Deformable and Fracturing Objects

Size: px
Start display at page:

Download "Deformable and Fracturing Objects"

Transcription

1 Interactive ti Collision i Detection ti for Deformable and Fracturing Objects Sung-Eui Yoon ( 윤성의 ) IWON associate professor KAIST

2 Acknowledgements Research collaborators DukSu Kim, JaePil Heo, John Kim, Miguel Otaduy, Tang Min, JeongMo Hong, JoonKyung Seong, Dinesh Manocha, JaeHyuk Heo Funding sources Ministry of Knowledge Economy Microsoft Research Asia Samsung Korea Research Foundation 2

3 Goals Achieve interactive performance for collision detection among deformable and fracturing models E.g., deforming models consisting of tens or hundreds of thousand triangles <Cloth-ball ball, 94K triangles> <Breaking dragon, 252K triangles> 3

4 Overview Background Hybrid parallel proximity computation Fracturing-aware collision i detection CD for volumetric representations Multi-resolution cloth simulation 4

5 Overview Background Hybrid parallel proximity computation Fracturing-aware collision i detection CD for volumetric representations Multi-resolution cloth simulation 5

6 Background BVH-based collision detection BVH construction Updates BVHs as models deforms Reconstruction from scratch Refitting Selective reconstruction ti 6

7 BVH Refitting Refit BVs with deformed vertices Performed efficiently in a bottom-up traversal Can have loose BVs when deformation levels are high Frame 1 Frame 2 7

8 BVH Selective Restructuring Restructure only subsets of BVHs after refitting BVs Restructure 8 BVH Requires a metric indentifying such subsets Volume ratios of BVs of parent and child BVs [Zachmann 02, Larsson et al. 06, Yoon et al. 06]

9 Discrete vs. Continuous Discrete collision detection (DCD) Detect collisions at each frame Fast, but can miss collisions Miss collisions Frame1 Frame2 9

10 Discrete vs. Continuous Discrete collision detection (DCD) Continuous collision detection (CCD) Identify the first time-of-contact (ToC) Accurate, but requires a long computation time Not widely used in interactive applications The first time-of-contact (ToC) Frame1 Frame2 10

11 Inter- and Self-Collisions Inter-collisions Collisions between two objects Self-collisions Collisions between two regions of a deformable object Takes a long computation time to detect From Govindaraju s paper 11

12 Overview Background Hybrid parallel proximity computation Fracturing-aware collision i detection CD for volumetric representations Multi-resolution cloth simulation 12

13 Parallel Computing Trends Many core architectures Multi-core CPU architectures GPU architectures Heterogeneous architectures Intel s Larabee and AMD s Fusion Designing parallel algorithms is important to utilize these parallel architectures 13

14 Recent Parallel Collision Detection Methods CPU-based CD method Tang et al., Solid and Physical Modeling, 2009 gproximity Laterbach et al., Eurographics 2010 Hybrid parallel CD method Kim et al., Pacific Graphics

15 Recent Parallel Collision Detection Methods CPU-based CD method Tang et al., Solid and Physical Modeling, 2009 gproximity Laterbach et al., Eurographics 2010 Hybrid parallel CD method Kim et al., Pacific Graphics 2009 Received a distinguished paper award 15

16 HPCCD: Hybrid Parallel CCD Utilize both multi-core CPUs and GPUs No locking in the main loop of CD GPU-based exact CD between two triangles High scalability & interactive performance Multi-core CPU Multi-core CPU GPU GPU CCD 16

17 Task Distribution BVH update BVH traversal Elementary tests -Random R d accesses - Solving cubic equations - Branch prediction - Caching CCD BVH update and traversal Streaming processors optimized with floating point operations Elementary tests Multi-core CPUs GPUs 17

18 Testing Environment Machine One quad-core CPU (Intel i7 CPU, 3.2 GHz ) Two GPUs (Nvidia Geforce GTX285) Run eight CPU threads by using Intel s hyper threading technology 18

19 BVH-based CCD Axis-aligned bounding boxes Linear interpolations on vertices for the continuous motion Vertex-face and edge-edge tests for CCD [Provot 96] Feature based BVHs [Curtis et al., I3D 08] Assign each features (e.g., vertex and edge) to each triangle 19

