Stability Analysis of the Muscl Method on General Unstructured Grids for Applications to Compressible Fluid Flow

Size: px
Start display at page:

Download "Stability Analysis of the Muscl Method on General Unstructured Grids for Applications to Compressible Fluid Flow"

Transcription

1 Stability Analysis of the Muscl Method on General Unstructured Grids for Applications to Compressible Fluid Flow F. Haider 1, B. Courbet 1, J.P. Croisille 2 1 Département de Simulation Numérique des Ecoulements et Aéroacoustique, Onera, Châtillon France 2 Laboratoire Mathématiques et Applications, Université de Metz, France Groupe de travail Méthodes Numériques 3 novembre 2008

2 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

3 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

4 The Software Package Cedre Overview of Cedre Overview of Cedre Software for numerical simulation of internal ows. Solver for compressible Navier-Stokes (RANS and LES). Multi-physics : gas dynamics, heat conduction, particles, radiation, reactive ows. Used by industry ( Eads, Snecma, Snpe ) and research organizations. Important Feature Discretization on general unstructured meshes : Important for industrial applications.

5 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

6 Spatial Discretization Basic Principle of the Muscl Finite-Volume Scheme x i 1 x i x i+1 x i+2 1 Reconstruct a piecewise linear solution from the cell averages. 2 Use it to compute upwinded uxes at the cell interfaces. 3 The uxes determine the dynamics of the cell averages.

7 Geometry of Unstructured Meshes x α k αβ x αβ h αβ n αβ k βα x β cell T α and face A αβ for convenience nαβ = kαβ = 0 if T α not a neighbor of T β fundamental relation β n αβ = 0

8 Spatial Discretization on Unstructured Meshes General Gradient Reconstruction on Polyhedral Meshes. u β Reconstruct a gradient σ α in each cell... h αγ σ α u αγ u γ σ α = β sαβ (uβ uα) u α k αγ... to compute second order accurate values at the cell interfaces uαγ = uα + kαγ σ α

9 Consistent Reconstruction Algebraic Condition for Second Order Reconstruction. Accuracy Condition Reconstruction must recover polynomials of degree one. This means that for all σ R d σ = β sαβ (hαβ σ) This equation with unknowns sαβ denes a family of admissible reconstructions.

10 General Solution of Consistent Reconstruction Consistency condition in matrix form Dene geometric matrix Hα with rows hαβ Dene reconstruction matrix Sα with columns sαβ Consistency condition becomes the linear matrix equation SαHα = I d General solution Sα = Ŝα + Λ α Bα Ŝα is a particular solution. Bα is a maximum rank solution of BαHα = 0.

11 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

12 Observation of Instabilities in 3D Applications Experience with Cedre Observation : Computations on unstructured grids are less accurate than those on cartesian grids. Hypothesis : Loss of accuracy is caused by slope limiters. Investigation : Perform same computations without limiters. Result : Computations break down on unstructured grids. Principal Questions Do these instabilities exist for the linear advection equation? Do these instabilities exist in the semi-discrete case?

13 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

14 Model Equation Examine the problem for the linear advection equation. t u (x, t) + c u (x, t) = 0 Spatial discretization transforms this into an ordinary dierential equation. du (t) dt = Ju (t) ; u = (u 1,..., u N ) Stability Condition u (t) C u (0) for all times t 0

15 Numerical Investigation of Spectra Apply spatial Muscl discretization to linear advection and compute spectra of the matrix J. 2D triangular mesh 3D tetrahedral mesh K40 K30 K20 K10 0 K10 50 K K30 K40 Curve 1

16 Conclusion Diagnosis for Semi-discrete Linear Advection Eigenvalues with positive real part in 3D on tetrahedral meshes : Spatial discretization is unstable. No instabilities for cartesian and deformed cartesian meshes. No instabilities for the rst order scheme. Conclusion Instabilities arise from the combination of linear reconstruction and unstructured meshes. It is necessary to examine the inuence of the slope reconstruction on stability.

