Chapter 36 Diffraction

Size: px
Start display at page:

Download "Chapter 36 Diffraction"

Transcription

1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single slit flares diffracts in Young's experiment. Diffraction through a single slit or past either a narrow obstacle or an edge produces rich interference patterns. The physics of diffraction plays an important role in many scientific and engineering fields. In this chapter we explain diffraction using the wave nature of light and discuss several applications of diffraction in science and technology. (36-1)

2 Diffraction and the Wave Theory of Light Diffraction pattern from a single narrow slit. Light Side or secondary maxima Fresnel Bright Spot. Central maximum These patterns cannot be explained using geometrical optics (Ch. 34)! Light Bright spot (36-)

3 Diffraction by a Single Slit: Locating the Minima When the path length difference between rays r 1 and r is /, the two rays will be out of phase when they reach P 1 on the screen, resulting in destructive interference at P 1. The path length difference is the distance from the starting point of r at the center of the slit to point b. For D>>a, the path length difference between rays r 1 and r is (a/) sin. Fig (36-3)

4 Diffraction by a Single Slit: Locating the Minima, cont'd Repeat previous analysis for pairs of rays, each separated by a vertical distance of a/ at the slit. Setting path length difference to / for each pair of rays, we obtain the first dark fringes at: a sin asin (first minimum) For second minimum, divide slit into 4 zones of equal widths a/4 (separation between pairs of rays). Destructive interference occurs when the path length difference for each pair is /. a sin asin 4 (second minimum) Dividing the slit into increasingly larger even numbers of zones, we can find higher order minima: asin m, for m 1,,3 (minima-dark fringes) Fig (36-4)

5 Intensity in Single-Slit Diffraction, Qualitatively To obtain the locations of the minima, the slit was equally divided into N zones, each with width x. Each zone acts as a source of Huygens wavelets. Now these zones can be superimposed at the screen to obtain the intensity as a function of, the angle to the central axis. To find the net electric field E (intensity E ) at point P on the screen, we need the phase relationships among the wavelets arriving from different zones: phase difference path length difference xsin N=18 1st side max. = 0 1st min. small Fig (36-5)

6 Intensity in Single-Slit Diffraction, Quantitatively Here we will show that the intensity at the screen due to a single slit is: I I m sin (36-5) 1 a where sin (36-6) In Eq. 36-5, minima occur when: m m, for m 1,,3 If we put this into Eq we find: a sin, for m 1,,3 Fig or asin m, for m 1,,3 (minima-dark fringes) (36-6)

7 Proof of Eqs and 36-6 If we divide the slit into infinitesimally wide zones x, the arc of the phasors approaches the arc of a circle. The length of the arc is E m. is the difference in phase between the infinitesimal vectors at the left and right ends of the arc. is also the angle between the radii marked R. The dashed line bisecting f forms two triangles, where: Fig In radian measure: E m R Solving the previous equations for E one obtains: The intensity at the screen is therefore: I I m E E m. I I m sin E 1 sin. R E E m is related to the path length difference across the entire slit: asin 1 (36-7) sin. 1

8 Distant point source, e,g., star Diffraction by a Circular Aperture d lens sin 1. (1st min.- circ. aperture) d Image is not a point, as expected from geometrical optics! Diffraction is responsible for this image pattern. a Light Light a sin 1. (1st min.- single slit) a (36-8)

9 Resolvability Rayleigh s Criterion: Two point sources are barely resolvable if their angular separation R results in the central maximum of the diffraction pattern of one source s image centered on the first minimum of the diffraction pattern of the other source s image. Fig R small 1 R sin (Rayleigh's criterion) d d (36-9)

10 Diffraction by a Double Slit In the double-slit experiment described in Ch. 35 we assumed that the slit width a<<. What if this is not the case? Two vanishingly narrow slits a<< Single slit a~ Fig Two Single slits a~ I I m sin cos (double slit) d a sin sin (36-10)

