Exploring Projectile Motion with Interactive Physics

Size: px
Start display at page:

Download "Exploring Projectile Motion with Interactive Physics"

Transcription

1 Purpose: The purpose of this lab will is to simulate a laboratory exercise using a program known as "Interactive Physics." Such simulations are becoming increasingly common, as they allow dynamic models to be constructed and the effects of individual parameters to be isolated--particularly where this would not be convenient when working with the mechanical system. Equipment: Computer, Interactive Physics Paper, Pencil Experiment: 1. On one of the laboratory computers, locate and open the program entitled Interactive Physics. 2. On the right hand side of the window a toolbar should be visible. Select the rectangle tool by clicking on it, and draw a long narrow rectangle. Make it as long as the window, and less than a cm wide. This will act as a floor. Place it near the bottom of the window. 3. Next select the anchor tool from the right hand side of the tool bar. Place it anywhere on the rectangle, and click to "anchor" the rectangle in place. Now the floor will not "fall" under the influence of gravity when you activate the program. 4. Select the circle tool (above the anchor). Draw a small circle and place near the upper left-hand side of the window. 5. Double click on the circle (or click rapidly two or three times) until the attributes window appears. In this window you can select x and y coordinates for the circle, as well as x and y velocity components for the initial velocity. Set x = -3.5, y = 1.5, 1 of 6

2 V x = 5, V y = 0. Also click on the rectangle, and set its y position to -1.5 m (so that the ball is 3 meters above the floor). 6. Click "Run" on the upper left. Observe where the ball strikes, and then reset the simulation (also in the upper left). Press "Run" again and observe where the ball strikes a second time. Note: If the ball doesn t bounce off the rectangle, you need to increase the width of the rectangle. 7. Now Measure the position where the ball struck the platform. To do this, simply move the cursor along the floor. The x position is read out in the lower left. Note: You may find it easier to measure if you step the simulation frame by frame (see the VCR-like arrows under Lower left-hand side of the window). Once the simulation has run once, it creates a movie that can be stepped through, frame by frame. 8. Under the World pull-down menu, select gravity. Make sure that Vertical gravity of 9.8 is selected. With the precision of measurements in this simulation, greater accuracy is not needed. 9. Calculate how far the ball should travel from basic relations in projectile motion. Note that you are given the height and the initial velocity in the x direction. Enter your results in Table 1. Calculate the percent difference with the value entered in Step Repeat the simulation, but this time, change the velocity components of the ball so that V x = V y = 5 m/s. Also change the y component of position to approximately -1.5, so that the ball is fired from the ground. Run the simulation and measure the distance the ball actually traveled. Enter your results in Table 2. Note: If you get a message about bodies overlapping, you will need to start the ball slightly above the rectangle--you can manually adjust its position by dragging it. 11. Calculate how far the ball should actually travel from basic relations in projectile motion, and the initial conditions in Step 8. Enter your results in Table 2, and calculate the percent difference from the measured value. Results: Write at least one paragraph describing the following: what you expected to learn about the lab (i.e. what was the reason for conducting the experiment?) your results, and what you learned from them Think of at least one other experiment might you perform to verify these results 2 of 6

3 Think of at least one new question or problem that could be answered with the physics you have learned in this laboratory, or be extrapolated from the ideas in this laboratory. 3 of 6

4 Clean-Up: Before you can leave the classroom, you must clean up your equipment, and have your instructor sign below. How you divide clean-up duties between lab members is up to you. Clean-up involves: Completely dismantling the experimental setup Removing tape from anything you put tape on Drying-off any wet equipment Putting away equipment in proper boxes (if applicable) Returning equipment to proper cabinets, or to the cart at the front of the room Throwing away pieces of string, paper, and other detritus (i.e. your water bottles) Shutting down the computer Anything else that needs to be done to return the room to its pristine, pre lab form. I certify that the equipment used by has been cleaned up. (student s name),. (instructor s name) (date) 4 of 6

5 Data Table for "Exploring Projectile Motion" Name: Date: Lab partners Table 1: horizontal projectile motion distance (from simulation) distance from calculation % difference Calculations for Table 1: Table 2: Projectile fired at a 45 degree angle distance (from simulation) distance from calculation % difference Calculations for Table 2: 5 of 6