17 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

18 Criterion to Select Reconstruction Problem A rigorous stability criterion is too dicult to obtain for the Muscl Scheme. Solution : Practical Criterion for Best Reconstruction Choose a consistent slope in each cell T α such that α T α du2 α dt becomes as small as possible. T α is the volume of cell T α.

19 Time Derivative of the Energy Function The time derivative of the energy can be written as a sum α T α du2 α dt = N {Θ α (u) + Φ α (u)} α=1 Θ α (u) = (c nαβ) + (uβ uα) 2 0 β Φ α (u) = 2 (c nαβ) + (uβ uα) kαβ sαγ (uγ uα) β γ

20 Local Criterion for Reconstruction Transform the Problem to Obtain Local Criterion Dene matrix Rα in cell T α with entries r (α) βγ = k αβ sαγ. Dene matrix Kα with rows kαβ then Rα = KαSα. The term Θ α (u) in the time derivative is always non-positive. The term Φ α (u) depends linearly on Rα = KαSα. Strategy to Select the Slope Choose Sα that minimizes KαSα under the constraint SαHα = I d.

21 Local Reconstruction Graphical Representation of the Local Reconstruction u β Rα = KαSα maps uβ uα to uαγ uα where h αγ u α u αγ k αγ u γ uαγ = uα + kαγ σ α If Rα = 0, then α T α du2 α dt 0 stability of the rst order upwind scheme!

22 Minimization Property of the Least Squares Reconstruction Minimization problem Find consistent reconstruction that minimizes KαSα : min { KαSα ; SαHα = I d } Solution exists for a large family of norms Least-squares slope solves min { KαSα ; SαHα = I d } for all unitarily invariant norms. This includes Spectral Norm, Frobenius Norm, Trace Norm. Least-squares reconstruction is optimal for the criterion.

23 Outline of the Proof I General form of reconstruction Sα = Ŝα + Λ α Bα. Least Squares Reconstruction Ŝα = ( Hα t 1 α) H t Hα. The matrix Ŝα satises BαŜ α t = 0, ŜαBα t = 0. This implies KαSαSα t K α t = KαŜαŜ α t K α t + KαΛ α BαBαΛ t t α K α t.

24 Outline of the proof II Denition A matrix norm. is called unitarily invariant if A = UAV for any matrix A and arbitrary unitary matrices U and V. Denition A norm g on R k is called a symmetric gauge function if it is an absolute and permutation invariant vector norm : g ( x 1,..., x k ) = g (x 1,..., x k ) and g (x) = g (Px) for any permutation matrix P.

25 Outline of the proof III Theorem Any unitarily invariant matrix norm A can be written as a symmetric gauge function of the vector of singular values of A A = g (ς 1 (A),..., ς k (A)). Theorem Let ς 1 (A) ς k (A) be the singular values of A and λ 1 (AA ) λ k (AA ) the eigenvalues of AA (They are the same as those of A A). Then ς i (A) = λ i (AA ), 1 i k.

26 Outline of the Proof IV Theorem (Weyl) Let P and Q be hermitian matrices. If Q is positive semi-denite, then λ i (P) λ i (P + Q), 1 i k. Weyl's Theorem shows ) ( ) λ i (KαŜαŜ α t K α t λ i KαŜαŜ α t K α t + KαΛ α BαBαΛ t t α K α t Therefore the singular values of KαSα satisfy ) ς i (KαSα), 1 i k. ς i (KαŜα

27 Outline of the proof V Theorem Any symmetric gauge function g is a monotone vector norm. Let x, y R k. x i y i, 1 i k, implies g(x 1,..., x k ) g(y 1,..., y k ). The combination of the theorems gives Theorem (Minimization property) Let. be any unitarily invariant matrix norm and Sα any reconstruction matrix Sα that is consistent, i.e. that is a solution of SαHα = I d. Then the least squares reconstruction matrix Ŝα satises KαŜα KαSα

28 Inuence of the Stencil Size on Stability A qualitative result for the least squares reconstruction Let Ŝα be the matrix of the least-squares reconstruction. What happens to the unitarily invariant matrix norms of if points are added to the stencil? KαŜα Theorem New reconstruction matrix Sα satises Kα Sα and even Kα Sα < KαŜα KαŜα under certain conditions. Conclusion : Larger stencils lead to more robust schemes.