11 Diffraction Gratings A device with N slits (rulings) can be used to manipulate light, such as separate different wavelengths of light that are contained in a single beam. How does a diffraction grating affect monochromatic light? Fig Fig d sin m for m 0,1, (maxima-lines) (36-11)

12 Width of Lines The ability of the diffraction grating to resolve (separate) different wavelengths depends on the width of the lines (maxima). Fig Fig (36-1)

13 Width of Lines, cont d In this course, a sound wave is roughly defined as any longitudinal wave (particles moving along the direction of wave propagation). Nd sin hw, sin hw hw hw (half width of central line) Nd Fig hw (half width of line at ) Nd cos (36-13)

14 Grating Spectroscope Separates different wavelengths (colors) of light into distinct diffraction lines Fig Fig. 36- (36-14)

15 Optically Variable Graphics Gratings embedded in the device send out hundreds or even thousands of diffraction orders to produce virtual images that vary with the viewing angle. This is complicated to design and extremely difficult to counterfeit, so it makes an excellent security graphic. Fig (36-15)

16 Gratings: Dispersion and Resolving Power Dispersion: the angular spreading of different wavelengths by a grating D (dispersion defined) D d m cos (dispersion of a grating) (36-30) Resolving Power R avg (resolving power defined) R Nm (resolving power of a grating) (36-3) (36-16)

17 Proof of Eq Angular position of maxima dsin m Differential of first equation (what change in angle does a change in wavelength produce?) d cos d md For small angles d and d d cos m d m cos (36-17)

18 Proof of Eq Rayleigh's criterion for half width to resolve two lines hw Nd cos Substituting for previous slide in calculation on hw N m R Nm (36-18)

19 Dispersion and Resolving Power Compared In this course, a sound wave is roughly defined as any longitudinal wave (particles moving along the direction of wave propagation). Table 36-1 Grating N d (nm) D ( o / m) R A o B o C o Data are for = 589 nm and m = 1 Fig (36-19)

20 X-Ray Diffraction X-rays are electromagnetic radiation with wavelength ~1 Å = m (visible light ~5.5x10-7 m). X-ray generation Fig X-ray wavelengths too short to be resolved by a standard optical grating m d nm 1 1 sin sin nm (36-0)

21 X-Ray Diffraction, cont d Diffraction of x-rays by crystal: spacing d of adjacent crystal planes on the order of 0.1 nm three-dimensional diffraction grating with diffraction maxima along angles where reflections from different planes interfere constructively d sin m for m 0,1, (Bragg's law) Fig (36-1)

22 X-Ray Diffraction, cont d Interplanar spacing d is related to the unit cell dimension a 0 : 5 a 5 d 4 a or d 0.36a Fig Not only can crystals be used to separate different x-ray wavelengths, but x-rays in turn can be used to study crystals, for example, to determine the type of crystal ordering and a 0. (36-)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light Diffraction Goals for lecture To see how a sharp edge or an aperture affect light To analyze single-slit diffraction and calculate the intensity of the light To investigate the effect on light of many

More information

Chapter 4 - Diffraction

Chapter 4 - Diffraction Diffraction is the phenomenon that occurs when a wave interacts with an obstacle. David J. Starling Penn State Hazleton PHYS 214 When a wave interacts with an obstacle, the waves spread out and interfere.

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9 Physics 1502: Lecture 35 Today s Agenda Announcements: Midterm 2: graded soon» solutions Homework 09: Wednesday December 9 Optics Diffraction» Introduction to diffraction» Diffraction from narrow slits»

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Chapter 38 Wave Optics (II)

Chapter 38 Wave Optics (II) Chapter 38 Wave Optics (II) Initiation: Young s ideas on light were daring and imaginative, but he did not provide rigorous mathematical theory and, more importantly, he is arrogant. Progress: Fresnel,

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 9-2 SINGLE-SLIT DIFFRACTION Essential Idea: Single-slit diffraction occurs when a wave is incident upon a slit of approximately the same