6 Challenge question: At what initial velocity would an object fired from the ground at a 45 degree angle travel the same distance as an object fired horizontally from a height of 3 m above the ground? Calculate the answer, and then use the simulation to verify the result. Enter the results in table 3. Note: you might have to zoom out to see the result... Table 3: Equal Range Determination velocity from calculation distance from simulation-- when fired horizontally distance from simulation-- when fired at a 45 degree angle Calculations for Table 3: 6 of 6

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

SPH3U1 Lesson 12 Kinematics

SPH3U1 Lesson 12 Kinematics SPH3U1 Lesson 12 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the motion of an object thrown at arbitrary angles through the air. Describe the horizontal and vertical motions of

More information

Falling Balls. Names: Date: About this Laboratory

Falling Balls. Names: Date: About this Laboratory Falling Balls Names: Date: About this Laboratory In this laboratory,1 we will explore quadratic functions and how they relate to the motion of an object that is dropped from a specified height above ground

More information

Recitation 1-6 Projectile Motion

Recitation 1-6 Projectile Motion Preliminaries Recitation 1-6 Projectile Motion The Recorder is the youngest person at your table. The Recorder Should write down everyone s name on the worksheet and put your Table No. on the worksheet.

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Polarization of Light

Polarization of Light Purpose: To study the following aspects of polarization: Polarizer-analyzer Rotation of the plane of polarization by a solution Brewster s angle Equipment: Optical bench, component carriers, angular translator

More information

Visual Physics Camera Parallax Lab 1

Visual Physics Camera Parallax Lab 1 In this experiment you will be learning how to locate the camera properly in order to identify and minimize the sources of error that are introduced by parallax and perspective. These sources of error

More information

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are:

Projectile Motion. A.1. Finding the flight time from the vertical motion. The five variables for the vertical motion are: Projectile Motion A. Finding the muzzle speed v0 The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range R0. On the diagram,

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Introduction to Working Model Welcome to Working Model! What is Working Model? It's an advanced 2-dimensional motion simulation package with sophisticated editing capabilities. It allows you to build and

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

Exploring Parametric Equations With the Human Cannonball

Exploring Parametric Equations With the Human Cannonball Grade level: 9-12 Exploring Parametric Equations With the Human Cannonball by Lisa Blank, Math & Science Teacher, Lyme Central School, Chaumont, NY Activity overview Students will explore the use of parametric

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

Graph Matching. walk back and forth in front of Motion Detector

Graph Matching. walk back and forth in front of Motion Detector Graph Matching Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible

More information

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1 Projectile Motion Purpose Apply concepts from two-dimensional kinematics to predict the impact point of a ball in projectile motion, and compare the result with direct measurement. Introduction and Theory

More information

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g Free Fall Objective Students will work in groups to investigate free fall acceleration on the Earth. Students will measure the fundamental physical constant, g, and evaluate the dependence of free fall

More information

Learning to use the drawing tools

Learning to use the drawing tools Create a blank slide This module was developed for Office 2000 and 2001, but although there are cosmetic changes in the appearance of some of the tools, the basic functionality is the same in Powerpoint

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Use the slope of a graph of the cart s acceleration versus sin to determine the value of g, the acceleration due to gravity.

Use the slope of a graph of the cart s acceleration versus sin to determine the value of g, the acceleration due to gravity. Name Class Date Activity P03: Acceleration on an Incline (Acceleration Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P03 Acceleration.ds (See end of activity) (See

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

Patterning Math Lab 4a

Patterning Math Lab 4a Patterning Math Lab 4a This lab is an exploration of transformations of functions, a topic covered in your Precalculus textbook in Section 1.5. As you do the exercises in this lab you will be closely reading

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

The LabScribe Tutorial

The LabScribe Tutorial The LabScribe Tutorial LabScribe allows data to be accumulated, displayed and analyzed on a computer screen in a format similar to a laboratory strip chart recorder. Equipment Setup 1 Place the iworx unit

More information

Physics 1020 Experiment 3. Acceleration of Falling Objects

Physics 1020 Experiment 3. Acceleration of Falling Objects 1 2 Part I: Introduction In this experiment you will study the motion of a falling ball which experiences constant acceleration. You will use a Motion Detector to measure the position of the ball as a

More information

You are going to need to access the video that was taken of your device - it can be accessed here:

You are going to need to access the video that was taken of your device - it can be accessed here: Part 2: Projectile Launcher Analysis Report Submit Assignment Due Dec 17, 2015 by 10:30am Points 100 Submitting a file upload Available after Dec 17, 2015 at 6am Step 2 - Now We Look At The Real World

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

LAB 02: Graph Matching

LAB 02: Graph Matching LAB 02: Graph Matching One of the most effective methods of describing motion is to plot graphs of position/displacement, velocity, and acceleration vs. time. From such a graphical representation, it is

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means.

