect spatial and spectral data in 3D form from samples in both reflection and transmission modes. The current software used with the existing

More information

A 10-minute introduction to. Molfow+ A test-particle Monte Carlo simulator for UHV systems

A 10-minute introduction to. Molfow+ A test-particle Monte Carlo simulator for UHV systems A 10-minute introduction to Molfow+ A test-particle Monte Carlo simulator for UHV systems 1 The basics First, let s learn the Molflow terminology and the interface in a few slides. Or, if you prefer learning

More information

Application of MCNP Code in Shielding Design for Radioactive Sources

Application of MCNP Code in Shielding Design for Radioactive Sources Application of MCNP Code in Shielding Design for Radioactive Sources Ibrahim A. Alrammah Abstract This paper presents three tasks: Task 1 explores: the detected number of as a function of polythene moderator

More information

Chapter 13 RADIATION HEAT TRANSFER

Chapter 13 RADIATION HEAT TRANSFER Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 13 RADIATION HEAT TRANSFER PM Dr Mazlan Abdul Wahid Universiti

More information

arxiv: v1 [astro-ph.im] 11 Mar 2009

arxiv: v1 [astro-ph.im] 11 Mar 2009 Astronomy & Astrophysics manuscript no. phh c ESO 2014 January 7, 2014 A 3D radiative transfer framework: IV. spherical & cylindrical coordinate systems Peter H. Hauschildt 1 and E. Baron 1,2,3 arxiv:0903.1949v1

More information

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map Part I The Basic Algorithm 1 Principles of A two-pass global illumination method Pass I Computing the photon map A rough representation of the lighting in the scene Pass II rendering Regular (distributed)

More information

Design and Simulation of a NDIR Gas Sensor System with Ray Tracing Using a Monte-Carlo Method

Design and Simulation of a NDIR Gas Sensor System with Ray Tracing Using a Monte-Carlo Method 4.3 Design and Simulation of a NDIR Gas Sensor System with Ray Tracing Using a Monte-Carlo Method Johann Mayrwöger 1, Wolfgang Reichl 2, Peter Hauer 3, Christian Krutzler 4, Bernhard Jakoby 1 1 Institute

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

Modeling granular phosphor screens by Monte Carlo methods

Modeling granular phosphor screens by Monte Carlo methods Modeling granular phosphor screens by Monte Carlo methods Panagiotis F. Liaparinos Department of Medical Physics, Faculty of Medicine, University of Patras, 265 00 Patras, Greece Ioannis S. Kandarakis

More information

Lecture 05. First Example: A Real Lidar

Lecture 05. First Example: A Real Lidar Lecture 05. First Example: A Real Lidar Brief review of lidar basics K Doppler lidar system architecture K lidar signal estimate from lidar equation Comparison of estimate to reality Summary Review of

More information

dcorsika update Dmitry Chirkin University of California at Berkeley, USA

dcorsika update Dmitry Chirkin University of California at Berkeley, USA dcorsika update Dmitry Chirkin chirkin@physics.berkeley.edu University of California at Berkeley, USA Abstract Release 6.6 of CORSIKA contains an important update that has improved the curved atmosphere

More information

Lecture 1a Overview of Radiometry

Lecture 1a Overview of Radiometry Lecture 1a Overview of Radiometry Curtis Mobley Vice President for Science Senior Scientist Sequoia Scientific, Inc. Bellevue, Washington 98005 USA curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation

Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Infrared Scene Simulation for Chemical Standoff Detection System Evaluation Peter Mantica, Chris Lietzke, Jer Zimmermann ITT Industries, Advanced Engineering and Sciences Division Fort Wayne, Indiana Fran

More information

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer INVERSE AND ILL-POSED PROBLEMS SERIES Monte Carlo Method for Solving Inverse Problems of Radiation Transfer V.S.Antyufeev. ///VSP/// UTRECHT BOSTON KÖLN TOKYO 2000 Contents Chapter 1. Monte Carlo modifications