More information

Wave Optics. April 9, 2014 Chapter 34 1

Wave Optics. April 9, 2014 Chapter 34 1 Wave Optics April 9, 2014 Chapter 34 1 Announcements! Remainder of this week: Wave Optics! Next week: Last of biweekly exams, then relativity! Last week: Review of entire course, no exam! Final exam Wednesday,

More information

Final Exam and End Material Test Friday, May 12, 10:00-12:00

Final Exam and End Material Test Friday, May 12, 10:00-12:00 Final Exam and End Material Test Friday, May 12, 10:00-12:00 Test rooms: Instructor Sections Room Dr. Hale F, H 104 Physics Dr. Kurter B, N 125 BCH Dr. Madison K, M B-10 Bertelsmeyer Dr. Parris J St. Pats

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves 1 Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when a beam of light scatters from objects placed in its path.

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit.

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Diffraction amount depends on λ/a proportion If a >> λ diffraction is negligible

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across the

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Physical Optics. 1 st year physics laboratories. University of Ottawa. Physical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Physical optics deals with light as a wave which can bend around obstacles (diffraction)

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Lecture 24 (Diffraction I Single-Slit Diffraction) Physics Spring 2018 Douglas Fields

Lecture 24 (Diffraction I Single-Slit Diffraction) Physics Spring 2018 Douglas Fields Lecture 24 (Diffraction I Single-Slit Diffraction) Physics 262-01 Spring 2018 Douglas Fields Single-Slit Diffraction As we have already hinted at, and seen, waves don t behave as we might have expected

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

Understanding Fraunhofer Diffraction

Understanding Fraunhofer Diffraction [ Assignment View ] [ Eðlisfræði 2, vor 2007 36. Diffraction Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

More information

Chapter 5 Example and Supplementary Problems

Chapter 5 Example and Supplementary Problems Chapter 5 Example and Supplementary Problems Single-Slit Diffraction: 1) A beam of monochromatic light (550 nm) is incident on a single slit. On a screen 3.0 meters away the distance from the central and

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

Single slit diffraction

Single slit diffraction Single slit diffraction Book page 364-367 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference

More information

Chapter 35 &36 Physical Optics

Chapter 35 &36 Physical Optics Chapter 35 &36 Physical Optics Physical Optics Phase Difference & Coherence Thin Film Interference 2-Slit Interference Single Slit Interference Diffraction Patterns Diffraction Grating Diffraction & Resolution

More information

Diffraction: Propagation of wave based on Huygens s principle.

Diffraction: Propagation of wave based on Huygens s principle. Diffraction: In addition to interference, waves also exhibit another property diffraction, which is the bending of waves as they pass by some objects or through an aperture. The phenomenon of diffraction

More information

Interference & Diffraction

Interference & Diffraction Electromagnetism & Light Interference & Diffraction https://youtu.be/iuv6hy6zsd0?t=2m17s Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141?

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Wave Optics. Physics 2B. If two waves exist at the same point in space at the same time, they will interfere with each other.

Wave Optics. Physics 2B. If two waves exist at the same point in space at the same time, they will interfere with each other. Physics 2B Wave Optics Interference If two waves exist at the same point in space at the same time, they will interfere with each other. Interference Superposition Principle for Waves The Principle of

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Module 18: Diffraction-I Lecture 18: Diffraction-I

Module 18: Diffraction-I Lecture 18: Diffraction-I Module 18: iffraction-i Lecture 18: iffraction-i Our discussion of interference in the previous chapter considered the superposition of two waves. The discussion can be generalized to a situation where

More information

Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave

Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave If light coming from infinity point source at infinity

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference Diffraction Diffraction integral we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference

More information

Diffraction. * = various kinds of interference effects. For example why beams of light spread out. Colors on CDs. Diffraction gratings.