Ball Toss. Data Pro program. 2. Make a sketch of your prediction for the velocity vs. time graph. Describe in words what this graph means. Ball Toss Experiment 34 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs.

More information

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well)

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well) . Name Date ACTIVITY 8 The Bouncing Ball If a ball is dropped from a given height, what does a Height- Time graph look like? How does the velocity change as the ball rises and falls? What affects the shape

More information

Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

Appendix E: Software

Appendix E: Software Appendix E: Software Video Analysis of Motion Analyzing pictures (movies or videos) is a powerful tool for understanding how objects move. Like most forms of data, video is most easily analyzed using a

More information

Displacement-time and Velocity-time Graphs

Displacement-time and Velocity-time Graphs PhysicsFactsheet April Number Displacement- and Velocity- Graphs This Factsheet explains how motion can be described using graphs, in particular how - graphs and - graphs can be used. Displacement- graphs

More information

Detailed instructions for video analysis using Logger Pro.

Detailed instructions for video analysis using Logger Pro. Detailed instructions for video analysis using Logger Pro. 1. Begin by locating or creating a video of a projectile (or any moving object). Save it to your computer. Most video file types are accepted,

More information

Visual Physics Introductory Lab [Lab 0]

Visual Physics Introductory Lab [Lab 0] Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes

Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Lab Practical - Limit Equilibrium Analysis of Engineered Slopes Part 1: Planar Analysis A Deterministic Analysis This exercise will demonstrate the basics of a deterministic limit equilibrium planar analysis

More information

Motion Creating Animation with Behaviors

Motion Creating Animation with Behaviors Motion Creating Animation with Behaviors Part 1: Basic Motion Behaviors Part 2: Stacking Behaviors upart 3: Using Basic Motion Behaviors in 3Do Part 4: Using Simulation Behaviors Part 5: Applying Parameter

More information

Office 2007/2010 Conversion

Office 2007/2010 Conversion Instructor Resources C H A P T E R 4 Perspective, Scene Design, and Basic Animation Office 2007/2010 Conversion In general, the existing directions related to Microsoft Office products contain specific

More information

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity PHY 221 Lab 1 Position, Displacement, and Average and Instantaneous Velocity Name: Partner: Partner: Instructions Before lab, read section 0 in the Introduction, and answer the Pre-Lab Questions on the

More information

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS

ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS 1 ACTIVITY TWO CONSTANT VELOCITY IN TWO DIRECTIONS Purpose The overall goal of this activity is for students to analyze the motion of an object moving with constant velocity along a diagonal line. In this

More information

If the ball goes off either the right or left edge, turn the ball around. If x is greater than width or if x is less than zero, reverse speed.

If the ball goes off either the right or left edge, turn the ball around. If x is greater than width or if x is less than zero, reverse speed. Conditionals 75 Reversing the Polarity of a Number When we want to reverse the polarity of a number, we mean that we want a positive number to become negative and a negative number to become positive.

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Velocity: A Bat s Eye View of Velocity

Velocity: A Bat s Eye View of Velocity Name School Date Purpose Velocity: A Bat s Eye View of Velocity There are a number of ways of representing motion that we ll find useful. Graphing position, velocity, and acceleration vs. time is often

More information

Working Model Tutorial for Slider Crank

Working Model Tutorial for Slider Crank Notes_02_01 1 of 15 1) Start Working Model 2D Working Model Tutorial for Slider Crank 2) Set display and units Select View then Workspace Check the X,Y Axes and Coordinates boxes and then select Close

More information

Physics 251 Laboratory Introduction to Spreadsheets

Physics 251 Laboratory Introduction to Spreadsheets Physics 251 Laboratory Introduction to Spreadsheets Pre-Lab: Please do the lab-prep exercises on the web. Introduction Spreadsheets have a wide variety of uses in both the business and academic worlds.

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY More Working Model Today we are going to look at even more features of Working Model. Specifically, we are going to 1) Learn how to add ropes and rods. 2) Learn how to connect object using joints and slots.

