Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity

Size: px
Start display at page:

Download "Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity"

Transcription

1 Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity November 8th, 2006

2 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation Forward, Backward and Contact Problems Results Problems with the Full Model Modelling Skin as a Membrane The Backward Problem for Skin

3 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation Forward, Backward and Contact Problems Results Problems with the Full Model Modelling Skin as a Membrane The Backward Problem for Skin

4 Motivation for a Deformable Model of the Breast Problem is to register images and match tumour location The patient is: prone during Magnetic Resonance Imaging (MRI) standing, with the breast compressed during mammography (various possible directions of compression) supine during surgery CC mammogram MLO mammogram MR image

5 Motivation for a Deformable Model of the Breast Given a point in the CC mammogram, what is the equivalent curve in the MLO mammogram? CC mammogram MLO mammogram

6 Motivation for a Deformable Model of the Breast We want to build a patient-specific, anatomically-accurate finite element model of the breast The model can be used to: Predict tumour location during surgery/biopsy Match MRI with mammograms, or CC with MLO Perform temporal matching Plan reconstructive surgery As a teaching/visualisation tool for radiologists

7 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation Forward, Backward and Contact Problems Results Problems with the Full Model Modelling Skin as a Membrane The Backward Problem for Skin

8 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

9 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

10 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

11 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

12 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

13 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

14 Mesh Generation Mesh Generation Process MR images: find boundary and segment interior Segment interior into fat, fibroglandular or tumour Fit a cubic-hermite mesh, convert into trilinear mesh Use segmentation data to assign a tissue to each element

15 Details for Breast Deformation Modelling Assumptions Assume tissues are isotropic Assume tissues are incompressible Assume hyperelasticity Boundary Conditions Assume the pectoral muscle stays fixed Simulations Normal nonlinear deformations Backward deformations... Constrained deformations...

16 Details for Breast Deformation Modelling Assumptions Assume tissues are isotropic Assume tissues are incompressible Assume hyperelasticity Boundary Conditions Assume the pectoral muscle stays fixed Simulations Normal nonlinear deformations Backward deformations... Constrained deformations...

17 Details for Breast Deformation Modelling Assumptions Assume tissues are isotropic Assume tissues are incompressible Assume hyperelasticity Boundary Conditions Assume the pectoral muscle stays fixed Simulations Normal nonlinear deformations Backward deformations... Constrained deformations...

18 Details for Breast Deformation Modelling Assumptions Assume tissues are isotropic Assume tissues are incompressible Assume hyperelasticity Boundary Conditions Assume the pectoral muscle stays fixed Simulations Normal nonlinear deformations Backward deformations... Constrained deformations...

19 Details for Breast Deformation Modelling Assumptions Assume tissues are isotropic Assume tissues are incompressible Assume hyperelasticity Boundary Conditions Assume the pectoral muscle stays fixed Simulations Normal nonlinear deformations Backward deformations... Constrained deformations...

20 Details for Breast Deformation Modelling Assumptions Assume tissues are isotropic Assume tissues are incompressible Assume hyperelasticity Boundary Conditions Assume the pectoral muscle stays fixed Simulations Normal nonlinear deformations Backward deformations... Constrained deformations...

21 Nonlinear Elasticity

22 Nonlinear Elasticity Basics Given a deformation x x(x): Define the deformation gradient F i M = xi X M Let the true stress (the Cauchy stress) be given by σ ij Cauchy s law Force balance in the deformed body gives σij + ρg i = 0 x j The corresponding weak form is σ ij (δx i) x j + ρg i δx i dv = 0 δx Ω

23 Nonlinear Elasticity Reformulation in terms of X We define the 2nd Piola-Kirchoff stress, T MN as the force acting on the undeformed body per unit undeformed area Cauchy s law can be restated as ) MN xi (T X M X N + ρg i = 0 in Ω 0 The corresponding weak form is MN xi (δx i ) T X Ω0 M X N + ρgi δx i dv 0 = 0 δx T MN and FM i related through the material law

24 The Backward Problem The Forward and Backward Problems Forward problem: given undeformed (unstressed) state, find the deformed state. Backward problem: given deformed, find undeformed. Not been carried out before with breast deformations. For forward problems start from MN xi (δx i ) T X Ω0 M X N + ρgi δx i dv 0 = 0 δx For backward problems start from σ ij (δx i) x j + ρg i δx i dv = 0 δx Ω

25 The Backward Problem Result of a forward simulation on a cube Result of subsequent backward simulation

26 The Backward Problem Speed Initially it took much longer to compute solutions to the backward problem

27 The Backward Problem and GMRES The trivial distinction between σ ij (u(x), p(x)) (δu j) Ω x i dv ± (det(f(u)) 1)δp dv Ω = 0 δu, δp makes a huge impact on GMRES convergence.