20 20 Results

21 (times s) Improv vement Results of a CPU-based Parallel CCD Ideal Our method Naïve Number of Threads Remove locking in the main loop of CD Employ efficient dynamic load-balancing based on inter-cd task units 21

22 Results of HPCCD As the number of GPUs is increased, we get higher performances 22

23 Limitation Low scalability for small rigid models Specialized technique for continuous collision detection 23

24 Related Work Hybrid parallel computation for proximity queries A general, job distribution algorithm for CPUs and GPUs [Under submission] Motion planning [Lee et al., ICRA 12] 24

25 Overview of Hybrid Parallel Framework Initial job generator Initial jobs Scheduler Check available jobs LP Solver Distribute jobs Jobs Data communication interface Generated In Out jobs Processing unit 1... Distributed jobs In Out Processing unit R 25

26 Results FPS Ours Collision detection (146K Tri.) Work steal Round-robin Hex-core CPUs +GTX285 +Tesla2075 +GTX480 +GTX

27 Results FPS Ours Motion planning (137K Tri. 50K sample) Round-robin FPS Path tracing (436K Tri., 80M rays) 27 27

28 Overview Background Hybrid parallel proximity computation Fracturing-aware collision detection CD for volumetric representations Multi-resolution cloth simulation 28

29 CD for Fracturing Models Fracturing becomes to be widely used, but is one of the most challenging scenarios of collision detection Fracturing Changes the connectivity of a mesh: precomputed hierarchies show low culling ratios Places many objects in close proximity: it CD cost is increasing 29

30 Our Approach FASTCD: Fracturing-Aware Stable CD [Heo et al., SCA 10] Incrementally update meshes and BVHs by utilizing topological changes of models Design a simple self-cd culling method without much pre-computations 30

31 CCD Performance with the Breaking Dragon Model FASTCD Tang et al K triangles, dynamic topology FASTCD shows stable performance 31

32 Selective Restructuring of BVHs As models deform, culling efficiency i of their BVHs can be getting lower Selective restructuring can address the problem Deform Refit Restructuring Selective restructure t How to determine a culling efficiency of a BVH? Heuristic metrics have been proposed Propose a cost metric that measures the expected number of intersection tests 32

33 Metric Validation Estimated t # of tests t vs. Observed # of testst Observed # of intersection tests Estimated costs Linear Correlation : 0.71 Tested with various models ( 0.28 ~ 0.76, average 0.48 ) 33

34 Result of Selective Restructuring 252K triangles, dynamic topology LM metric : [Larsson and Akenine-Möller 2006] Performance degradations at topological changes unstable 34

35 Fast BVH Construction Method At a fracturing event, BVHs for fractured parts should be updated for high culling efficiencies Causes noticeable performance degradations Propose a BVH construction method based on grid and hashing, instead of typical NlogN methods Constructed hierarchies have low culling efficiencies, but use less construction times Improve the overall performance at fracturing events 35

36 Result of Fast BVH Construction Performance degradations at fracturing events are reduced 36

37 Comparison (Discrete CD) FASTCD Spatial hashing 42~140K triangles, dynamic topology 20x faster than optimized i spatial hashing hi [Teschner et al, 2003] Stable performance 37

38 Overview Background Hybrid parallel proximity computation Fracturing-aware collision i detection CD for volumetric representations Multi-resolution cloth simulation 38

39 Contributions Novel culling algorithms to perform fast and robust continuous collision detection between volume meshes [Tang et al. 11, ToG] A continuous separating axis test (CSAT) between volume meshes Feature-level culling to eliminate redundant tests 39

40 Motivation Topological olo l changes make interior io elements colliding with each other a b c d d e e 40

41 Motivation Check both contacts t between ee external and internal elements to compute realistic results. 41

42 Bounding Volumes We use tight fitting k-dops to enclose the swept volume of each deforming volumetric element Can result in a high number of false positives in practice 42

43 43 Our CCD Algorithm

44 Continuous Separating Axis Theorem An example of two moving vertices Look at the distance between two vertices Consider this in a line, L 44

45 45 Results

46 Overview Background Hybrid parallel proximity computation Fracturing-aware collision i detection CD for volumetric representations Multi-resolution cloth simulation 46

47 Common single resolution cloth simulation Flat region AΔx = b Complex region Very high resolution enough to capture detailed features Significantly slow simulation performance 47

48 Multi-resolution cloth simulation Flat region AΔx = b Complex region Improve speed with less vertices maintaining simulation quality 48