29 Outline of the Proof I In cell T α, let the matrix Hα have rows {hαβ 1,..., hαβ n }. Add l new cells {T γ1,..., T γl } to the reconstruction stencil. Dene matrix Ȟα with rows {hαγ 1,..., hαγ l }. New geometric matrix is given by H α t = [ ] Hα t Ȟ α t. The matrix Hα satises ( H t α Hα) 1 = ( H t α H α + Ȟ t αȟα) 1.

30 Outline of the proof II Least squares reconstruction matrices Sα = ( H t α Hα) 1 H t α, Ŝα = ( H t α H α) 1 H t α. The matrix Sα satises Kα Sα S t α K t α = Kα ( H t α Hα) 1 K t α. The Sherman-Morrison-Woodbury identity shows ( Kα +Kα Hα t 1 ( α) H t Kα = Kα Hα t H α + ȞαȞα) t 1 t Kα + ( ( Hα α) t 1 ( H Ȟα t I + Ȟα Hα t 1 1 α) H Ȟα) t Ȟα ( H t α H α) 1 K t α.

31 Outline of the Proof III Weyl's Theorem shows λ i (Kα Sα S t α K t α ) ( ) λ i KαŜαŜ α t K α t Therefore the singular values of Kα Sα satisfy ) ( ) ς i KαŜα, 1 i k. ς i (Kα Sα This implies for any unitarily invariant matrix norm. Kα Sα KαŜα

32 Outline 1 Context The Software Package Cedre Spatial Discretization on General Polyhedral Meshes 2 Stability of Unstructured Muscl Schemes Instabilities in Three-dimensional Applications Preliminary Investigation Reconstruction and Stability on Unstructured Grids Applications to Gas Dynamics

33 Practical Conclusions for Cedre Practical Conclusions Theoretical results suggest (but no complete proof yet!) It is not reasonable to expect any consistent reconstruction to give better stability than the Least Squares Method. Use of larger stencils than rst neighborhood is recommended in three dimensions. Numerical Study for Linear Advection There are grids where the Least Squares Method is stable but alternative methods are not. In the case of piecewise linear reconstruction the second neighborhood turns out to be sucient for stability on tetrahedral meshes.

34 Practical Implementation Practical Solution for Solver Cedre Cedre handles large grids by parallel computing and grid partitioning. Large reconstruction stencils are not easy to implement. Practical Solution for Consistent and Stable Reconstruction Compute least-squares slope on rst neighborhood. Take weighted average of slopes over rst neighborhood. Numerical computations of spectra show that this method is stable. This method is consistent.

35 Application to Compressible Gas Dynamics Three-dimensional Flow Over a Deep Cavity. With the new scheme, the simulation of a three-dimensional subsonic ow over a deep cavity is possible without slope limiters on tetrahedral grids. Entropy Distribution Pressure Signal in the Cavity

36 Application to Compressible Gas Dynamics Three-dimensional Flow Over a Deep Cavity. Comparison of the spectra of a pressure signal in the upstream wall of the cavity. The limiter used is the best limiter available in Cedre: expensive!! Result without limiters Result with limiters SPL SPL f f

37 Application to Compressible Gas Dynamics Three-dimensional Jet Noise Computations Inuence of slope limiters on a jet noise computation on tetrahedral grids. Blue line : new scheme - limiters are active only inside the nozzle. Red and green line : new and old scheme with slope limiters active on the entire domain. Sensor Positions Pressure Signal at Sensor 15

38 Summary Without limiters, spatial Muscl discretization of linear advection leads to instabilities on unstructured three-dimensional grids containing tetrahedra and prisms. Instabilities can be eliminated by the least-squares method and larger stencils than the rst neighborhood. Outlook The criterion can be used for higher order reconstructions.