28 The Backward Problem and GMRES Consider the Stokes Problem 2 u + p = f ± u = 0 [ ] A B matrix = B T e/values real, some -ve 0 [ ] A B + matrix = B T e/values have +ve real 0 part Latter is much better for GMRES

29 The Backward Problem and GMRES Even though equations are nonlinear, the matrices have structure dominated by the linear part The choice of weak form (for both forward and backward problems) is very important For example, we must choose + in: MN xi (δx i ) T X Ω0 M X N ± (det F 1)δp dv 0 = 0 δx, δp This doesn t seem to be well-known

30 The Contact Problem Simulation of mammography - solve a deformation problem with inequality constraints Formulate equations as an energy minimisation and add a penalty function Used the Augmented Lagrangian Method: 1 ( ) 2 min : total energy + [ λ(x) + Pd(x)]+ ds0 2P skin Here P is a large penalty parameter d measures violation of the constraint λ are parameters which tend to the true Lagrange multipliers

31 Results Motivation CC compression MLO compression

32 Motivation Results simulated CC mammogram, one simulated MLO mammogram, point highlighted (red) corresponding curve in red

33 Results Motivation CC compressed state reference state MLO compressed state

34 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation Forward, Backward and Contact Problems Results Problems with the Full Model Modelling Skin as a Membrane The Backward Problem for Skin

35 Problems with the Full Model Badly-shaped skin elements Thin skin elements are badly-shaped - drastically slows Newton convergence Numerical results show little sensitivity to skin stiffness - probably due to lack of residual stress

36 Problems with the Full Model Replace thin 3D skin elements with 2D surface elements - model skin as a membrane Need to compute and include surface integral contribution thin skin membrane skin

37 Modelling Skin as a Membrane Another Reformation... Define new coordinate systems (θ α ) Define tangent vectors (A α ) and metric tensors. Let a αβ and A αβ be the metric tensors on deformed and undeformed surfaces Then strain is E αβ = 1 2 (a αβ A αβ ) Partial deriv.s covariant deriv.s Curvature becomes important

38 Modelling Skin as a Membrane Asymptotic derivation of the membrane equations Perform an asymptotic analysis in the thickness h 0 Analysis allowed us to compute the membrane strain energy, W mem (a αβ ), that is the exact equivalent to the 3D strain W(C MN ) Then considered a fluid-filled membrane model, for which the equation of state was F αβ ;β = 0 - essentially tension = constant F αβ b αβ = P - essentially tension*curvature = pressure

39 Modelling Skin as a Membrane Membrane strain energy worked... Removed the need for thin elements and fixed slow convergence Skin model Time (s) No. Newton iterations thin skin no skin 71 6 membrane thin skin no skin membrane 314 9

40 Modelling Skin as a Membrane However.. Residual stress in the skin was still an issue The fluid-filled membrane model needed residual stress to be solvable This leads to the backward problem for skin: given an unloaded but stressed state, compute the stresses..

41 Backward Problems for Skin (a) membrane with elastic interior, under gravity, in contact, (b) membrane with elastic interior, under gravity, (c) membrane with elastic interior, (d) membrane with fluid interior

42 The Backward Fluid-Filled Membrane Problem Start from: F αβ ;β = 0 F αβ b αβ = P Here: P, the pressure, is known b αβ, deformed curvature, is known F αβ F αβ (a αβ, A αβ ), where a αβ, A αβ are the known and unknown metrics Integrate for F αβ, then solve for A α,β, then integrate for X Even this simplified problem is difficult..