49 49 Multi-Resolution Cloth Simulation [Lee et al., PG 10]

50 Summary Presented recent BVH-based methods for interactive CD among large-scale deforming models HPCCD: The code Hybrid of HPCCD Parallel is available Continuous as OpenCCD Collision Detection FASTCD: library ( Fracturing-Aware Stable ac kr/openccd) Collision Detection VolCCD: Various Fast models Continuous are available o Collision at KAIST Culling Model between Deforming Volume Meshes Benchmark: Introduced a multi-resolution simulation technique 50

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization Duksu Kim Assistant professor, KORATEHC Education Ph.D. Computer Science, KAIST Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications Professional Experience Senior

More information

Ph. D. Dissertation. Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications

Ph. D. Dissertation. Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications 박사학위논문 Ph. D. Dissertation 그래픽스응용프로그램을위한이종연산장치기반근접질의병렬처리기술 Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications 김덕수 ( 金德洙 Kim, Duksu) 전산학과 Department of Computer

More information

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Scheduling in Heterogeneous Computing Environments for Proximity Queries 1 Scheduling in Heterogeneous Computing Environments for Proximity Queries Duksu Kim, Member, IEEE, Jinkyu Lee, Member, IEEE, Junghwan Lee, Member, IEEE, Insik Shin, Member, IEEE, John Kim, Member, IEEE,

More information

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish

Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Fast continuous collision detection among deformable Models using graphics processors CS-525 Presentation Presented by Harish Abstract: We present an interactive algorithm to perform continuous collision

More information

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes

VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes VolCCD: Fast Continuous Collision Culling between Deforming Volume Meshes Min Tang 1, Dinesh Manocha 2, Sung-eui Yoon 3, Peng Du 1, Jae-Pil Heo 3, Ruo-Feng Tong 1 1 Zhejiang University, China 2 The University

More information

Bounding Volume Hierarchies

Bounding Volume Hierarchies Tutorial: Real-Time Collision Detection for Dynamic Virtual Environments Bounding Volume Hierarchies Stefan Kimmerle WSI/GRIS University of Tübingen Outline Introduction Bounding Volume Types Hierarchy

More information

RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies

RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies Published at IEEE Transactions on Visualization and Computer Graphics, 2010, Vol. 16, Num. 2, pp. 273 286 Tae Joon Kim joint work with

More information

Lazy Work Stealing for Continuous Hierarchy Traversal on Deformable Bodies

Lazy Work Stealing for Continuous Hierarchy Traversal on Deformable Bodies Lazy Work Stealing for Continuous Hierarchy Traversal on Deformable Bodies Vinícius da Silva, Claudio Esperança and Ricardo Guerra Marroquim COPPE, Federal University of Rio de Janeiro, Horácio Macedo

More information

Real-time Continuous Collision Detection and Penetration Depth Computation

Real-time Continuous Collision Detection and Penetration Depth Computation Real-time Continuous Collision Detection and Penetration Depth Computation Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Non-penetration Constraint No overlap between geometric objects

More information

Collision-Streams: Fast GPU-based Collision Detection for Deformable Models

Collision-Streams: Fast GPU-based Collision Detection for Deformable Models Collision-Streams: Fast GPU-based Collision Detection for Deformable Models Min Tang 1 Dinesh Manocha 2 Jiang Lin 1 Ruofeng Tong 1 1 Zhejiang University 2 University of North Carolina at Chapel Hill http://gamma.cs.unc.edu/cstreams/

More information

Collision Detection with Bounding Volume Hierarchies

Collision Detection with Bounding Volume Hierarchies Simulation in Computer Graphics Collision Detection with Bounding Volume Hierarchies Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volumes BV hierarchies

More information

Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection II. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection II These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Some Possible Approaches Geometric methods Algebraic techniques Hierarchical

More information

Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models. Kirill Garanzha

Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models. Kirill Garanzha Symposium on Interactive Ray Tracing 2008 Los Angeles, California Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models Kirill Garanzha Department of Software for Computers Bauman Moscow State

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

MCCD: Multi-Core Collision Detection between Deformable Models using Front-Based Decomposition

