Introduction to Medical Image Analysis

Size: px
Start display at page:

Download "Introduction to Medical Image Analysis"

Transcription

1 Introduction to Medical Image Analysis Rasmus R. Paulsen DTU Compute

2 Lecture 7 Pixel Classification 9.00 Lecture Exercises Lunch break Exercises 2 DTU Compute, Technical University of Denmark

3 What can you do after today? Describe the concept of pixel classification Use Matlab to select pixel training data Compute the pixel value ranges in a minimum distance classifier Implement and use a minimum distance classifier Describe how a pixel value histogram can be approximated using a Gaussian distribution Describe how the pixel value ranges can be selected in a parametric classifier Implement and use a parametric classifier Decide if a minimum distance or a parametric classifier is appropriate based on the training data Explain the concept of Bayesian classification 3 DTU Compute, Technical University of Denmark

4 Classification Take a measurement and put it into a class Measurement Classes? Wheels: 2 HP: 50 Weight: 200 Classifier Bike Truck Car Motorbike Train Bus 4 DTU Compute, Technical University of Denmark

5 General Classification Multi-dimensional measurement Pre-defined classes Can also be found automatically can be very difficult! 5 DTU Compute, Technical University of Denmark

6 Pixel Classification CT scan of human head Classify each pixel Independent of neighbours Also called labelling Put a label on each pixel We look at the pixel value and assign them a label Labels already defined Background Soft-Tissue Trabecular Bone Hard Bone 6 DTU Compute, Technical University of Denmark

7 Quiz: Two class pixel classification? Background and object A) Median filter B) Threshold 15 C) Brightness D) Morphological Erosion E) BLOB analysis A B C D E 7 DTU Compute, Technical University of Denmark

8 Pixel Classification formal definition Pixel value (the measurement) v R k classes C = c 1,, c k Classification rule c: R {c 1,, c k } 8 DTU Compute, Technical University of Denmark

9 Pixel Classification example Pixel value v [0,255] Set of 4 classes C={background, soft-tissue, trabeculae, bone} Classification rule c: v {background, soft tissue, trabeculae, bone} How do we construct a classification rule? 9 DTU Compute, Technical University of Denmark

10 Pixel classification rule c: v {background, soft tissue, trabeculae, bone} background trabeculae soft-tissue bone How do we do this? 10 DTU Compute, Technical University of Denmark

11 Pixel classification rule manual inspection c: v {background, soft tissue, trabeculae, bone} Looking at some few pixels background soft-tissue trabeculae bone 11 DTU Compute, Technical University of Denmark

12 Pixel classification rule manual inspection c: v {background, soft tissue, trabeculae, bone} Looking at some few pixels New pixel where do we put it? background soft-tissue trabeculae bone 12 DTU Compute, Technical University of Denmark

13 Pixel classification rule manual inspection c: v {background, soft tissue, trabeculae, bone} Looking at some few pixels New pixel where do we put it? Measure the distance to the other classes Select the closest class d b d st Minimum distance classification background soft-tissue trabeculae bone 13 DTU Compute, Technical University of Denmark

14 Pixel classification rule Minimum Distance Classification The possible pixel values are divided into ranges Here the distance to background is equal to soft-tissue Background range soft-tissue range Trabecular range Bone range background soft-tissue trabeculae bone 14 DTU Compute, Technical University of Denmark

15 Pixel classification rule Minimum Distance Classification background, if v (4 + 67)/2 soft tissue, if < v 2 2 c v = trabeculae, if < v bone, if v > 2 Background soft-tissue Trabecular Bone range range range range background soft-tissue trabeculae bone 15 DTU Compute, Technical University of Denmark

16 Pixel classification rule For all pixel in the image do c v = background, if v (4 + 67)/2 soft tissue, if < v trabeculae, if < v bone, if v > 2 16 DTU Compute, Technical University of Denmark

17 Pixel Classification example Background CT scan of human head Soft-Tissue Trabecular Bone Hard Bone 17 DTU Compute, Technical University of Denmark

18 Better range selection Guessing range values is not a good idea Better to use training data Start by selecting representative regions from an image Annotation To mark points, regions, lines or other significant structures 18 DTU Compute, Technical University of Denmark

19 Classifier training - annotation An expert is asked how many different tissue types that are possible Then the expert is asked to mark representative regions of the selected tissue types Background Soft-Tissue Trabecular Bone Hard Bone 19 DTU Compute, Technical University of Denmark

20 Classifier training region selection Many tools exist Matlab tool roipoly Select closed regions using a piecewise polygon Training is only done once! Optimally, the training can be used on many pictures that contains the same tissue types 20 DTU Compute, Technical University of Denmark