39 Appendix For Further Reading I F. Haider, J.P. Croisille, B. Courbet Stability Analysis of the Cell Centered Finite-Volume Muscl Method on Unstructured Grids. Submitted (2008)

Benchmark 3D: the VAG scheme

Benchmark 3D: the VAG scheme Benchmark D: the VAG scheme Robert Eymard, Cindy Guichard and Raphaèle Herbin Presentation of the scheme Let Ω be a bounded open domain of R, let f L 2 Ω) and let Λ be a measurable function from Ω to the

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

This is an author-deposited version published in: Eprints ID: 4362

This is an author-deposited version published in:   Eprints ID: 4362 This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 4362 To cite this document: CHIKHAOUI Oussama, GRESSIER Jérémie, GRONDIN Gilles. Assessment of the Spectral

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA )

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA ) High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA9550-07-0195) Sachin Premasuthan, Kui Ou, Patrice Castonguay, Lala Li, Yves Allaneau,

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1 Numerical Methods for PDEs SSC Workgroup Meetings Juan J. Alonso October 8, 2001 SSC Working Group Meetings, JJA 1 Overview These notes are meant to be an overview of the various memory access patterns

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

Weno Scheme for Transport Equation on Unstructured Grids with a DDFV Approach

Weno Scheme for Transport Equation on Unstructured Grids with a DDFV Approach Weno Scheme for Transport Equation on Unstructured Grids with a DDFV Approach Florence Hubert and Rémi Tesson Abstract In this paper we develop a DDFV approach for WENO scheme on unstructred grids for

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes

Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 2-4, pp. 86-848 Commun. Comput. Phys. February 29 Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes Yong-Tao Zhang 1, and Chi-Wang Shu

More information

GENUINELY MULTIDIMENSIONAL NON-DISSIPATIVE FINITE VOLUME SCHEMES FOR TRANSPORT

GENUINELY MULTIDIMENSIONAL NON-DISSIPATIVE FINITE VOLUME SCHEMES FOR TRANSPORT GENUINELY MULTIDIMENSIONAL NON-DISSIPATIVE FINITE VOLUME SCHEMES FOR TRANSPORT BRUNO DESPRÉS, FRÉDÉRIC LAGOUTIÈRE Commissariat à l Énergie Atomique, Bruyères-le-Châtel. despres@cmpax.polytechnique.fr e-mail:

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

On the thickness of discontinuities computed by THINC and RK schemes

On the thickness of discontinuities computed by THINC and RK schemes The 9th Computational Fluid Dynamics Symposium B7- On the thickness of discontinuities computed by THINC and RK schemes Taku Nonomura, ISAS, JAXA, Sagamihara, Kanagawa, Japan, E-mail:nonomura@flab.isas.jaxa.jp

More information

DDFV Schemes for the Euler Equations

DDFV Schemes for the Euler Equations DDFV Schemes for the Euler Equations Christophe Berthon, Yves Coudière, Vivien Desveaux Journées du GDR Calcul, 5 juillet 2011 Introduction Hyperbolic system of conservation laws in 2D t W + x f(w)+ y

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

High Order Weighted Essentially Non-Oscillatory Schemes for Convection. Dominated Problems. Chi-Wang Shu 1

High Order Weighted Essentially Non-Oscillatory Schemes for Convection. Dominated Problems. Chi-Wang Shu 1 High Order Weighted Essentially Non-Oscillatory Schemes for Convection Dominated Problems Chi-Wang Shu Division of Applied Mathematics, Brown University, Providence, Rhode Island 09 ABSTRACT High order

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Ibrahim Sezai Department of Mechanical Engineering Eastern Mediterranean University Fall 2009-2010 What is CFD? CFD is the simulation of fluids engineering systems using modeling