Diffraction. * = various kinds of interference effects. For example why beams of light spread out. Colors on CDs. Diffraction gratings. Diffraction * Ken Intriligator s week 10 lecture, Dec.3, 2013 * = various kinds of interference effects. For example why beams of light spread out. Colors on CDs. Diffraction gratings. E.g. : Shadow edges

More information

Optics Wave Behavior in Optics Diffraction

Optics Wave Behavior in Optics Diffraction Optics Wave Behavior in Optics Diffraction Lana Sheridan De Anza College June 15, 2018 Last time Interference of light: the Double-Slit experiment multiple slit interference diffraction gratings Overview

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

mywbut.com Diffraction

mywbut.com Diffraction Diffraction If an opaque obstacle (or aperture) is placed between a source of light and screen, a sufficiently distinct shadow of opaque (or an illuminated aperture) is obtained on the screen.this shows

More information

PHYSICS - CLUTCH CH 32: WAVE OPTICS.

PHYSICS - CLUTCH CH 32: WAVE OPTICS. !! www.clutchprep.com CONCEPT: DIFFRACTION Remember! Light travels in a straight line so long as it isn t disturbed - This allows light to be described as RAYS A common way to disturb light is to have

More information

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits Class Adding sources Diffraction Grating What happens to the interference pattern when we add more sources? Let's start by switching from two sources d apart to three sources d apart. Do we still get maxima

More information

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings Diffraction Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings Diffraction by Pinhead When λ the opening, max diffraction occurs When λ < opening

More information

Lab 5: Diffraction and Interference

Lab 5: Diffraction and Interference Lab 5: Diffraction and Interference Light is a wave, an electromagnetic wave, and under the proper circumstances, it exhibits wave phenomena, such as constructive and destructive interference. The wavelength

More information

LECTURE 20: Interference, Diffraction, Resolution. Interference. Interference: Double Slit (for very narrow slits) Interference: Double Slit (DEMO)

LECTURE 20: Interference, Diffraction, Resolution. Interference. Interference: Double Slit (for very narrow slits) Interference: Double Slit (DEMO) LECTURE 0: Interference, Diffraction, Resolution Interference *Three ways in which the phase ifference between two waves can change: 1. By traveling though meia of ifferent inexes of refraction. By traveling

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-7 DIFFRACTION Assessment Statements AHL Topic 11.3. and SL Option A-4 Diffraction: 11.3.1. Sketch the variation with angle of diffraction

More information

Where n = 0, 1, 2, 3, 4

Where n = 0, 1, 2, 3, 4 Syllabus: Interference and diffraction introduction interference in thin film by reflection Newton s rings Fraunhofer diffraction due to single slit, double slit and diffraction grating Interference 1.

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Physics 2102 Jonathan Dowling. Lecture 29. Ch. 36: Diffraction

Physics 2102 Jonathan Dowling. Lecture 29. Ch. 36: Diffraction Physics 2102 Jonathan Dowling Lecture 29 Ch. 36: Diffraction Things You Should Learn from This Lecture 1. When light passes through a small slit, is spreads out and produces a diffraction pattern, showing

More information

Physical optics. Introduction. University of Ottawa Department of Physics

Physical optics. Introduction. University of Ottawa Department of Physics Physical optics Introduction The true nature of light has been, and continues to be, an alluring subject in physics. While predictions of light behaviour can be made with great success and precision, the

More information

COHERENCE AND INTERFERENCE

COHERENCE AND INTERFERENCE COHERENCE AND INTERFERENCE - An interference experiment makes use of coherent waves. The phase shift (Δφ tot ) between the two coherent waves that interfere at any point of screen (where one observes the

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 9-3: INTERFERENCE Intro Video: Interference of Waves Questions From Reading Activity? Essential Idea: Interference patterns from multiple slits

More information

Electromagnetism & Light. Interference & Diffraction

Electromagnetism & Light. Interference & Diffraction Electromagnetism & Light Interference & Diffraction Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141? A. SmartPhysics alone B. SmartPhysics

