PROJECTILE MOTION PURPOSE

Size: px
Start display at page:

Download "PROJECTILE MOTION PURPOSE"

Transcription

1 PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile, the earth's gravitational force acts vertically downward while a constant velocity is maintained in the horizontal direction. THEORY Newton's second law expresses the relationship between the acceleration that a body can experience at any given instant during its motion and the resultant force acting on the body at that instant. This relation is written as: F = m a (1) where m is the mass of the object. Thus, the acceleration is a = F / m (2) This is a vector equation. The vector is resolved into components which lie along the axes of a suitable coordinate system allowing Equation 2 to be represented by a set of component equations, each one of which can be solved to describe the object's motion along the respective coordinate axis. In order to study the motion of an object, we establish a suitable coordinate system (reference frame) to which the object's motion can be referenced. This coordinate system is shown in Figure 1. Figure 1 III-1

2 The motion of the object shown in Figure 1 can be described completely by the two component equations obtained from eqn. (2). The motion of the object in the horizontal (x) direction must satisfy the equation: a x = F x / m (3a) while motion in the vertical (y) direction must satisfy the equation: a y = F y / m (3b) Equations 3a and 3b determine the components of the acceleration. From these two components, one can integrate to obtain the equations x = x(t) and y = y(t), which describe the motion of the object along the x and y axes as a function of time. For the motion of a projectile in the earth's gravitational field, the components of the acceleration (Equations 3a and 3b) are: a x = 0 a y = - g (4a) (4b) where g = gravitational acceleration. The gravitational force is the only force that acts if we neglect air resistance. Since the projectile is a comparatively massive steel ball that has small cross-sectional area, this is a reasonable approximation. Equation (4a) governs the motion in the x direction. Since no forces act in the x direction, the x component of acceleration is zero. This implies that the projectile maintains a constant velocity in the x direction. Equation 4b governs the motion in the y direction. Motion in this direction corresponds to that of a freely falling body as studied in the Freefall experiment. The coordinates of the projectile at any time, t, are given by: x(t) = x o + v ox t y(t) = y o + v oy t - (g/2) t 2 (5a) (5b) Here (x o, y o ) and (v ox, v oy ) are the initial values (t=0) of the x and y components of the position and velocity, respectively. At any given point in the path of the projectile, the velocity vector can be obtained from: v = v x i + v y j (6) where v x = v ox, v y = v oy - g t, and III-2

3 v = ( v x 2 + v y 2 ) 1/2 (7) The trajectory of the projectile is obtained by eliminating the time, t, from eqns. (5a) and (5b) giving: y = y o + (v oy /v ox ) (x-x o ) - (1/2) (g/v ox 2 ) (x-x o ) 2 (8) This is a parabolic equation that is valid only if air resistance is ignored. In this experiment the range of travel, R, is the horizontal distance covered by the object at the point where it crosses the horizontal axis in Figure 1. EXPERIMENTAL PROCEDURE Strobe photography is used to observe the motion of an object in flight and to provide a permanent record of its motion in the form of a photograph. The principle of operation is quite simple and basic to a number of devices that use the principle of remote sensing. A strobe unit produces a very bright flash of light of short duration (the pulse duration is several millionths of a second) with the bursts of light occurring at regular time intervals. The flash of light is reflected by the moving object into a camera, the shutter of which is held open during the flight, producing a permanent record on film of the instantaneous location of the object at successive time intervals. In order to locate the position of the object, photographs are made against a ruled background or "grid". The grid is constructed of specially reflecting nylon cord stretched across a frame at 2 cm intervals. The strobe unit consists of a flash tube and a timing source which produces high intensity flashes of light at a rate of 60 Hz which we set by synchronizing to the AC line frequency. A video camera attached to a frame grabber is used to acquire a multiple-exposure image. This image is analyzed with the computer to find position as a function of time. The projectile is a steel ball launched horizontally by a spring gun so that the initial velocity, v oy, along the y-axis is zero. Each group will prepare a digitized image of the motion of the projectile. Record the mass of the steel ball and the strobe frequency in Data Table 1. Analysis of the image will proceed as described in the following section. VIDEO GRABBER SOFTWARE (Step-by-Step User's Guide) DESCRIPTION: The Video Grabber software allows you to A) capture a video image from attached hardware, and B) define a coordinate system on the image (which consists of setting up the coordinate axes and a measuring scale) with which you can select data points to be saved to an Excel-compatible file. STEP 0: To ensure the image is clear enough for you to identify points, you must set the Monitors Control Panel (available under the Apple menu) to 256 Grays. The black and white setting is unacceptable. III-3