More information

L E S S O N 2 Background

L E S S O N 2 Background Flight, Naperville Central High School, Naperville, Ill. No hard hat needed in the InDesign work area Once you learn the concepts of good page design, and you learn how to use InDesign, you are limited

More information

Free Fall Adapter. Instruction Manual C ME-9207B. 1. Phone plug 5. Release plate. 2. Controller 6. Steel ball

Free Fall Adapter. Instruction Manual C ME-9207B. 1. Phone plug 5. Release plate. 2. Controller 6. Steel ball Instruction Manual 01-05760C Free Fall Adapter ME-907B 4 3 5 6 1 7 1. Phone plug 5. Release plate. Controller 6. Steel ball 3. Adapter support rod 7. Receptor pad 4. Ball release mechanism Included Equipment

More information

Introduction to Google SketchUp

Introduction to Google SketchUp Introduction to Google SketchUp When initially opening SketchUp, it will be useful to select the Google Earth Modelling Meters option from the initial menu. If this menu doesn t appear, the same option

More information

Using Technology to Make Connections in Algebra

Using Technology to Make Connections in Algebra Using Technology to Make Connections in Algebra Richard Parr rparr@rice.edu Rice University School Mathematics Project http://rusmp.rice.edu All On The Line Alg1Week17_Systems.tns Name Class Problem 1

More information

Neatly print first and last names: Exam II. "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work.

Neatly print first and last names: Exam II. On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Fry Texas A&M University! Math 150 Precalculus Fall 2015! 1 Neatly print first and last names: Lecture Time:!! 12:45 PM!!! 2:20 PM!! (Circle one.) Exam II "On my honor, as an Aggie, I have neither given

More information

Part II: Creating Visio Drawings

Part II: Creating Visio Drawings 128 Part II: Creating Visio Drawings Figure 5-3: Use any of five alignment styles where appropriate. Figure 5-4: Vertical alignment places your text at the top, bottom, or middle of a text block. You could

More information

Introduction to Motion II

Introduction to Motion II Objectives Introduction to Motion II In this lab you will learn how to Equipment find the slope at any point along your position graph and to understand its physical meaning. fit your velocity data to

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

Graph Matching. LabQuest App OBJECTIVES MATERIALS

Graph Matching. LabQuest App OBJECTIVES MATERIALS Graph Matching LabQuest 1 One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is possible

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Diffraction 1. Objectives. The objectives of this laboratory are a. To be able use a diffraction grating to measure the wavelength

More information

TUTORIAL No 1: Page Setup

TUTORIAL No 1: Page Setup TUTORIAL No 1: Page Setup Skill Level: Foundation This tutorial shows you how to set up a workspace to draw in. The workspace is the area you are working in on the screen. 1. Open 2D Design. A screen with

More information

Working with Tables in Microsoft Word

Working with Tables in Microsoft Word Working with Tables in Microsoft Word Microsoft Word offers a number of ways to make a table. The best way depends on how you like to work, and on how simple or complex the table needs to be. 1. Click

More information

LIGHT: Two-slit Interference

LIGHT: Two-slit Interference LIGHT: Two-slit Interference Objective: To study interference of light waves and verify the wave nature of light. Apparatus: Two red lasers (wavelength, λ = 633 nm); two orange lasers (λ = 612 nm); two

More information

In this lesson, you ll learn how to:

In this lesson, you ll learn how to: LESSON 5: ADVANCED DRAWING TECHNIQUES OBJECTIVES In this lesson, you ll learn how to: apply gradient fills modify graphics by smoothing, straightening, and optimizing understand the difference between

More information

P202/219 Laboratory IUPUI Physics Department REFRACTION OF LIGHT

P202/219 Laboratory IUPUI Physics Department REFRACTION OF LIGHT REFRCTION OF LIGHT OBJECTIVE To verify the Law of Refraction (n 1 sin θ 1 = n 2 sin θ 2 ) by measuring the index of refraction of glass and water. EQUIPMENT corkboard, two 8½ 11 in. pieces of paper, glass

More information

Two-Dimensional Motion

Two-Dimensional Motion Two-Dimensional Motion Objects don't always move in a straight line. When an object moves in two dimensions, we must look at vector components. The most common kind of two dimensional motion you will encounter

More information

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion:

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion: 1) Define Trajectory a) The path traced by particle in air b) The particle c) Vertical Distance d) Horizontal Distance PROJECTILE 2) Define Projectile a) The path traced by particle in air b) The particle