More information

cuibm A GPU Accelerated Immersed Boundary Method

cuibm A GPU Accelerated Immersed Boundary Method cuibm A GPU Accelerated Immersed Boundary Method S. K. Layton, A. Krishnan and L. A. Barba Corresponding author: labarba@bu.edu Department of Mechanical Engineering, Boston University, Boston, MA, 225,

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Solving Partial Differential Equations on Overlapping Grids

Solving Partial Differential Equations on Overlapping Grids **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solving Partial Differential Equations on Overlapping Grids William D. Henshaw Centre for Applied Scientific

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

Parallel Mesh Multiplication for Code_Saturne

Parallel Mesh Multiplication for Code_Saturne Parallel Mesh Multiplication for Code_Saturne Pavla Kabelikova, Ales Ronovsky, Vit Vondrak a Dept. of Applied Mathematics, VSB-Technical University of Ostrava, Tr. 17. listopadu 15, 708 00 Ostrava, Czech

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Topology optimization of heat conduction problems

Topology optimization of heat conduction problems Topology optimization of heat conduction problems Workshop on industrial design optimization for fluid flow 23 September 2010 Misha Marie Gregersen Anton Evgrafov Mads Peter Sørensen Technical University

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

High-Order CENO Reconstruction Scheme For Three-Dimensional Unstructured Mesh

High-Order CENO Reconstruction Scheme For Three-Dimensional Unstructured Mesh High-Order CENO Reconstruction Scheme For Three-Dimensional Unstructured Mesh by Al-Amin Aziz A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science Graduate

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Stabilized Finite Element Method for 3D Navier-Stokes Equations with Physical Boundary Conditions

Stabilized Finite Element Method for 3D Navier-Stokes Equations with Physical Boundary Conditions Stabilized Finite Element Method for 3D Navier-Stokes Equations with Physical Boundary Conditions Mohamed Amara, Daniela Capatina, David Trujillo Université de Pau et des Pays de l Adour Laboratoire de

More information

Von Neumann Analysis for Higher Order Methods

Von Neumann Analysis for Higher Order Methods 1. Introduction Von Neumann Analysis for Higher Order Methods Von Neumann analysis is a widely used method to study how an initial wave is propagated with certain numerical schemes for a linear wave equation

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

Recovery of Piecewise Smooth Images from Few Fourier Samples

Recovery of Piecewise Smooth Images from Few Fourier Samples Recovery of Piecewise Smooth Images from Few Fourier Samples Greg Ongie*, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa SampTA 2015 Washington, D.C. 1. Introduction 2.

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Tomographic Image Reconstruction in Noisy and Limited Data Settings.

Tomographic Image Reconstruction in Noisy and Limited Data Settings. Tomographic Image Reconstruction in Noisy and Limited Data Settings. Syed Tabish Abbas International Institute of Information Technology, Hyderabad syed.abbas@research.iiit.ac.in July 1, 2016 Tabish (IIIT-H)

More information

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

Unstructured Grid Numbering Schemes for GPU Coalescing Requirements

Unstructured Grid Numbering Schemes for GPU Coalescing Requirements Unstructured Grid Numbering Schemes for GPU Coalescing Requirements Andrew Corrigan 1 and Johann Dahm 2 Laboratories for Computational Physics and Fluid Dynamics Naval Research Laboratory 1 Department

More information

Turbulence et Génération de Bruit Equipe de recherche du Centre Acoustique LMFA, UMR CNRS 5509, Ecole Centrale de Lyon Simulation Numérique en Aéroacoustique Institut Henri Poincaré - 16 novembre 2006

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

Development of Hybrid Fluid Jet / Float Polishing Process

Development of Hybrid Fluid Jet / Float Polishing Process COMSOL Conference - Tokyo 2013 Development of Hybrid Fluid Jet / Float Polishing Process A. Beaucamp, Y. Namba Dept. of Mechanical Engineering, Chubu University, Japan Zeeko LTD, United Kingdom Research

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Spectral Compression of Mesh Geometry

Spectral Compression of Mesh Geometry Spectral Compression of Mesh Geometry Zachi Karni, Craig Gotsman SIGGRAPH 2000 1 Introduction Thus far, topology coding drove geometry coding. Geometric data contains far more information (15 vs. 3 bits/vertex).