4 STEP 1: After fixing the desired image on the video monitor, choose Transfer (Command-T) from the Grabber menu to capture the image. STEP 2: It is sometimes easier to pick out data points by inverting the image. To do this, choose Invert Image from the Grabber menu.. If it is still difficult to select the desired points, see the lab instructor about reconfiguring the video hardware, or adjusting the position of the strobe lamps. (Do not attempt this yourself.) STEP 3: Next select the coordinate axes. The points (0,0) and (0,100) on the illuminated grid have been marked with white dots to enable you to distinguish them in the captured image. Choose Select Axes (Command-2) from the Grabber menu and drag the pointer from the (0,0) dot to the (0,100) dot, taking care to be as precise as possible in positioning the pointer. STEP 4: Next, select the scale. To do this, you need to identify 2 points in the image and tell the program how far apart they are. The two points (0,0) and (0,100) are 100cm apart, so use these. Choose Select Scale (Command-1) from the Grabber menu and drag the pointer from the (0,0) dot to the (0,100) dot in the image. Again, try to position the cursor accurately. STEP 5: Select Choose Points from the Grabber menu and use the pointer to click on data points. These points will be stored as ordered pairs of numbers, based on our choice of axes and scale. STEP 6: Save the points by choosing Save Points As... from the File menu. Rename the file and open it with MS Excel upon quitting Video Grabber. ***OPTIONAL NOTE: Since selecting axes, scale, and points can be done without the hardware, and since other students are waiting in line to use the setup, it's best to save the image to disk and transfer to one of the machines outside. To do this, select Save Image As... in the File menu, give it a name, and reopen the file using Video Grabber on one of the laboratory microcomputers. DATA ANALYSIS Analysis of horizontal and vertical equations of motion and range Perform a linear fit for x(t) using the data recorded in Table 1. Perform parabolic (2 nd order polynomial) fits for y(t) and y(x) using the data recorded in Table 1. Record the appropriate coefficients in Table 2 with units. Calculate the Range. III-4

5 NAME Sec/Group Date DATA TABLE 1 Mass of steel ball kg Strobe frequency Hz Time interval between successive images s Strobe image # x-coordinate (m) y-coordinate (m) elapsed time (s) III-5

6 DATA TABLE 2: The Equations of Motion Horizontal Motion (x vs. t) x = C 1 + C 2 t C 1 = ( ) C 2 = ( ) v ox = m/s a x = m/s 2 Vertical Motion (y vs. t) y = D 1 + D 2 t+ D 3 t 2 D 1 = ( ) D 2 = ( ) D 3 = ( ) v oy = m/s a y = m/s2 Trajectory (y vs. x) y = F 1 + F 2 x + F 3 x 2 F 1 = ( ) F 2 = ( ) F 3 = ( ) Range Calculated Measured (from Data Table 1) III-6

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

Visual Physics Camera Parallax Lab 1

Visual Physics Camera Parallax Lab 1 In this experiment you will be learning how to locate the camera properly in order to identify and minimize the sources of error that are introduced by parallax and perspective. These sources of error

More information

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are:

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are: Projectile Motion A. Finding the muzzle speed v0 The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range R0. On the diagram,

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

Visual Physics Introductory Lab [Lab 0]

Visual Physics Introductory Lab [Lab 0] Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g Free Fall Objective Students will work in groups to investigate free fall acceleration on the Earth. Students will measure the fundamental physical constant, g, and evaluate the dependence of free fall

More information

EXCEL SPREADSHEET TUTORIAL

EXCEL SPREADSHEET TUTORIAL EXCEL SPREADSHEET TUTORIAL Note to all 200 level physics students: You will be expected to properly format data tables and graphs in all lab reports, as described in this tutorial. Therefore, you are responsible