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

Double Rewards of Porting Scientific Applications to the Intel MIC Architecture

Double Rewards of Porting Scientific Applications to the Intel MIC Architecture Double Rewards of Porting Scientific Applications to the Intel MIC Architecture Troy A. Porter Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology Stanford

More information

TracePro Stray Light Simulation

TracePro Stray Light Simulation TracePro Stray Light Simulation What Is Stray Light? A more descriptive term for stray light is unwanted light. In an optical imaging system, stray light is caused by light from a bright source shining

More information

FIFI-LS: Basic Cube Analysis using SOSPEX

FIFI-LS: Basic Cube Analysis using SOSPEX FIFI-LS: Basic Cube Analysis using SOSPEX Date: 1 Oct 2018 Revision: - CONTENTS 1 INTRODUCTION... 1 2 INGREDIENTS... 1 3 INSPECTING THE CUBE... 3 4 COMPARING TO A REFERENCE IMAGE... 5 5 REFERENCE VELOCITY

More information

Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 12

Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 12 Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 1 3. EM INTERACTIONS WITH MATERIALS In order for an object to be sensed, the object must reflect,

More information

TRANSX-2005 New Structure and Features R.E.MacFarlane Los Alamos National Laboratory

TRANSX-2005 New Structure and Features R.E.MacFarlane Los Alamos National Laboratory TRANSX-2005 New Structure and Features R.E.MacFarlane Los Alamos National Laboratory TRANSX-2005 is a translation of TRANSX to Fortran- 90/95 style with an extended code-management scheme. The new features

More information

arxiv: v2 [astro-ph.sr] 20 Nov 2009

arxiv: v2 [astro-ph.sr] 20 Nov 2009 Astronomy & Astrophysics manuscript no. paper c ESO 2009 November 20, 2009 A 3D radiative transfer framework: VI. PHOENIX/3D example applications Peter H. Hauschildt 1 and E. Baron 1,2,3 arxiv:0911.3285v2

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

MOPSMAP v1.0 user guide

MOPSMAP v1.0 user guide MOPSMAP v1.0 user guide Modelled optical properties of ensembles of aerosol particles https://mopsmap.net by Josef Gasteiger and Matthias Wiegner University of Vienna, Aerosol Physics and Environmental

More information

Supplementary Information: Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

Supplementary Information: Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue 1 2 3 Supplementary Information: Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue 4 5 6 Running title: Coral heating and FPs 7 8 Niclas H. Lyndby a, Michael

More information

Bayesian Analysis for the Ranking of Transits

Bayesian Analysis for the Ranking of Transits Bayesian Analysis for the Ranking of Transits Pascal Bordé, Marc Ollivier, Alain Léger Layout I. What is BART and what are its objectives? II. Description of BART III.Current results IV.Conclusions and

More information

Towards a robust model of planetary thermal profiles

Towards a robust model of planetary thermal profiles Towards a robust model of planetary thermal profiles RT Equation: General Solution: RT Equation: General Solution: Extinction coefficient Emission coefficient How would you express the Source function

More information

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for:

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for: LA-UR- 09-03055 Approved for public release; distribution is unlimited. Title: MCNP Monte Carlo & Advanced Reactor Simulations Author(s): Forrest Brown Intended for: NEAMS Reactor Simulation Workshop ANL,

More information

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods Part 1: General principles

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods Part 1: General principles INTERNATIONAL STANDARD ISO 13320-1 First edition 1999-11-01 Particle size analysis Laser diffraction methods Part 1: General principles Analyse granulométrique Méthodes par diffraction laser Partie 1:

More information

Matlab representations of Polar Transmission Line Matrix Meshes.

Matlab representations of Polar Transmission Line Matrix Meshes. Matlab representations of Polar Transmission Line Matrix Meshes. D.S.Hindmarsh + Abstract This paper discusses some of the issues that evolve when representing Polar Transmission Line Matrix models using

More information

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16.