More information

Topic 9: Wave phenomena - AHL 9.2 Single-slit diffraction

Topic 9: Wave phenomena - AHL 9.2 Single-slit diffraction Topic 9.2 is an extension of Topic 4.4. Both single and the double-slit diffraction were considered in 4.4. Essential idea: Single-slit diffraction occurs when a wave is incident upon a slit of approximately

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

Physical or wave optics

Physical or wave optics Physical or wave optics In the last chapter, we have been studying geometric optics u light moves in straight lines u can summarize everything by indicating direction of light using a ray u light behaves

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

Unit-22 Interference and Diffraction

Unit-22 Interference and Diffraction Unit-22 Interference and iffraction Objective: In this experiment, we used single-slit, double-slit, circular hole and grating to measure the wavelength of laser. Apparatus: Optical track, diode laser,

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE Object: To investigate the diffraction and interference of light, Apparatus: Lasers, optical bench, single and double slits. screen and mounts. Theory:

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Lecture 41: WED 29 APR

Lecture 41: WED 29 APR Physics 2102 Jonathan Dowling Lecture 41: WED 29 APR Ch. 36: Diffraction PHYS 2102-2 FINAL 5:30-7:30PM FRI 08 MAY COATES 143 1/2 ON NEW MATERIAL 1/2 ON OLD MATERIAL Old Formula Sheet: http://www.phys.lsu.edu/classes/

More information

Lecture 21. Physics 1202: Lecture 22 Today s Agenda

Lecture 21. Physics 1202: Lecture 22 Today s Agenda Physics 1202: Lecture 22 Today s Agenda Announcements: Team problems today Team 16: Navia Hall, Laura Irwin, Eric Kaufman Team 18: Charles Crilly Jr, Kyle Eline, Alexandra Vail Team 19: Erica Allen, Shana

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

PHY132 Introduction to Physics II Class 5 Outline:

PHY132 Introduction to Physics II Class 5 Outline: PHY132 Introduction to Physics II Class 5 Outline: Ch. 22, sections 22.1-22.4 (Note we are skipping sections 22.5 and 22.6 in this course) Light and Optics Double-Slit Interference The Diffraction Grating

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction Physics 2c Lecture 25 Chapter 37 Interference & Diffraction Outlook for rest of quarter Today: finish chapter 37 Tomorrow & Friday: E&M waves (Chapter 34) Next Monday, June 4 th : Quiz 8 on Chapter 37

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Announcement. Fraunhofer Diffraction. Physics Waves & Oscillations 4/17/2016. Spring 2016 Semester Matthew Jones

Announcement. Fraunhofer Diffraction. Physics Waves & Oscillations 4/17/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 39 Fresnel Diffraction Spring 2016 Semester Matthew Jones Announcement Final Exam Tuesday, May 3 rd 7:00 9:00 pm Room PHYS 112 You can bring one sheet of notes,

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

14 Chapter. Interference and Diffraction

14 Chapter. Interference and Diffraction 14 Chapter Interference and Diffraction 14.1 Superposition of Waves... 14-14.1.1 Interference Conditions for Light Sources... 14-4 14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment...

More information

Laboratory 11: Interference of Light Prelab

Laboratory 11: Interference of Light Prelab Phys 132L Fall 2018 Laboratory 11: Interference of Light Prelab 1 Diffraction grating Light with wavelength 560 nm is incident on a diffraction grating with slit spacing 2.0 10 6 m. Determinetheangles

More information

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction Introduction The material for this chapter is discussed in Hecht, Chapter 25. Light exhibits many of the properties of a transverse wave. Waves that overlap with other waves can reinforce each other or

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction

Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction Lana Sheridan De Anza College Jun 13, 2018 Overview Purpose Theory interference from two coherent light sources diffraction

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 39 Fresnel Diffraction Spring 2016 Semester Matthew Jones Announcement Final Exam Tuesday, May 3 rd 7:00 9:00 pm Room PHYS 112 You can bring one sheet of notes,

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information