More information

Projectile Launched Horizontally

Projectile Launched Horizontally Projectile Launched Horizontally by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P3.3c Explain the recoil of a projectile launcher in terms of forces and masses. P3.4e Solve

More information

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1 Projectile Motion Purpose Apply concepts from two-dimensional kinematics to predict the impact point of a ball in projectile motion, and compare the result with direct measurement. Introduction and Theory

More information

Projectile Motion. Honors Physics

Projectile Motion. Honors Physics Projectile Motion Honors Physics What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

Strobe Light. Student Lab Guide. Engineering Teaching Laboratory. Lab Partner(s) Page 1 of 10

Strobe Light. Student Lab Guide. Engineering Teaching Laboratory. Lab Partner(s) Page 1 of 10 Strobe Light Student Lab Guide Engineering Teaching Laboratory Name Date Lab Partner(s) Page 1 of 10 NEW TERMS Electric Circuit: Electric circuits are paths for transmitting electric current, or moving

More information

Modeling Mechanical System using SIMULINK

Modeling Mechanical System using SIMULINK Modeling Mechanical System using SIMULINK Mechanical System We will consider a toy train consisting of an engine and a car as shown in Figure. Assuming that the train only travels in one direction, we

More information

Falling Balls. Names: Date: About this Laboratory

Falling Balls. Names: Date: About this Laboratory Falling Balls Names: Date: About this Laboratory In this laboratory,1 we will explore quadratic functions and how they relate to the motion of an object that is dropped from a specified height above ground

More information

Galileo s Investigation

Galileo s Investigation Galileo s Investigation Investigating Angle of Incline Teacher s Guide The activity worksheets 1 Teachers Guide to Galileo s Experiment Check the car s bluetooth dongle is inserted in the PC/laptop and

More information

Visual Physics - Introductory Lab Lab 0

Visual Physics - Introductory Lab Lab 0 Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Pre-Lab Excel Problem

Pre-Lab Excel Problem Pre-Lab Excel Problem Read and follow the instructions carefully! Below you are given a problem which you are to solve using Excel. If you have not used the Excel spreadsheet a limited tutorial is given

More information

Appendix E: Software

Appendix E: Software Appendix E: Software Video Analysis of Motion Analyzing pictures (movies or videos) is a powerful tool for understanding how objects move. Like most forms of data, video is most easily analyzed using a

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

TEAM 12: TERMANATOR PROJECT PROPOSAL. TEAM MEMBERS: Donald Eng Rodrigo Ipince Kevin Luu

TEAM 12: TERMANATOR PROJECT PROPOSAL. TEAM MEMBERS: Donald Eng Rodrigo Ipince Kevin Luu TEAM 12: TERMANATOR PROJECT PROPOSAL TEAM MEMBERS: Donald Eng Rodrigo Ipince Kevin Luu 1. INTRODUCTION: This project involves the design and implementation of a unique, first-person shooting game. The

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means.

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means. Ball Toss Experiment 34 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs.

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

(40-405) Projectile Launcher

(40-405) Projectile Launcher 611-1410 (40-405) Projectile Launcher Replacement Parts: 24-0405 Instructions 40-030 Aluminum ball with hole 40-069 Steel ball with hole Congratulations on your purchase of a Science First product You

More information

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication.

Projectile Motion SECTION 3. Two-Dimensional Motion. Objectives. Use of components avoids vector multiplication. Projectile Motion Key Term projectile motion Two-Dimensional Motion Previously, we showed how quantities such as displacement and velocity were vectors that could be resolved into components. In this section,

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

You are going to need to access the video that was taken of your device - it can be accessed here:

You are going to need to access the video that was taken of your device - it can be accessed here: Part 2: Projectile Launcher Analysis Report Submit Assignment Due Dec 17, 2015 by 10:30am Points 100 Submitting a file upload Available after Dec 17, 2015 at 6am Step 2 - Now We Look At The Real World

More information

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion:

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion: 1) Define Trajectory a) The path traced by particle in air b) The particle c) Vertical Distance d) Horizontal Distance PROJECTILE 2) Define Projectile a) The path traced by particle in air b) The particle

More information

KCS Motion. Video Motion Analysis Software

KCS Motion. Video Motion Analysis Software Video Motion Analysis Software Software and supporting material is property of G. Mason, Seattle University, 2007 Overview Overview KCS Motion tracks moving objects in a video clip and analyzes their position,