43 The Backward Fluid-Filled Membrane Problem Analysis into this revealed that: An undeformed shape exists (but may not be unique) Don t actually need the undeformed shape, X, just the undeformed metric, A αβ Would have to solve a mixed elliptic-hyperbolic problem One boundary condition is enough (sensible to specify it on the curve of zero Gaussian curvature) Much more research required into: Backward problem on a fluid-filled membrane Backward problem on a membrane with elastic interior

44 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation Forward, Backward and Contact Problems Results Problems with the Full Model Modelling Skin as a Membrane The Backward Problem for Skin

45 Conclusions Have shown modelling breast deformation with nonlinear elasticity is computationally tractable Discussed the three types of simulation necessary Used a patient-specific model to simulate surgical and mammographic breast shape Motivated and introduced a membrane skin model Described issues involved with membrane skin

46 Further Work Need proper validation of results, especially with patient studies Further analysis of required complexity of the model Modelling the effect of Cooper s Ligaments Analysis of the backward problem for skin

Predicting Tumour Location by Simulating Large Deformations of the Breast using a 3D Finite Element Model and Nonlinear Elasticity

Predicting Tumour Location by Simulating Large Deformations of the Breast using a 3D Finite Element Model and Nonlinear Elasticity Predicting Tumour Location by Simulating Large Deformations of the Breast using a 3D Finite Element Model and Nonlinear Elasticity P. Pathmanathan 1 D. Gavaghan 1 J. Whiteley 1 M. Brady 2 M. Nash 3 P.

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

INTERIOR POINT METHOD BASED CONTACT ALGORITHM FOR STRUCTURAL ANALYSIS OF ELECTRONIC DEVICE MODELS

INTERIOR POINT METHOD BASED CONTACT ALGORITHM FOR STRUCTURAL ANALYSIS OF ELECTRONIC DEVICE MODELS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

A fast breast nonlinear elastography reconstruction technique using the Veronda-Westman model

A fast breast nonlinear elastography reconstruction technique using the Veronda-Westman model A fast breast nonlinear elastography reconstruction technique using the Veronda-Westman model Mohammadhosein Amooshahi a and Abbas Samani abc a Department of Electrical & Computer Engineering, University

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Finite Element Simulation of Moving Targets in Radio Therapy

Finite Element Simulation of Moving Targets in Radio Therapy Finite Element Simulation of Moving Targets in Radio Therapy Pan Li, Gregor Remmert, Jürgen Biederer, Rolf Bendl Medical Physics, German Cancer Research Center, 69120 Heidelberg Email: pan.li@dkfz.de Abstract.

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Simulation Studies for Predicting Surgical Outcomes in Breast Reconstructive Surgery

Simulation Studies for Predicting Surgical Outcomes in Breast Reconstructive Surgery Simulation Studies for Predicting Surgical Outcomes in Breast Reconstructive Surgery Celeste Williams 1, Ioannis A. Kakadaris 1, K. Ravi-Chandar 2, Michael J. Miller 3, and Charles W. Patrick 3 1 Visual

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi, J.P. Escallo n Lecture December, 2013

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi, J.P. Escallo n Lecture December, 2013 The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi, J.P. Escallo n Lecture 11-17 December, 2013 Institute of Structural Engineering Method of Finite Elements

More information

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

A step-by-step review on patient-specific biomechanical finite element models for breast MRI to x-ray mammography registration

A step-by-step review on patient-specific biomechanical finite element models for breast MRI to x-ray mammography registration A step-by-step review on patient-specific biomechanical finite element models for breast MRI to x-ray mammography registration Eloy Garcıa a) Institute of Computer Vision and Robotics, University of Girona

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

DEFORMATION MODELING OF BREAST BASED ON MRI AND FEM.

DEFORMATION MODELING OF BREAST BASED ON MRI AND FEM. Sandomierz, 5 th 9 th September 2016 DEFORMATION MODELING OF BREAST BASED ON MRI AND FEM. Marta Danch-Wierzchowska 1,, Damian Borys 1, Andrzej Swierniak 1 1 Institute of Automatic Control, Silesian University

More information

TOPOLOGY OPTIMIZATION OF ELASTOMER DAMPING DEVICES FOR STRUCTURAL VIBRATION REDUCTION

TOPOLOGY OPTIMIZATION OF ELASTOMER DAMPING DEVICES FOR STRUCTURAL VIBRATION REDUCTION 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK TOPOLOGY OPTIMIZATION OF ELASTOMER DAMPING DEVICES

More information

PATCH TEST OF HEXAHEDRAL ELEMENT

PATCH TEST OF HEXAHEDRAL ELEMENT Annual Report of ADVENTURE Project ADV-99- (999) PATCH TEST OF HEXAHEDRAL ELEMENT Yoshikazu ISHIHARA * and Hirohisa NOGUCHI * * Mitsubishi Research Institute, Inc. e-mail: y-ishi@mri.co.jp * Department