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16. Scientific Computing with Case Studies SIAM Press, 29 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 28 What is a Monte-Carlo method?

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 5 Radiation Heat Transfer 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Radiation modelling theory Radiation models in FLUENT Surface-to-Surface

More information

BEAVRS benchmark calculations with Serpent-ARES code sequence

BEAVRS benchmark calculations with Serpent-ARES code sequence BEAVRS benchmark calculations with Serpent-ARES code sequence Jaakko Leppänen rd International Serpent User Group Meeting Berkeley, CA, Nov. 6-8, Outline Goal of the study The ARES nodal diffusion code

More information

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple 1 In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple times) until they are absorbed. On their way, they

More information

Lecture 24 EM waves Geometrical optics

Lecture 24 EM waves Geometrical optics Physics 2102 Jonathan Dowling Lecture 24 EM waves Geometrical optics EM spherical waves The intensity of a wave is power per unit area. If one has a source that emits isotropically (equally in all directions)

More information

TracePro s Monte Carlo Raytracing Methods, reducing statistical noise, memory usage and raytrace times

TracePro s Monte Carlo Raytracing Methods, reducing statistical noise, memory usage and raytrace times TracePro s Monte Carlo Raytracing Methods, reducing statistical noise, memory usage and raytrace times Presented by : Lambda Research Corporation 25 Porter Rd. Littleton, MA 01460 www.lambdares.com Moderator:

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 2008 1 What is a Monte-Carlo

More information

Contents. What is yt? Installing yt Using yt > yt from the command line. yt with the ipython notebook. scripting yt. yt s Cookbook

Contents. What is yt? Installing yt Using yt > yt from the command line. yt with the ipython notebook. scripting yt. yt s Cookbook YT An introduction Contents What is yt? Installing yt Using yt > yt from the command line yt with the ipython notebook scripting yt yt s Cookbook What is yt? simulation data yt images plots Enzo Flash

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

Monte Carlo Simulations of Light Transport in Tissue

Monte Carlo Simulations of Light Transport in Tissue TISSUE OPTICS 2011 Monte Carlo Simulations of Light Transport in Tissue Computer Exercise Erik Alerstam Stefan Andersson-Engels Department of Physics, Lund March 21, 2011 This document contains instructions

More information

LIGHT SCATTERING THEORY

LIGHT SCATTERING THEORY LIGHT SCATTERING THEORY Laser Diffraction (Static Light Scattering) When a Light beam Strikes a Particle Some of the light is: Diffracted Reflected Refracted Absorbed and Reradiated Reflected Refracted

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods. Analyse granulométrique Méthodes par diffraction laser

ISO INTERNATIONAL STANDARD. Particle size analysis Laser diffraction methods. Analyse granulométrique Méthodes par diffraction laser INTERNATIONAL STANDARD ISO 13320 First edition 2009-10-01 Corrected version 2009-12-01 Particle size analysis Laser diffraction methods Analyse granulométrique Méthodes par diffraction laser Reference

More information

Rendering Aurora. Figure 1: an aurora image from Tessa Macintosh, 2006

Rendering Aurora. Figure 1: an aurora image from Tessa Macintosh, 2006 Rendering Aurora Tao, Du taodu@stanford.edu Wenlong, Lu wenlongl@stanford.edu June 11, 2014 1 Introduction Figure 1: an aurora image from Tessa Macintosh, 2006 Aurora is a splendid natural phenomenon which

More information

Using GADGET-2 for cosmological simulations - Background -

Using GADGET-2 for cosmological simulations - Background - Using GADGET-2 for cosmological simulations - Background - 3 Phases of Running a Cosmological Simulation I. Generate Initial Conditions II. Run Simulation Performing a numerical integral III.Analysis Halo