More information

A ow-condition-based interpolation nite element procedure for triangular grids

A ow-condition-based interpolation nite element procedure for triangular grids INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2006; 51:673 699 Published online in Wiley InterScience (www.interscience.wiley.com).1246 A ow-condition-based interpolation

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

(x,y ) 3 (x,y ) (x,y ) φ 1

(x,y ) 3 (x,y ) (x,y ) φ 1 Chapter 4 Finite Element Approximation 4. Introduction Our goal in this chapter is the development of piecewise-polynomial approximations U of a two- or three-dimensional function u. For this purpose,

More information

A fast direct solver for high frequency scattering from a cavity in two dimensions

A fast direct solver for high frequency scattering from a cavity in two dimensions 1/31 A fast direct solver for high frequency scattering from a cavity in two dimensions Jun Lai 1 Joint work with: Leslie Greengard (CIMS) Sivaram Ambikasaran (CIMS) Workshop on fast direct solver, Dartmouth

More information

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Ivan Christov Bojan Popov Department of Mathematics, Texas A&M University, College Station, Texas

More information

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids Preprint accepted in Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2018.06.019 From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Ivan Christov 1,* Bojan Popov 1 Peter Popov 2 1 Department of Mathematics, 2 Institute for Scientific

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Advanced Wind Energy Bernhard Stoevesandt, Gerald Steinfeld, Leo Höning Computational Fluid Dynamics Lehrbrief PUBLIKATION DER BILD UNGS ALLI ANZ MINT.ONL INE: UNIVERSITÄT OLDENBUR G, UNIVERSITÄT K ASSE

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Meshing of flow and heat transfer problems

Meshing of flow and heat transfer problems Meshing of flow and heat transfer problems Luyao Zou a, Zhe Li b, Qiqi Fu c and Lujie Sun d School of, Shandong University of science and technology, Shandong 266590, China. a zouluyaoxf@163.com, b 1214164853@qq.com,

More information

Optimization to Reduce Automobile Cabin Noise

Optimization to Reduce Automobile Cabin Noise EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01-05 June 2008. Optimization to Reduce Automobile Cabin Noise Harold Thomas, Dilip Mandal, and Narayanan Pagaldipti

More information

Verification of Moving Mesh Discretizations

Verification of Moving Mesh Discretizations Verification of Moving Mesh Discretizations Krzysztof J. Fidkowski High Order CFD Workshop Kissimmee, Florida January 6, 2018 How can we verify moving mesh results? Goal: Demonstrate accuracy of flow solutions

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity

Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity November 8th, 2006 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

arxiv: v1 [math.na] 26 Jun 2014

arxiv: v1 [math.na] 26 Jun 2014 for spectrally accurate wave propagation Vladimir Druskin, Alexander V. Mamonov and Mikhail Zaslavsky, Schlumberger arxiv:406.6923v [math.na] 26 Jun 204 SUMMARY We develop a method for numerical time-domain

More information

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD TASK QUARTERLY 12 No 3, 273 287 FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD ZBIGNIEW KOSMA Institute of Applied Mechanics, Technical University

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Computational Fluid Dynamics using OpenCL a Practical Introduction

Computational Fluid Dynamics using OpenCL a Practical Introduction 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Computational Fluid Dynamics using OpenCL a Practical Introduction T Bednarz

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Spectral(Finite) Volume Method for Conservation Laws on Unstructured Grids