MCCD: Multi-Core Collision Detection between Deformable Models using Front-Based Decomposition MCCD: Multi-Core Collision Detection between Deformable Models using Front-Based Decomposition Min Tang 1, Dinesh Manocha 2, Ruofeng Tong 1 http://www.cs.unc.edu/ geom/pcd/ 1 Department of Computer Science,

More information

Adaptive Continuous Collision Detection for Cloth Models Using a Skipping Frame Session *

Adaptive Continuous Collision Detection for Cloth Models Using a Skipping Frame Session * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, 1-xxx (xxxx) Adaptive Continuous Collision Detection for Cloth Models Using a Skipping Frame Session * Department of Computer Science National Chiao Tung

More information

Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams

Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams Fast Proximity Computation among Deformable Models Using Discrete Voronoi Diagrams Avneesh Sud Naga Govindaraju Russell Gayle Ilknur Kabul Dinesh Manocha Dept of Computer Science, University of North Carolina

More information

ICCD: Interactive Continuous Collision Detection between Deformable Models using Connectivity-Based Culling

ICCD: Interactive Continuous Collision Detection between Deformable Models using Connectivity-Based Culling JOURNALOFL A TEXCLASSFILES,VOL.6,NO.1,JANUARY2007 1 ICCD: Interactive Continuous Collision Detection between Deformable Models using Connectivity-Based Culling Min Tang, Sean Curtis, Sung-Eui Yoon, and

More information

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies. Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies. Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE 1 RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies Tae-Joon Kim, Bochang Moon, Duksu Kim, Sung-Eui Yoon, Member, IEEE Abstract We present a novel compressed bounding volume hierarchy (BVH)

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

Real-Time Collision Detection for Dynamic Virtual Environments

Real-Time Collision Detection for Dynamic Virtual Environments Real-Time Collision Detection for Dynamic Virtual Environments Gabriel Zachmann, Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Laks Raghupathi, Arnulph Fuhrmann To cite this version: Gabriel

More information

CAB: Fast Update of OBB Trees for Collision Detection between Articulated Bodies

CAB: Fast Update of OBB Trees for Collision Detection between Articulated Bodies CAB: Fast Update of OBB Trees for Collision Detection between Articulated Bodies Harald Schmidl Nolan Walker Ming C. Lin {schmidl walkern lin}@cs.unc.edu Department of Computer Science Sitterson Hall,

More information

Kinetic BV Hierarchies and Collision Detection

Kinetic BV Hierarchies and Collision Detection Kinetic BV Hierarchies and Collision Detection Gabriel Zachmann Clausthal University, Germany zach@tu-clausthal.de Bonn, 25. January 2008 Bounding Volume Hierarchies BVHs are standard DS for collision

More information

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies

RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies TaeJoon Kim (a) St. Matthew scene BoChang Moon DukSu Kim KAIST (b) Iso-surface model Sung-eui Yoon (c) Lucy and CAD turbine models Figure

More information

Lesson 05. Mid Phase. Collision Detection

Lesson 05. Mid Phase. Collision Detection Lesson 05 Mid Phase Collision Detection Lecture 05 Outline Problem definition and motivations Generic Bounding Volume Hierarchy (BVH) BVH construction, fitting, overlapping Metrics and Tandem traversal

More information

Multi-Core Collision Detection between Deformable Models

Multi-Core Collision Detection between Deformable Models Multi-Core Collision Detection between Deformable Models Min Tang Zhejiang University tang_m@zju.edu.cn Dinesh Manocha University of North Carolina at Chapel Hill dm@cs.unc.edu Ruofeng Tong Zhejiang University

More information

Kinetic Bounding Volume Hierarchies for Deformable Objects

Kinetic Bounding Volume Hierarchies for Deformable Objects Kinetic Bounding Volume Hierarchies for Deformable Objects René Weller Clausthal University of Technology, Germany weller@in.tu-clausthal.de VRCIA 06, June 2006, Hong Kong Motivation Bounding volume hierarchies

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

Fast BVH Construction on GPUs

Fast BVH Construction on GPUs Fast BVH Construction on GPUs Published in EUROGRAGHICS, (2009) C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha University of North Carolina at Chapel Hill NVIDIA University of California

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Computer Animation ILE5030 Computer Animation and Special Effects 2 Haptic