21 Initial analysis - histograms Gaussian 21 DTU Compute, Technical University of Denmark

22 Initial analysis - histograms Class separation 22 DTU Compute, Technical University of Denmark

23 Simple pixel statistics Calculate the average (mean) and the standard deviation of each class Standard deviation Average 23 DTU Compute, Technical University of Denmark

24 24 DTU Compute, Technical University of Denmark

25 Minimum distance classification Any objections? The pixel value ranges are not always in good correspondence with the histograms? 25 DTU Compute, Technical University of Denmark

26 Minimum distance classification A) Baggrund B) Blødt væv C) Fedt D) Knogle E) Ingen af dem A B C D E 26 DTU Compute, Technical University of Denmark

27 Parametric classification Describe the histogram using a few parameters Gaussian/Normal distribution Average μ Standard deviation σ f x = 1 σ 2π exp (x μ)2 2σ 2 Trabecular bone Only two values needed 27 DTU Compute, Technical University of Denmark

28 Parametric classification Training pixel values Estimated average Estimated standard deviation Trabecular bone f x = 1 σ 2π exp (x μ)2 2σ 2 28 DTU Compute, Technical University of Denmark

29 Parametric classification Fit a Gaussian to the training pixels for all classes What do we see here? What is the difference between the two classes? Trabeculae has much higher variation in the pixel values 29 DTU Compute, Technical University of Denmark

30 Two tissue types minimum distance v = 78 A) Trabeculae B) Soft-tissue 12 5 v = 78 A B Minimum distance classifier 30 DTU Compute, Technical University of Denmark

31 Parametric classification New pixel with value 78 Is it soft-tissue or trabecular bone? Minimum distance classifier? Soft-tissue Is that fair? Soft-tissue Gaussian says Extremely low probability that this pixel is soft-tissue v = DTU Compute, Technical University of Denmark

32 Two tissue types parametric classification A) Trabeculae B) Soft-tissue 14 1 A B 32 DTU Compute, Technical University of Denmark v = 78

33 Parametric classification repeat the question New pixel with value 78 Is it soft-tissue or trabecular bone? Most probably trabecular bone Where should we set the limit? Where the two Gaussians cross! v = DTU Compute, Technical University of Denmark

34 Parametric classification ranges The pixel value ranges depends on The average The standard deviation Compared to the minimum distance classifier Only the average Soft-tissue Trabecular bone 34 DTU Compute, Technical University of Denmark

35 Parametric classification how to Select training pixels for each class Fit Gaussians to each class Use Gaussians to determine pixel value ranges Little bit difficult with the Gaussians 35 DTU Compute, Technical University of Denmark

36 Parametric classifier - ranges f 1 (x) > f 2 (x) We want to compute where they cross f 1 (x) < f 2 (x) Create a lookup table: Run through all 256 possible pixel values Check which Gaussian is the highest Store the [value, class] in the table 36 DTU Compute, Technical University of Denmark

37 Alternatively analytic solution The two Gaussians Intercept at 37 DTU Compute, Technical University of Denmark

38 Class ranges A) [0,45], ]45, 75], ]75,255] B) [40,60], ]60,100],]100,140] C) [0, 60],]60,80],]80,255] D) [0,60],]60,100],]100,255] E) [0,75],[75,100],]100,255] A B C D E 38 DTU Compute, Technical University of Denmark

39 Parametric classification A) Baggrund B) Blødt væv C) Nyre D) Milt E) Knogle A B C D E 39 DTU Compute, Technical University of Denmark

40 Kurset indtil videre A) Jeg har ikke lært noget B) Jeg har ikke lært ret meget C) Det er ok D) Jeg har lært en del E) Jeg har lært meget A B C D E 40 DTU Compute, Technical University of Denmark

41 Undervisning hastighed i undervisning A) Kom nuuuu! Det går alt for langsomt B) Jeg kan sagtens følge med og strikke sweater samtidigt C) Det er fint tempo D) Jeg skal virkelig koncentrere mig for at følge med E) Stop! Vent! Alt for hurtigt A B C D E 41 DTU Compute, Technical University of Denmark

42 Thomas Bayes English mathematician and Presbyterian minister Bayes theorem P A B = P B A P(A) P(B) Wikipedia 42 DTU Compute, Technical University of Denmark

43 Bayesian Classification Pure parametric classifier assumes equal amount of different tissue types Area = 1 43 DTU Compute, Technical University of Denmark

44 Bayesian Classification Much more softtissue than trabecular bone Area = 1 How do we handle that? 44 DTU Compute, Technical University of Denmark