Spectral(Finite) Volume Method for Conservation Laws on Unstructured Grids Journal of Computational Physics 179, 665 697 (2002) doi:10.1006/jcph.2002.7082 Spectral(Finite) Volume Method for Conservation Laws on Unstructured Grids II. Extension to Two-Dimensional Scalar Equation

More information

Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation

Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation Nail A. Gumerov Ross Adelman Ramani Duraiswami University of Maryland Institute for Advanced Computer Studies and Fantalgo,

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

On the high order FV schemes for compressible flows

On the high order FV schemes for compressible flows Applied and Computational Mechanics 1 (2007) 453-460 On the high order FV schemes for compressible flows J. Fürst a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nám. 13, 121 35 Praha, Czech

More information

Conforming Vector Interpolation Functions for Polyhedral Meshes

Conforming Vector Interpolation Functions for Polyhedral Meshes Conforming Vector Interpolation Functions for Polyhedral Meshes Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and

More information

Imagery for 3D geometry design: application to fluid flows.

Imagery for 3D geometry design: application to fluid flows. Imagery for 3D geometry design: application to fluid flows. C. Galusinski, C. Nguyen IMATH, Université du Sud Toulon Var, Supported by ANR Carpeinter May 14, 2010 Toolbox Ginzburg-Landau. Skeleton 3D extension

More information

i.e. variable extrapolation along the characteristic propagation directions. This leads to a family of rst and second-order accurate schemes with an i

i.e. variable extrapolation along the characteristic propagation directions. This leads to a family of rst and second-order accurate schemes with an i Cell-centered Genuinely Multidimensional Upwind Algorithms and Structured Meshes P. Van Ransbeeck, Ch. Hirsch Department of Fluid Mechanics Vrije Universiteit Brussel Brussels, Belgium A family of cell-centered

More information

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Reports of Research Institute for Applied Mechanics, Kyushu University, No.150 (60-70) March 2016 Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Report 2: For the Case

More information

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface

More information

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods Scott A. Sarra, Derek Sturgill Marshall University, Department of Mathematics, One John Marshall Drive, Huntington

More information

An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes

An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes S. May and M. Berger Research Report No. 2015-44 December 2015 Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Null space computation of sparse singular matrices with MUMPS

Null space computation of sparse singular matrices with MUMPS Null space computation of sparse singular matrices with MUMPS Xavier Vasseur (CERFACS) In collaboration with Patrick Amestoy (INPT-IRIT, University of Toulouse and ENSEEIHT), Serge Gratton (INPT-IRIT,

More information

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more Parallel Free-Surface Extension of the Lattice-Boltzmann Method A Lattice-Boltzmann Approach for Simulation of Two-Phase Flows Stefan Donath (LSS Erlangen, stefan.donath@informatik.uni-erlangen.de) Simon

More information

Heat Kernels and Diffusion Processes

Heat Kernels and Diffusion Processes Heat Kernels and Diffusion Processes Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Solving

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

However, m pq is just an approximation of M pq. As it was pointed out by Lin [2], more precise approximation can be obtained by exact integration of t

However, m pq is just an approximation of M pq. As it was pointed out by Lin [2], more precise approximation can be obtained by exact integration of t FAST CALCULATION OF GEOMETRIC MOMENTS OF BINARY IMAGES Jan Flusser Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Pod vodarenskou vez 4, 82 08 Prague 8, Czech

More information

(x, y, z) m 2. (x, y, z) ...] T. m 2. m = [m 1. m 3. Φ = r T V 1 r + λ 1. m T Wm. m T L T Lm + λ 2. m T Hm + λ 3. t(x, y, z) = m 1

(x, y, z) m 2. (x, y, z) ...] T. m 2. m = [m 1. m 3. Φ = r T V 1 r + λ 1. m T Wm. m T L T Lm + λ 2. m T Hm + λ 3. t(x, y, z) = m 1 Class 1: Joint Geophysical Inversions Wed, December 1, 29 Invert multiple types of data residuals simultaneously Apply soft mutual constraints: empirical, physical, statistical Deal with data in the same

More information