More information

Dynamic Radial View Based Culling for Continuous Self-Collision Detection

Dynamic Radial View Based Culling for Continuous Self-Collision Detection Dynamic Radial View Based Culling for Continuous Self-Collision Detection Sai-Keung Wong Wen-Chieh Lin Yu-Shuen Wang Chun-Hung Hung Yi-Jheng Huang National Chiao Tung University, Taiwan Figure 1: (a) (b)

More information

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Department of Computer Science and Engineering Sogang University, Korea Improving Memory

More information

The Construction of Balanced Bounding-Volume Hierarchies using Spatial Object Median Splitting Method for Collision Detection

The Construction of Balanced Bounding-Volume Hierarchies using Spatial Object Median Splitting Method for Collision Detection The Construction of Balanced Bounding-Volume Hierarchies using Spatial Object Median Splitting Method for Collision Detection Hamzah Asyrani Sulaiman 1, and Abdullah Bade 2 1 Universiti Teknikal Malaysia

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

Using Bounding Volume Hierarchies Efficient Collision Detection for Several Hundreds of Objects

Using Bounding Volume Hierarchies Efficient Collision Detection for Several Hundreds of Objects Part 7: Collision Detection Virtuelle Realität Wintersemester 2007/08 Prof. Bernhard Jung Overview Bounding Volumes Separating Axis Theorem Using Bounding Volume Hierarchies Efficient Collision Detection

More information

Fast, Effective BVH Updates for Animated Scenes

Fast, Effective BVH Updates for Animated Scenes Fast, Effective BVH Updates for Animated Scenes Daniel Kopta Thiago Ize Josef Spjut Erik Brunvand Al Davis Andrew Kensler Pixar Abstract Bounding volume hierarchies (BVHs) are a popular acceleration structure

More information

BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS COLLISION DETECTION

BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS COLLISION DETECTION PROCEEDINGS 13th INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS August 4-8, 2008, Dresden (Germany) ISBN: 978-3-86780-042-6 BALANCED SPATIAL SUBDIVISION METHOD FOR CONTINUOUS COLLISION DETECTION Sunhwa

More information

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich Collision Detection Motivation - Dynamic Simulation Collision detection is an essential part of physically realistic dynamic simulations. For each time step: compute dynamics detect collisions resolve

More information

Specialized Acceleration Structures for Ray-Tracing. Warren Hunt

Specialized Acceleration Structures for Ray-Tracing. Warren Hunt Specialized Acceleration Structures for Ray-Tracing Warren Hunt Bill Mark Forward: Flavor of Research Build is cheap (especially with scan, lazy and build from hierarchy) Grid build and BVH refit are really

More information

Adaptive Bounding Volume Hierarchies For Deformable Surface Models. Master of Science Thesis in Complex Adaptive Systems FADI BITAR

Adaptive Bounding Volume Hierarchies For Deformable Surface Models. Master of Science Thesis in Complex Adaptive Systems FADI BITAR Adaptive Bounding Volume Hierarchies For Deformable Surface Models Master of Science Thesis in Complex Adaptive Systems FADI BITAR Chalmers University of Technology University of Gothenburg Department

More information

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Scalable Multi Agent Simulation on the GPU Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Reasoning Explicit State machine, serial Implicit Compute intensive Fits SIMT well Collision avoidance Motivation

More information

Interactive Ray Tracing: Higher Memory Coherence

Interactive Ray Tracing: Higher Memory Coherence Interactive Ray Tracing: Higher Memory Coherence http://gamma.cs.unc.edu/rt Dinesh Manocha (UNC Chapel Hill) Sung-Eui Yoon (Lawrence Livermore Labs) Interactive Ray Tracing Ray tracing is naturally sub-linear

More information

Accelerated Raytracing

Accelerated Raytracing Accelerated Raytracing Why is Acceleration Important? Vanilla ray tracing is really slow! mxm pixels, kxk supersampling, n primitives, average ray path length of d, l lights, 2 recursive ray casts per

More information

Parallel Continuous Collision Detection for High-Performance GPU Cluster

Parallel Continuous Collision Detection for High-Performance GPU Cluster Parallel Continuous Collision Detection for High-Performance GPU Cluster Peng Du Nanyang Technological University, Singapore Hangzhou Dianzi University, China Toyotaro Suzumura IBM Thomas J. Watson Research

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur 1 Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson Intel Corporation Eric Tabellion DreamWorks Animation 2 Legal

More information

High-performance Penetration Depth Computation for Haptic Rendering

High-performance Penetration Depth Computation for Haptic Rendering High-performance Penetration Depth Computation for Haptic Rendering Young J. Kim http://graphics.ewha.ac.kr Ewha Womans University Issues of Interpenetration Position and orientation of the haptic probe,

More information

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy

Efficient Collision Detection Using a Dual Bounding Volume Hierarchy Efficient Collision Detection Using a Dual Bounding Volume Hierarchy Jung-Woo Chang 1, Wenping Wang 2, and Myung-Soo Kim 1 1 Seoul National University, Korea 2 University of Hong Kong, Hong Kong Abstract.