More information

GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION

GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION 1 GEOMETRICAL CONSTRAINTS IN THE LEVEL SET METHOD FOR SHAPE AND TOPOLOGY OPTIMIZATION Grégoire ALLAIRE CMAP, Ecole Polytechnique Results obtained in collaboration with F. Jouve (LJLL, Paris 7), G. Michailidis

More information

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can TIPS www.ansys.belcan.com 鲁班人 (http://www.lubanren.com/weblog/) Picking an Element Type For Structural Analysis: by Paul Dufour Picking an element type from the large library of elements in ANSYS can be

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook Dynamic Points: When Geometry Meets Physics Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Point Based Graphics Pipeline Acquisition Modeling Rendering laser scanning

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

ADJOINT OPTIMIZATION OF 2D-AIRFOILS IN INCOMPRESSIBLE FLOWS

ADJOINT OPTIMIZATION OF 2D-AIRFOILS IN INCOMPRESSIBLE FLOWS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

A Numerical Form Finding Method for Minimal Surface of Membrane Structure

A Numerical Form Finding Method for Minimal Surface of Membrane Structure 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, US Numerical Form Finding Method for Minimal Surface of Membrane Structure Koichi Yamane 1, Masatoshi

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

Geometrical Modeling of the Heart

Geometrical Modeling of the Heart Geometrical Modeling of the Heart Olivier Rousseau University of Ottawa The Project Goal: Creation of a precise geometrical model of the heart Applications: Numerical calculations Dynamic of the blood

More information

Material Properties Estimation of Layered Soft Tissue Based on MR Observation and Iterative FE Simulation

Material Properties Estimation of Layered Soft Tissue Based on MR Observation and Iterative FE Simulation Material Properties Estimation of Layered Soft Tissue Based on MR Observation and Iterative FE Simulation Mitsunori Tada 1,2, Noritaka Nagai 3, and Takashi Maeno 3 1 Digital Human Research Center, National

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

Three dimensional finite element model for lesion correspondence in breast imaging

Three dimensional finite element model for lesion correspondence in breast imaging University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2003 Three dimensional finite element model for lesion correspondence in breast imaging Yan, Qiu University

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Challenges in Design Optimization of Textile Reinforced Composites

Challenges in Design Optimization of Textile Reinforced Composites Challenges in Design Optimization of Textile Reinforced Composites Colby C. Swan, Assoc. Professor HyungJoo Kim, Research Asst. Young Kyo Seo, Research Assoc. Center for Computer Aided Design The University

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

Realistic Animation of Fluids

Realistic Animation of Fluids Realistic Animation of Fluids p. 1/2 Realistic Animation of Fluids Nick Foster and Dimitri Metaxas Realistic Animation of Fluids p. 2/2 Overview Problem Statement Previous Work Navier-Stokes Equations

More information

Introduction to geodynamic modelling Introduction to DOUAR

Introduction to geodynamic modelling Introduction to DOUAR Introduction to geodynamic modelling Introduction to DOUAR David Whipp and Lars Kaislaniemi Department of Geosciences and Geography, Univ. Helsinki 1 Goals of this lecture Introduce DOUAR, a 3D thermomechanical

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Imaging of flow in porous media - from optimal transport to prediction

Imaging of flow in porous media - from optimal transport to prediction Imaging of flow in porous media - from optimal transport to prediction Eldad Haber Dept of EOS and Mathematics, UBC October 15, 2013 With Rowan Lars Jenn Cocket Ruthotto Fohring Outline Prediction is very

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

CHAPTER 3. Elementary Fluid Dynamics

CHAPTER 3. Elementary Fluid Dynamics CHAPTER 3. Elementary Fluid Dynamics - Understanding the physics of fluid in motion - Derivation of the Bernoulli equation from Newton s second law Basic Assumptions of fluid stream, unless a specific

More information

Surgery Simulation and Planning

Surgery Simulation and Planning Surgery Simulation and Planning S. H. Martin Roth Dr. Rolf M. Koch Daniel Bielser Prof. Dr. Markus Gross Facial surgery project in collaboration with Prof. Dr. Dr. H. Sailer, University Hospital Zurich,

More information

Locking-Free Smoothed Finite Element Method with Tetrahedral/Triangular Mesh Rezoning in Severely Large Deformation Problems