More information

Exploring Projectile Motion with Interactive Physics

Exploring Projectile Motion with Interactive Physics Purpose: The purpose of this lab will is to simulate a laboratory exercise using a program known as "Interactive Physics." Such simulations are becoming increasingly common, as they allow dynamic models

More information

Lab 2: Conservation of Momentum

Lab 2: Conservation of Momentum 3 Lab 2: Conservation of Momentum I. Before you come to lab... II. Background III. Introduction A. This lab will give you an opportunity to explore the conservation of momentum in an interesting physical

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Motion in one dimension is the simplest type of motion. Distance, velocity and acceleration are all vector quantities and must be treated as vectors. However, in onedimensional

More information

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT ,

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT , 4A Quiz Review LT 3.4 3.10, 4.1 4.3 Key Facts Know how to use the formulas for projectile motion. The formulas will be given to you on the quiz, but you ll need to know what the variables stand for Horizontal:

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Fig [1] Fig v =...[4]

Fig [1] Fig v =...[4] 1 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke s law. [1] extension load Fig. 3.1 (ii) State the word used to describe the energy stored in a spring that has

More information

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 3 GIRLS SECON DARY, MRIEHEL HALF YEARLY EXAMINATIONS 2016/2017 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

Physics 251 Laboratory Introduction to Spreadsheets

Physics 251 Laboratory Introduction to Spreadsheets Physics 251 Laboratory Introduction to Spreadsheets Pre-Lab: Please do the lab-prep exercises on the web. Introduction Spreadsheets have a wide variety of uses in both the business and academic worlds.

More information

From Motion diagrams to Position and Velocity Graphs

From Motion diagrams to Position and Velocity Graphs From Motion diagrams to Position and Velocity Graphs Name: Group Members: Date: TA s Name: Apparatus: Aluminum track and a support, cart, plastic ruler, tape timer, and pencil Objectives: 1) To be familiar

More information

Introduction to Motion II

Introduction to Motion II Objectives Introduction to Motion II In this lab you will learn how to Equipment find the slope at any point along your position graph and to understand its physical meaning. fit your velocity data to

More information

Position vs Time Graphs *

Position vs Time Graphs * OpenStax-CNX module: m54110 1 Position vs Time Graphs * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this

More information

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( )

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( ) Using LoggerPro Nothing is more terrible than to see ignorance in action. J. W. Goethe (1749-1832) LoggerPro is a general-purpose program for acquiring, graphing and analyzing data. It can accept input

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

Lab1: Use of Word and Excel

Lab1: Use of Word and Excel Dr. Fritz Wilhelm; physics 230 Lab1: Use of Word and Excel Page 1 of 9 Lab partners: Download this page onto your computer. Also download the template file which you can use whenever you start your lab

More information

Lab 3: Acceleration of Gravity

Lab 3: Acceleration of Gravity Lab 3: Acceleration of Gravity The objective of this lab exercise is to measure a value for g, the acceleration due to gravity for an object in freefall. For Lab 1 and Lab 2 we used data, from a fictional

More information

Linescan System Design for Robust Web Inspection

Linescan System Design for Robust Web Inspection Linescan System Design for Robust Web Inspection Vision Systems Design Webinar, December 2011 Engineered Excellence 1 Introduction to PVI Systems Automated Test & Measurement Equipment PC and Real-Time

More information

Kinematics Review. Physics 2012

Kinematics Review. Physics 2012 Kinematics Review Physics 2012 Question 1 Mom and Junior are driving north in a car. They pass Spike who is standing on the side of the road. Which of these statements are correct? 1. Spike sees mom and

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Introduction to Working Model Welcome to Working Model! What is Working Model? It's an advanced 2-dimensional motion simulation package with sophisticated editing capabilities. It allows you to build and

More information

ENGR-101 (Section 33) Week 02: Shutter Speed Measurement

ENGR-101 (Section 33) Week 02: Shutter Speed Measurement ENGR-101 (Section 33) Week 02: Shutter Speed Measurement Today s Agenda 14:00 Role Call Welcoming Remarks Fun Motivation (Related YouTube Video) 14:15 Experiment 1: Extract camera flash circuit board 14:35