More information

Physics-based Deformation for Haptic Simulation with

Physics-based Deformation for Haptic Simulation with Efficient Collision Detection and Physics-based Deformation for Haptic Simulation with Local Spherical Hash Marilena Maule, Anderson Maciel, Luciana Nedel {mmaule, amaciel, nedel}@inf.ufrgs.br 1 Motivation

More information

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Alan Humphrey, Qingyu Meng, Martin Berzins Scientific Computing and Imaging Institute & University of Utah I. Uintah Overview

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models

Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models Radial View Based Culling for Continuous Self-Collision Detection of Skeletal Models Sai-Keung Wong (a) Wen-Chieh Lin Chun-Hung Hung Yi-Jheng Huang National Chiao Tung University, Taiwan (b) (c) (d) Shing-Yeu

More information

Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring

Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring Leonardo R. Domingues Helio Pedrini Eldorado Research Institute Institute of Computing - University of Campinas Brazil

More information

Collision Detection based on Spatial Partitioning

Collision Detection based on Spatial Partitioning Simulation in Computer Graphics Collision Detection based on Spatial Partitioning Matthias Teschner Computer Science Department University of Freiburg Outline introduction uniform grid Octree and k-d tree

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

Fast Hierarchy Operations on GPU Architectures

Fast Hierarchy Operations on GPU Architectures Online Submission ID: 0 Fast Hierarchy Operations on GPU Architectures Abstract We present fast parallel algorithms to construct, update and traverse bounding volume hierarchies on many-core GPUs. Our

More information

l Without collision detection (CD), it is practically impossible to construct e.g., games, movie production tools (e.g., Avatar)

l Without collision detection (CD), it is practically impossible to construct e.g., games, movie production tools (e.g., Avatar) Collision Detection Originally created by Tomas Akenine-Möller Updated by Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Introduction l Without collision detection (CD),

More information

Fast, Effective BVH Updates for Dynamic Ray-Traced Scenes Using Tree Rotations. Abstract

Fast, Effective BVH Updates for Dynamic Ray-Traced Scenes Using Tree Rotations. Abstract Fast, Effective BVH Updates for Dynamic Ray-Traced Scenes Using Tree Rotations Daniel Kopta, Andrew Kensler, Thiago Ize, Josef Spjut, Erik Brunvand, Al Davis UUCS-11-002 School of Computing University

More information

Web Physics: A Hardware Accelerated Physics Engine for Web- Based Applications

Web Physics: A Hardware Accelerated Physics Engine for Web- Based Applications Web Physics: A Hardware Accelerated Physics Engine for Web- Based Applications Tasneem Brutch, Bo Li, Guodong Rong, Yi Shen, Chang Shu Samsung Research America-Silicon Valley {t.brutch, robert.li, g.rong,

More information

GPU-based Image-space Approach to Collision Detection among Closed Objects

GPU-based Image-space Approach to Collision Detection among Closed Objects GPU-based Image-space Approach to Collision Detection among Closed Objects Han-Young Jang jhymail@gmail.com TaekSang Jeong nanocreation@gmail.com Game Research Center College of Information and Communications

More information

Collision Detection. Pu Jiantao.