Locking-Free Smoothed Finite Element Method with Tetrahedral/Triangular Mesh Rezoning in Severely Large Deformation Problems Locking-Free Smoothed Finite Element Method with Tetrahedral/Triangular Mesh Rezoning in Severely Large Deformation Problems Yuki ONISHI, Kenji AMAYA Tokyo Institute of Technology (Japan) P. 1 P. 1 Motivation

More information

EUROPEAN COMSOL CONFERENCE 2010

EUROPEAN COMSOL CONFERENCE 2010 Presented at the COMSOL Conference 2010 Paris EUROPEAN COMSOL CONFERENCE 2010 Paris November 17-19, 2010 FROM CT SCAN TO PLANTAR PRESSURE MAP DISTRIBUTION OF A 3D ANATOMIC HUMAN FOOT Pasquale Franciosa

More information

AXIAL OF OF THE. M. W. Hyer. To mitigate the. Virginia. SUMMARY. the buckling. circumference, Because of their. could.

AXIAL OF OF THE. M. W. Hyer. To mitigate the. Virginia. SUMMARY. the buckling. circumference, Because of their. could. IMPROVEMENT OF THE AXIAL BUCKLING CAPACITY OF COMPOSITE ELLIPTICAL CYLINDRICAL SHELLS M. W. Hyer Department of Engineering Science and Mechanics (0219) Virginia Polytechnic Institute and State University

More information

Polygonal Finite Elements for Finite Elasticity

Polygonal Finite Elements for Finite Elasticity Polygonal Finite Elements for Finite Elasticity Heng Chi a, Cameron Talischi b, Oscar Lopez-Pamies b, Glaucio H. Paulino a a: Georgia Institute of Technology b: University of Illinois at Urbana-Champaign

More information

Simulation of metal forming processes :

Simulation of metal forming processes : Simulation of metal forming processes : umerical aspects of contact and friction People Contact algorithms LTAS-MCT in a few words Laboratoire des Techniques Aéronautiques et Spatiales (Aerospace Laboratory)

More information

Chapter 5: Introduction to Differential Analysis of Fluid Motion

Chapter 5: Introduction to Differential Analysis of Fluid Motion Chapter 5: Introduction to Differential 5-1 Conservation of Mass 5-2 Stream Function for Two-Dimensional 5-3 Incompressible Flow 5-4 Motion of a Fluid Particle (Kinematics) 5-5 Momentum Equation 5-6 Computational

More information

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket RESEARCH ARTICLE OPEN ACCESS Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket Gowtham K L*, Shivashankar R. Srivatsa** *(Department of Mechanical Engineering, B. M.

More information

1. Carlos A. Felippa, Introduction to Finite Element Methods,

1. Carlos A. Felippa, Introduction to Finite Element Methods, Chapter Finite Element Methods In this chapter we will consider how one can model the deformation of solid objects under the influence of external (and possibly internal) forces. As we shall see, the coupled

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Parallelizing a Real-Time 3D Finite Element Algorithm using CUDA: Limitations, Challenges and Opportunities.

Parallelizing a Real-Time 3D Finite Element Algorithm using CUDA: Limitations, Challenges and Opportunities. Parallelizing a Real-Time 3D Finite Element Algorithm using CUDA: Limitations, Challenges and Opportunities. Vukasin Strbac Biomechanics section KU Leuven 2/21 The Finite Element Method and the GPU Basically

More information

Isogeometric Analysis of Fluid-Structure Interaction

Isogeometric Analysis of Fluid-Structure Interaction Isogeometric Analysis of Fluid-Structure Interaction Y. Bazilevs, V.M. Calo, T.J.R. Hughes Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA e-mail: {bazily,victor,hughes}@ices.utexas.edu

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Per-Olof Persson University of California, Berkeley, Berkeley, CA 9472-384, U.S.A. Jaime Peraire Massachusetts Institute of Technology,

More information

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY J. Sauvé 1*, M. Dubé 1, F. Dervault 2, G. Corriveau 2 1 Ecole de technologie superieure, Montreal, Canada 2 Airframe stress, Advanced Structures,

More information

Towards Meshless Methods for Surgical Simulation

Towards Meshless Methods for Surgical Simulation Ashley Horton, Adam Wittek, Karol Miller Intelligent Systems for Medicine Laboratory School of Mechanical Engineering, The University of Western Australia 35 Stirling Highway, Crawley, Perth WA 6009 Australia