More information

One Dimensional Motion (Part I and Part II)

One Dimensional Motion (Part I and Part II) One Dimensional Motion (Part I and Part II) Purpose:To understand the relationship between displacement (position), motion (velocity), and change in motion (acceleration). Topics of PART I and PART II:

More information

Lab 3: Acceleration of Gravity

Lab 3: Acceleration of Gravity Lab 3: Acceleration of Gravity The objective of this lab exercise is to measure a value for g, the acceleration due to gravity for an object in freefall. For Lab 1 and Lab 2 we used data, from a fictional

More information

Chapter 19- Object Physics

Chapter 19- Object Physics Chapter 19- Object Physics Flowing water, fabric, things falling, and even a bouncing ball can be difficult to animate realistically using techniques we have already discussed. This is where Blender's

More information

Introduction to Motion

Introduction to Motion Date Partners Objectives: Introduction to Motion To investigate how motion appears on a position versus time graph To investigate how motion appears on a velocity versus time graph and the relationship

More information

LAB 03: The Equations of Uniform Motion

LAB 03: The Equations of Uniform Motion LAB 03: The Equations of Uniform Motion This experiment uses a ramp and a low-friction cart. If you give the cart a gentle push up the ramp, the cart will roll upward, slow and stop, and then roll back

More information

GIMP WEB 2.0 BUTTONS

GIMP WEB 2.0 BUTTONS GIMP WEB 2.0 BUTTONS Web 2.0 Navigation: Web 2.0 Button with Navigation Arrow GIMP is all about IT (Images and Text) WEB 2.0 NAVIGATION: BUTTONS_WITH_NAVIGATION_ARROW This button navigation will be designed

More information

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w

Name. Beaumont Middle School 8th Grade, Advanced Algebra I. A = l w P = 2 l + 2w 1 Name Beaumont Middle School 8th Grade, 2015-2016 Advanced Algebra I A = l w P = 2 l + 2w Graphing Quadratic Functions, Using the Zeroes (x-intercepts) EXAMPLES 1) y = x 2 9 2 a) Standard Form: b) a =,

More information

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives

Learning Objectives. Math Prerequisites. Technology Prerequisites. Materials. Math Objectives. Technology Objectives Learning Objectives Parametric Functions Lesson 2: Dude, Where s My Football? Level: Algebra 2 Time required: 60 minutes Many students expect a falling object graph to look just like the path of the falling

More information

Physics 2374 Lab 2: Graph Matching

Physics 2374 Lab 2: Graph Matching Physics 2374 Lab 2: Graph Matching One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is

More information

Google SketchUp Design Exercise 1

Google SketchUp Design Exercise 1 Google SketchUp Design Exercise 1 The first thing students like to do in SketchUp is make a basic house and try out different colors and materials. They also love making windows and doors, and trying out

More information

DOING MORE WITH WORD: MICROSOFT OFFICE 2010

DOING MORE WITH WORD: MICROSOFT OFFICE 2010 DOING MORE WITH WORD: MICROSOFT OFFICE 2010 GETTING STARTED PAGE 02 Prerequisites What You Will Learn USING MICROSOFT WORD PAGE 03 Viewing Toolbars Adding and Removing Buttons MORE TASKS IN MICROSOFT WORD

More information

Maximizing Volume: The Box Example

Maximizing Volume: The Box Example Maximizing Volume: The Box Example Names: Date: About this Laboratory You will construct a box from a sheet of paper with dimensions 8.5 inches x 11 inches by cutting congruent squares from each corner

More information

Review for Quarter 3 Cumulative Test

Review for Quarter 3 Cumulative Test Review for Quarter 3 Cumulative Test I. Solving quadratic equations (LT 4.2, 4.3, 4.4) Key Facts To factor a polynomial, first factor out any common factors, then use the box method to factor the quadratic.

More information

Session 7 MS Word. Graphics. Inserting Clipart, and Graphics Modify graphics Position graphics

Session 7 MS Word. Graphics. Inserting Clipart, and Graphics Modify graphics Position graphics Session 7 MS Word Graphics Inserting Clipart, and Graphics Modify graphics Position graphics Table of Contents Session 7 Working with Graphics... 1 The Toolbar... 1 Drawing Toolbar... 1 Picture Toolbar...