Collision Detection. Pu Jiantao. Collision Detection Pu Jiantao. 12-09 Content Introduction CD with rays Dynamic CD using BSP Trees Hierarchical Method OBBTree Method Some Other Topics 12-1717 2 Introduction Collision Collision is a fundamental

More information

PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila

PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila PantaRay: Fast Ray-traced Occlusion Caching of Massive Scenes J. Pantaleoni, L. Fascione, M. Hill, T. Aila Agenda Introduction Motivation Basics PantaRay Accelerating structure generation Massively parallel

More information

Simulation in Computer Graphics Space Subdivision. Matthias Teschner

Simulation in Computer Graphics Space Subdivision. Matthias Teschner Simulation in Computer Graphics Space Subdivision Matthias Teschner Outline Introduction Uniform grid Octree and k-d tree BSP tree University of Freiburg Computer Science Department 2 Model Partitioning

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Interaction of Fluid Simulation Based on PhysX Physics Engine Huibai Wang, Jianfei Wan, Fengquan Zhang College

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling

Motivation. Culling Don t draw what you can t see! What can t we see? Low-level Culling Motivation Culling Don t draw what you can t see! Thomas Larsson Mälardalen University April 7, 2016 Image correctness Rendering speed One day we will have enough processing power!? Goals of real-time

More information

Cache-Efficient Layouts of Bounding Volume Hierarchies

Cache-Efficient Layouts of Bounding Volume Hierarchies EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos (Guest Editors) Volume 25 (2006), Number 3 Cache-Efficient Layouts of Bounding Volume Hierarchies Sung-Eui Yoon 1 Dinesh Manocha 2 1 Lawrence Livermore

More information

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc.

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc. 3D Reconstruction with Tango Ivan Dryanovski, Google Inc. Contents Problem statement and motivation The Tango SDK 3D reconstruction - data structures & algorithms Applications Developer tools Problem formulation

More information

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli High performance 2D Discrete Fourier Transform on Heterogeneous Platforms Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli Motivation Fourier Transform widely used in Physics, Astronomy, Engineering

More information

Comparing Sphere-Tree Generators and Hierarchy Updates for Deformable Objects Collision Detection

Comparing Sphere-Tree Generators and Hierarchy Updates for Deformable Objects Collision Detection Comparing Sphere-Tree Generators and Hierarchy Updates for Deformable Objects Collision Detection M. Garcia, S. Bayona, P. Toharia, and C. Mendoza Universidad Rey Juan Carlos, c/tulipan s/n E-28933 Mostoles

More information

Multi Agent Navigation on GPU. Avi Bleiweiss

Multi Agent Navigation on GPU. Avi Bleiweiss Multi Agent Navigation on GPU Avi Bleiweiss Reasoning Explicit Implicit Script, storytelling State machine, serial Compute intensive Fits SIMT architecture well Navigation planning Collision avoidance

More information

Level-of-Detail Techniques and Cache-Coherent Layouts

Level-of-Detail Techniques and Cache-Coherent Layouts Level-of-Detail Techniques and Cache-Coherent Layouts Sung-Eui Yoon Lawrence Livermore National Laboratory Note: this talk is not supported or sanctioned by DoE, UC, LLNL, CASC Lawrence Livermore National

More information

Enabling Next-Gen Effects through NVIDIA GameWorks New Features. Shawn Nie, Jack Ran Developer Technology Engineer

Enabling Next-Gen Effects through NVIDIA GameWorks New Features. Shawn Nie, Jack Ran Developer Technology Engineer Enabling Next-Gen Effects through NVIDIA GameWorks New Features Shawn Nie, Jack Ran Developer Technology Engineer Overview GPU Rigid Bodies (GRB) FleX Flow WaveWorks UE4-GRB Demo GPU Rigid Bodies in PhysX

More information

EFFICIENT BVH CONSTRUCTION AGGLOMERATIVE CLUSTERING VIA APPROXIMATE. Yan Gu, Yong He, Kayvon Fatahalian, Guy Blelloch Carnegie Mellon University

EFFICIENT BVH CONSTRUCTION AGGLOMERATIVE CLUSTERING VIA APPROXIMATE. Yan Gu, Yong He, Kayvon Fatahalian, Guy Blelloch Carnegie Mellon University EFFICIENT BVH CONSTRUCTION VIA APPROXIMATE AGGLOMERATIVE CLUSTERING Yan Gu, Yong He, Kayvon Fatahalian, Guy Blelloch Carnegie Mellon University BVH CONSTRUCTION GOALS High quality: produce BVHs of comparable

More information

Modeling the Virtual World

Modeling the Virtual World Modeling the Virtual World Joaquim Madeira November, 2013 RVA - 2013/2014 1 A VR system architecture Modeling the Virtual World Geometry Physics Haptics VR Toolkits RVA - 2013/2014 2 VR object modeling