More information

BASEBALL TRAJECTORY EXTRACTION FROM

BASEBALL TRAJECTORY EXTRACTION FROM CS670 Final Project CS4670 BASEBALL TRAJECTORY EXTRACTION FROM A SINGLE-VIEW VIDEO SEQUENCE Team members: Ali Goheer (mag97) Irene Liew (isl23) Introduction In this project we created a mobile application

More information

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE 1 ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE PURPOSE For this experiment, the Motion Visualizer (MV) is used to capture the motion of two masses which are suspended above the ground and connected

More information

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity PHY 221 Lab 1 Position, Displacement, and Average and Instantaneous Velocity Name: Partner: Partner: Instructions Before lab, read section 0 in the Introduction, and answer the Pre-Lab Questions on the

More information

Physics 211 E&M and Modern Physics Spring Lab #1 (to be done at home) Plotting with Excel. Good laboratory practices

Physics 211 E&M and Modern Physics Spring Lab #1 (to be done at home) Plotting with Excel. Good laboratory practices NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Modern Physics Spring 2018 Lab #1 (to be done at home) Lab Writeup Due: Mon/Wed/Thu/Fri, Jan. 22/24/25/26, 2018 Read Serway & Vuille:

More information

Then you can create an object like a sphere or a box. A sphere is easy: And here s what you see:

Then you can create an object like a sphere or a box. A sphere is easy: And here s what you see: Visual Python Visual Python is a library of 3D objects you can program in Python to do all kinds of cool stuff using the tools you ve learned. Download and install the version for your computer at Vpython.org.

More information

Detailed instructions for video analysis using Logger Pro.

Detailed instructions for video analysis using Logger Pro. Detailed instructions for video analysis using Logger Pro. 1. Begin by locating or creating a video of a projectile (or any moving object). Save it to your computer. Most video file types are accepted,

More information

Experimental Design and Graphical Analysis of Data

Experimental Design and Graphical Analysis of Data Experimental Design and Graphical Analysis of Data A. Designing a controlled experiment When scientists set up experiments they often attempt to determine how a given variable affects another variable.

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Here is the data collected.

Here is the data collected. Introduction to Scientific Analysis of Data Using Spreadsheets. Computer spreadsheets are very powerful tools that are widely used in Business, Science, and Engineering to perform calculations and record,

More information

LAB 03: The Equations of Uniform Motion

LAB 03: The Equations of Uniform Motion LAB 03: The Equations of Uniform Motion This experiment uses a ramp and a low-friction cart. If you give the cart a gentle push up the ramp, the cart will roll upward, slow and stop, and then roll back

More information

Technical Game Development II. [using materials provided by Mark Claypool] IMGD 4000 (D 08) 1. What is game physics and why is it important?

Technical Game Development II. [using materials provided by Mark Claypool] IMGD 4000 (D 08) 1. What is game physics and why is it important? Basic Game Physics Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu [using materials provided by Mark Claypool] IMGD 4000 (D 08) 1 Introduction What is game

More information

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2016/2017. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 2 GIRLS SECON DARY, MRIEHEL HALF YEARLY EXAMINATIONS 2016/2017 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

Physics 1020 Experiment 3. Acceleration of Falling Objects

Physics 1020 Experiment 3. Acceleration of Falling Objects 1 2 Part I: Introduction In this experiment you will study the motion of a falling ball which experiences constant acceleration. You will use a Motion Detector to measure the position of the ball as a

More information

Reference and Style Guide for Microsoft Excel

Reference and Style Guide for Microsoft Excel Reference and Style Guide for Microsoft Excel TABLE OF CONTENTS Getting Acquainted 2 Basic Excel Features 2 Writing Cell Equations Relative and Absolute Addresses 3 Selecting Cells Highlighting, Moving

More information

To Measure a Constant Velocity. Enter.