More information

EDTE 330A/B. Educational Technology in the Classroom: Applications and Integrations

EDTE 330A/B. Educational Technology in the Classroom: Applications and Integrations EDTE 330A/B Educational Technology in the Classroom: Applications and Integrations California State University, Sacramento Department of Teacher Education Instructor Brian S., Ph.D. 1 Rules and Procedures

More information

Similarity - Using Mirrors to Find Heights

Similarity - Using Mirrors to Find Heights Similarity - Using Mirrors to Find Heights AUTHOR(S): DANA SHAMIR TEACH # 2 MENTOR: NANNETTE STRICKLAND DATE TO BE TAUGHT: 11/29/2007 LENGTH OF LESSON: 45 MINUTES GRADE LEVEL: 8 SOURCE OF THE LESSON: Connecting

More information

After completing this lesson, you will be able to:

After completing this lesson, you will be able to: LEARNING OBJECTIVES After completing this lesson, you will be able to: 1. Add a Single Line of text to your drawing. 2. Add a paragraph, using Multiline Text. 3. Control tabs, indents and line spacing.

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute Value Square Root Exponential Reciprocal

Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute Value Square Root Exponential Reciprocal Topic 2.0 Review Concepts What are non linear equations? Student Notes Unit 2 Non linear Equations Types of Functions Here are six common types of functions and examples of each. Linear Quadratic Absolute

More information

Light. Teacher Resource

Light. Teacher Resource Watch the film: You might find it useful to watch the light film before you read through the resources. bbc.com/teach/terrificscientific/ks2/zv9qf4j Introduction We need light to be able to see things.

More information

Lesson 1: The Path of a Ball s Flight

Lesson 1: The Path of a Ball s Flight Opening Exploration [adapted from the UCLA Curtis Center] In this activity, you will model the path of an object in projectile motion. To do this, several students will line up at regular intervals about

More information

SketchUp Quick Start For Surveyors

SketchUp Quick Start For Surveyors SketchUp Quick Start For Surveyors Reason why we are doing this SketchUp allows surveyors to draw buildings very quickly. It allows you to locate them in a plan of the area. It allows you to show the relationship

More information

Geometry with Dash. Differentiated Task Cards Scaffolded On Level Challenge Hint Think Beyond. Michelle Eckstein

Geometry with Dash. Differentiated Task Cards Scaffolded On Level Challenge Hint Think Beyond. Michelle Eckstein Geometry with Dash Differentiated Task Cards Scaffolded On Level Challenge Hint Think Beyond Michelle Eckstein Common Core Standards CCSS.MATH.CONTENT.3.MD.D.8 Geometric measurement: recognize perimeter.

More information

Lesson 17: Graphing Quadratic Functions from the Standard Form,

Lesson 17: Graphing Quadratic Functions from the Standard Form, : Graphing Quadratic Functions from the Standard Form, Student Outcomes Students graph a variety of quadratic functions using the form 2 (standard form). Students analyze and draw conclusions about contextual

More information

InDesign Tutorial: Working with InDesign panels. InDesign Tutorial: Working with InDesign panels. The InDesign Tools panel

InDesign Tutorial: Working with InDesign panels. InDesign Tutorial: Working with InDesign panels. The InDesign Tools panel InDesign Tutorial: Working with InDesign panels What you?ll learn in this InDesign Tutorial: The InDesign CS6 Tools Panel Understanding the InDesign CS6 Workspace This tutorial provides you with a foundation

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

Barbie Bungee Teacher Pages

Barbie Bungee Teacher Pages 90 Minutes Objective Students will differentiate between speed, velocity and acceleration Students will compare and contrast Newton s three laws. TEKS 8.6A Demonstrate and calculate how unbalanced forces

More information

Panasonic VRF Software. New features of VRF software

Panasonic VRF Software. New features of VRF software Panasonic VRF Software New features of VRF software April 2013 1 Contents: Mounting scheme... 5 1. Import building scheme into software... 5 1.1. Export building scheme as DXF from AutoCAD... 5 1.2. Export

More information

DOING MORE WITH WORD: MICROSOFT OFFICE 2013

DOING MORE WITH WORD: MICROSOFT OFFICE 2013 DOING MORE WITH WORD: MICROSOFT OFFICE 2013 GETTING STARTED PAGE 02 Prerequisites What You Will Learn USING MICROSOFT WORD PAGE 03 Viewing Toolbars Adding and Removing Buttons MORE TASKS IN MICROSOFT WORD

More information