More information

Row Tracing with Hierarchical Occlusion Maps

Row Tracing with Hierarchical Occlusion Maps Row Tracing with Hierarchical Occlusion Maps Ravi P. Kammaje, Benjamin Mora August 9, 2008 Page 2 Row Tracing with Hierarchical Occlusion Maps Outline August 9, 2008 Introduction Related Work Row Tracing

More information

Balanced Hierarchies for Collision Detection between Fracturing Objects

Balanced Hierarchies for Collision Detection between Fracturing Objects Balanced Hierarchies for Collision Detection between Fracturing Objects Miguel A. Otaduy Olivier Chassot Denis Steinemann Markus Gross Computer Graphics Laboratory, ETH Zurich ABSTRACT The simulation of

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

PolyDepth: Real-Time Penetration Depth Computation Using Iterative Contact-Space Projection

PolyDepth: Real-Time Penetration Depth Computation Using Iterative Contact-Space Projection ACM Transactions on Graphics (ToG), Vol. 31, No. 1, Article 5, 2012 PolyDepth: Real-Time Penetration Depth Computation Using Iterative Contact-Space Projection Changsoo Je Ewha Womans University and Sogang

More information

Occluder Simplification using Planar Sections

Occluder Simplification using Planar Sections Occluder Simplification using Planar Sections Ari Silvennoinen Hannu Saransaari Samuli Laine Jaakko Lehtinen Remedy Entertainment Aalto University Umbra Software NVIDIA NVIDIA Aalto University Coping with

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Clipping and Culling Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand clipping and culling Understand view-frustum, back-face

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 11: Acceleration Welcome! Today s Agenda: High-speed Ray Tracing Acceleration Structures The Bounding Volume Hierarchy BVH Construction BVH

More information

OpenCL Implementation Of A Heterogeneous Computing System For Real-time Rendering And Dynamic Updating Of Dense 3-d Volumetric Data

OpenCL Implementation Of A Heterogeneous Computing System For Real-time Rendering And Dynamic Updating Of Dense 3-d Volumetric Data OpenCL Implementation Of A Heterogeneous Computing System For Real-time Rendering And Dynamic Updating Of Dense 3-d Volumetric Data Andrew Miller Computer Vision Group Research Developer 3-D TERRAIN RECONSTRUCTION

More information

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film NVIDIA Interacting with Particle Simulation in Maya using CUDA & Maximus Wil Braithwaite NVIDIA Applied Engineering Digital Film Some particle milestones FX Rendering Physics 1982 - First CG particle FX

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

An Adaptive Collision Detection and Resolution for Deformable Objects Using Spherical Implicit Surface

An Adaptive Collision Detection and Resolution for Deformable Objects Using Spherical Implicit Surface An Adaptive Collision Detection and Resolution for Deformable Objects Using Spherical Implicit Surface Sunhwa Jung 1, Min Hong 2, and Min-Hyung Choi 1 1 Department of Computer Science and Engineering,

More information

Collision processing

Collision processing Collision processing Different types of collisions Collision of a simulated deformable structure with a kinematic structure (easier) Collision with a rigid moving object, the ground, etc. Collision object

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

Shape of Things to Come: Next-Gen Physics Deep Dive

Shape of Things to Come: Next-Gen Physics Deep Dive Shape of Things to Come: Next-Gen Physics Deep Dive Jean Pierre Bordes NVIDIA Corporation Free PhysX on CUDA PhysX by NVIDIA since March 2008 PhysX on CUDA available: August 2008 GPU PhysX in Games Physical

More information

Interactive Visualization and Collision Detection using Dynamic Simplification and Cache-Coherent Layouts

Interactive Visualization and Collision Detection using Dynamic Simplification and Cache-Coherent Layouts Interactive Visualization and Collision Detection using Dynamic Simplification and Cache-Coherent Layouts by Sung-Eui Yoon A dissertation submitted to the faculty of the University of North Carolina at

More information

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial Data Structures and Speed-Up Techniques Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial data structures What is it? Data structure that organizes

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Visual Analysis of Lagrangian Particle Data from Combustion Simulations

Visual Analysis of Lagrangian Particle Data from Combustion Simulations Visual Analysis of Lagrangian Particle Data from Combustion Simulations Hongfeng Yu Sandia National Laboratories, CA Ultrascale Visualization Workshop, SC11 Nov 13 2011, Seattle, WA Joint work with Jishang

More information