To Measure a Constant Velocity. Enter. To Measure a Constant Velocity Apparatus calculator, black lead, calculator based ranger (cbr, shown), Physics application this text, the use of the program becomes second nature. At the Vernier Software

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

Lesson 17: Graphing Quadratic Functions from the Standard Form,

Lesson 17: Graphing Quadratic Functions from the Standard Form, : Graphing Quadratic Functions from the Standard Form, Student Outcomes Students graph a variety of quadratic functions using the form 2 (standard form). Students analyze and draw conclusions about contextual

More information

02. How many degrees per second does a 331/3 RPM turntable cover?

02. How many degrees per second does a 331/3 RPM turntable cover? HIGH SPEED/TIME LAPSE SAMPLE EXAM 2009 NAME: 01. A TV set writes how many lines per second? 02. How many degrees per second does a 331/3 RPM turntable cover? 03. Assuming that at 1/1000 second a focal

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Name: Dr. Fritz Wilhelm Lab 1, Presentation of lab reports Page # 1 of 7 5/17/2012 Physics 120 Section: ####

Name: Dr. Fritz Wilhelm Lab 1, Presentation of lab reports Page # 1 of 7 5/17/2012 Physics 120 Section: #### Name: Dr. Fritz Wilhelm Lab 1, Presentation of lab reports Page # 1 of 7 Lab partners: Lab#1 Presentation of lab reports The first thing we do is to create page headers. In Word 2007 do the following:

More information

PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

More information

= 3 + (5*4) + (1/2)*(4/2)^2.

= 3 + (5*4) + (1/2)*(4/2)^2. Physics 100 Lab 1: Use of a Spreadsheet to Analyze Data by Kenneth Hahn and Michael Goggin In this lab you will learn how to enter data into a spreadsheet and to manipulate the data in meaningful ways.

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting position against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

2.3 Projectile Motion

2.3 Projectile Motion Figure 1 An Olympic ski jumper uses his own body as a projectile. projectile an object that moves along a two-dimensional curved trajectory in response to gravity projectile motion the motion of a projectile

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Lab #4: 2-Dimensional Kinematics. Projectile Motion

Lab #4: 2-Dimensional Kinematics. Projectile Motion Lab #4: -Dimensional Kinematics Projectile Motion A medieval trebuchet b Kolderer, c1507 http://members.iinet.net.au/~rmine/ht/ht0.html#5 Introduction: In medieval das, people had a ver practical knowledge

More information

Graph Matching OBJECTIVES MATERIALS. Lab Activity #3(50 pts)

Graph Matching OBJECTIVES MATERIALS. Lab Activity #3(50 pts) Name Physics Period Partners: Date Lab Activity #3(50 pts) Mrs. Nadworny Due Date Graph Matching One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

Plotting Graphs. Error Bars

Plotting Graphs. Error Bars E Plotting Graphs Construct your graphs in Excel using the method outlined in the Graphing and Error Analysis lab (in the Phys 124/144/130 laboratory manual). Always choose the x-y scatter plot. Number

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

Motion Analysis Using tracker.jar

Motion Analysis Using tracker.jar Motion Analysis Using tracker.jar Tracker.jar is a free motion analysis application written by Doug Brown of Cabrillo College, California. It can be downloaded here: http://www.cabrillo.edu/~dbrown/tracker/

More information

Scientific Method and Graphing

Scientific Method and Graphing Scientific Method and Graphing Objectives - Students will be able to: 1.Explain what an independent and a dependent variable are. 2.Properly label a data table and graph 3.Create a graph from a data table

More information

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS 1 ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS Purpose The overall goal of this activity is for students to analyze the motion of an object moving with constant velocity along a diagonal line. In this

More information

Do you know where you are?

Do you know where you are? Do ou know where ou are? The missile knows where it is at all times. It knows this because it knows where it isn't. B subtracting where it is from where it isn't, or where it isn't from where it is (whichever

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Gating Image Intensifiers

Gating Image Intensifiers Video Scope International, Ltd. Phone: (703) 437-5534 105 Executive Drive, Suite 110 Fax: (703) 742-8947 Dulles, VA 20166-9558 E-Mail: info@videoscopeintl.com www.videoscopeintl.com Applications Note Copyright

More information

ENGR-101 Week 02: Shutter Speed Measurement

ENGR-101 Week 02: Shutter Speed Measurement ENGR-101 Week 02: Shutter Speed Measurement Today s Agenda 11:00 Role Call Welcoming Remarks Fun Motivation (Related YouTube Video) 11:15 Experiment 1: Extract camera flash circuit board 11:35 Experiment

More information