More information

CGWAVE Analysis SURFACE WATER MODELING SYSTEM. 1 Introduction

CGWAVE Analysis SURFACE WATER MODELING SYSTEM. 1 Introduction SURFACE WATER MODELING SYSTEM CGWAVE Analysis 1 Introduction This lesson will teach you how to prepare a mesh for analysis and run a solution for CGWAVE. You will start with the data file indiana.xyz which

More information

EP578 Computing for Physicists

EP578 Computing for Physicists EP578 Computing for Physicists Topic 3 Selection & Loops Department of Engineering Physics University of Gaziantep Course web page wwwgantepedutr/~bingul/ep578 Oct 2011 Sayfa 1 1 Introduction This lecture

More information

Lecture 24. Lidar Simulation

Lecture 24. Lidar Simulation Lecture 24. Lidar Simulation q Introduction q Lidar Modeling via Lidar Simulation & Error Analysis q Functions of Lidar Simulation and Error Analysis q How to Build up Lidar Simulation? q Range-resolved

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Optical Models of Direct Volume Rendering by Nelson Max

Optical Models of Direct Volume Rendering by Nelson Max Optical Models of Direct Volume Rendering by Nelson Max By Michael Shah Duration: 15~20minutes February 7, 2011 Slides and study guide available at http://www.cse.ohio-state.edu/ ~shahmi/coursework.html

More information

Mie scattering off plasmonic nanoparticle

Mie scattering off plasmonic nanoparticle Mie scattering off plasmonic nanoparticle Model documentation COMSOL 2009 Version: COMSOL 3.5a1 (build 3.5.0.608) Contents I. Model Overview II. Model Navigator III. Options and settings IV. Geometry modeling

More information

An adaptive emission model for Monte Carlo simulations in highly-inhomogeneous media represented by stochastic particles fields

An adaptive emission model for Monte Carlo simulations in highly-inhomogeneous media represented by stochastic particles fields Proceedings of Eurotherm78 - Computational Thermal Radiation in Participating Media II 5-7 April 26, Poitiers, France An adaptive emission model for Monte Carlo simulations in highly-inhomogeneous media

More information

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017 Numerical Modelling in Fortran: day 6 Paul Tackley, 2017 Today s Goals 1. Learn about pointers, generic procedures and operators 2. Learn about iterative solvers for boundary value problems, including

More information

MODTRAN4 RADIATIVE TRANSFER MODELING FOR ATMOSPHERIC CORRECTION. Spectral Sciences, Inc., Burlington, MA 01803

MODTRAN4 RADIATIVE TRANSFER MODELING FOR ATMOSPHERIC CORRECTION. Spectral Sciences, Inc., Burlington, MA 01803 MODTRAN4 RADIATIVE TRANSFER MODELING FOR ATMOSPHERIC CORRECTION A. Berk a, G. P. Anderson b, L. S. Bernstein a, P. K. Acharya a, H. Dothe a, M. W. Matthew a, S. M. Adler-Golden a, J. H. Chetwynd, Jr. b,

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

Teresa S. Bailey (LLNL) Marvin L. Adams (Texas A&M University)

Teresa S. Bailey (LLNL) Marvin L. Adams (Texas A&M University) A Piecewise i Linear Discontinuous Finite it Element Spatial Discretization of the S N Transport Equation for Polyhedral Grids in 3D Cartesian Geometry International Conference on Transport Theory September

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

Radiative Transfer around Point Sources 1

Radiative Transfer around Point Sources 1 2001 Radiative Transfer around Point Sources 1 Mon. Not. R. Astron. Soc. 000, 000 000 (2001) Adaptive Ray Tracing for Radiative Transfer around Point Sources Tom Abel 1,2 and Benjamin D. Wandelt 3,4,5

More information

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material!

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material! GG450 April 6, 2010 Seismic Reflection I Today s material comes from p. 32-33 and 81-116 in the text book. Please read and understand all of this material! Back to seismic waves Last week we talked about

More information

Reflection and Refraction. Chapter 29

Reflection and Refraction. Chapter 29 Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information