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Topology Optimization and JuMP

Topology Optimization and JuMP Immense Potential and Challenges School of Engineering and Information Technology UNSW Canberra June 28, 2018 Introduction About Me First year PhD student at UNSW Canberra Multidisciplinary design optimization

More information

Viscoelastic Registration of Medical Images

Viscoelastic Registration of Medical Images Viscoelastic Registration of Medical Images Zhao Yi Justin Wan Abstract Since the physical behavior of many tissues is shown to be viscoelastic, we propose a novel registration technique for medical images

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

Dynamic Computational Modeling of the Glass Container Forming Process

Dynamic Computational Modeling of the Glass Container Forming Process Dynamic Computational Modeling of the Glass Container Forming Process Matthew Hyre 1, Ryan Taylor, and Morgan Harris Virginia Military Institute, Lexington, Virginia, USA Abstract Recent advances in numerical

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

Particle-based Fluid Simulation

Particle-based Fluid Simulation Simulation in Computer Graphics Particle-based Fluid Simulation Matthias Teschner Computer Science Department University of Freiburg Application (with Pixar) 10 million fluid + 4 million rigid particles,

More information

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

arxiv: v2 [math.oc] 12 Feb 2019

arxiv: v2 [math.oc] 12 Feb 2019 A CENTRAL PATH FOLLOWING METHOD USING THE NORMALIZED GRADIENTS Long Chen 1, Wenyi Chen 2, and Kai-Uwe Bletzinger 1 arxiv:1902.04040v2 [math.oc] 12 Feb 2019 1 Chair of Structural Analysis, Technical University

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Collocation and optimization initialization

Collocation and optimization initialization Boundary Elements and Other Mesh Reduction Methods XXXVII 55 Collocation and optimization initialization E. J. Kansa 1 & L. Ling 2 1 Convergent Solutions, USA 2 Hong Kong Baptist University, Hong Kong

More information

Approximation Methods in Optimization

Approximation Methods in Optimization Approximation Methods in Optimization The basic idea is that if you have a function that is noisy and possibly expensive to evaluate, then that function can be sampled at a few points and a fit of it created.

More information

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2 Universidad de Chile The numerical simulation of complex PDE problems Facultad de Ciencias Físicas y Matemáticas P. Frey, M. De Buhan Year 2008 MA691 & CC60X A numerical simulation project The finite element

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Non-linear Finite Element Analysis of CRTS Reflectors

Non-linear Finite Element Analysis of CRTS Reflectors Non-linear Finite Element Analysis of CRTS Reflectors C.Y. Lai and S. Pellegrino CUED/D-STRUCT/TR9 European Space Agency Contractor Report The work presented in this report was carried out under an ESA

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

STATISTICAL ATLAS-BASED SUB-VOXEL SEGMENTATION OF 3D BRAIN MRI

STATISTICAL ATLAS-BASED SUB-VOXEL SEGMENTATION OF 3D BRAIN MRI STATISTICA ATAS-BASED SUB-VOXE SEGMENTATION OF 3D BRAIN MRI Marcel Bosc 1,2, Fabrice Heitz 1, Jean-Paul Armspach 2 (1) SIIT UMR-7005 CNRS / Strasbourg I University, 67400 Illkirch, France (2) IPB UMR-7004

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Eduardo Luís Gaertner Marcos Giovani Dropa de Bortoli EMBRACO S.A. Abstract A linear elastic model is often not appropriate

More information

An optimization method for generating self-equilibrium shape of curved surface from developable surface

An optimization method for generating self-equilibrium shape of curved surface from developable surface 25-28th September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.) An optimization method for generating self-equilibrium shape of curved surface from developable surface Jinglan CI *, Maoto

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Isogeometric Analysis Application to Car Crash Simulation

Isogeometric Analysis Application to Car Crash Simulation Isogeometric Analysis Application to Car Crash Simulation S. Bouabdallah 2, C. Adam 2,3, M. Zarroug 2, H. Maitournam 3 De Vinci Engineering Lab, École Supérieure d Ingénieurs Léonard de Vinci 2 Direction

More information

Generalized framework for solving 2D FE problems

Generalized framework for solving 2D FE problems ENGN 2340 Computational Methods in Structural Mechanics Generalized framework for solving 2D FE problems Karthik Thalappully Overview The goal of the project was development of a FEA framework in C++ to

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information