45 Bayesian Classification An expert tells us that a CT scan of a head contains 20% Trabecular bone 50% Soft-tissue Picking a random pixel in the image 20% Chance that it is trabecular bone 50% Chance that it is softtissue How do use that? 45 DTU Compute, Technical University of Denmark

46 Bayesian Classification histogram scaling Scaled with 0.50 Scaled with 0.20 Parametric classifier Bayesian classifier 46 DTU Compute, Technical University of Denmark Little change in class border (sometimes significant changes)

47 Formal definition Given a pixel value v What is the probability that the pixel belongs to class C i Example: If the pixel value is 78, what is the probability that the pixel is bone P c i v = P v c i P(c i ) P(v) 47 DTU Compute, Technical University of Denmark

48 Formal definition Constant ignored from now on P c i v = P v c i P(c i ) P(v) 48 DTU Compute, Technical University of Denmark

49 Formal definition The a priori probability (what is known from before) Example: From general biology it is known that 20% of a brain CT scan is trabecular bone. Therefore P(trabecular) = 0.20 P c i v = P v c i P(c i ) P(v) 49 DTU Compute, Technical University of Denmark

50 Formal definition The class conditional probability Given a class, what is the probability of a pixel with value v Example: If we consider class = soft-tissue. What is the probability that the pixel value is 78? Very low P c i v = P v c i P(c i ) P(v) 50 DTU Compute, Technical University of Denmark

51 Formal definition sum up P c i v = P v c i P(c i ) P(v) c i = trabeculae 51 DTU Compute, Technical University of Denmark

52 Bayesian classification how to Select training pixels for each class Fit Gaussians to each class Ask an expert for the prior probabilities (how much there normally is in total of each type) For each pixel in the image Compute P(v c i ) for each class (the a posterior probability) Select the class with the highest P(c i v) P c i v = P v c i P(c i ) P(v) 52 DTU Compute, Technical University of Denmark

53 When to use Bayesian classification The parametric classifier is good when there are approximately the same amount of all type of tissues Use Bayesian classification if there are very little or very much of some types 53 DTU Compute, Technical University of Denmark

54 Multiple choice A) 1 B) 2 C) 3 D) 4 E) DTU Compute, Technical University of Denmark A B C D E

55 Tissue classification A) Baggrund B) Blødt væv C) Lever D) Milt E) Knogle A B C D E 55 DTU Compute, Technical University of Denmark

56 What can you do after today? Describe the concept of pixel classification Use Matlab to select pixel training data Compute the pixel value ranges in a minimum distance classifier Implement and use a minimum distance classifier Describe how a pixel value histogram can be approximated using a Gaussian distribution Describe how the pixel value ranges can be selected in a parametric classifier Implement and use a parametric classifier Decide if a minimum distance or a parametric classifier is appropriate based on the training data Explain the concept of Bayesian classification 56 DTU Compute, Technical University of Denmark

57 Next week X-ray and CT Eksternt foredrag: Algorithm Specialist Mikkel Stegmann, Fingerprint Cards 57 DTU Compute, Technical University of Denmark

58 Exercises? 58 DTU Compute, Technical University of Denmark

Introduction to Medical Image Analysis

Introduction to Medical Image Analysis Introduction to Medical Image Analysis Rasmus R. Paulsen DTU Compute rapa@dtu.dk http://courses.compute.dtu.dk/02511 http://courses.compute.dtu.dk/02511 Plenty of slides adapted from Thomas Moeslunds lectures

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

Introduction to Medical Image Analysis

Introduction to Medical Image Analysis Introduction to Medical Image Analysis Rasmus R. Paulsen DTU Compute rapa@dtu.dk http://www.compute.dtu.dk/courses/02511 http://www.compute.dtu.dk/courses/02512 Rasmus R. Paulsen Master of Science (Eng).

More information

Image Analysis. Rasmus R. Paulsen DTU Compute. DTU Compute

Image Analysis. Rasmus R. Paulsen DTU Compute.   DTU Compute Rasmus R. Paulsen rapa@dtu.dk http://www.compute.dtu.dk/courses/02502 Plenty of slides adapted from Thomas Moeslunds lectures Lecture 8 Geometric Transformation 2, Technical University of Denmark What

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management ADVANCED K-MEANS ALGORITHM FOR BRAIN TUMOR DETECTION USING NAIVE BAYES CLASSIFIER Veena Bai K*, Dr. Niharika Kumar * MTech CSE, Department of Computer Science and Engineering, B.N.M. Institute of Technology,

More information

Bayes Classifiers and Generative Methods

Bayes Classifiers and Generative Methods Bayes Classifiers and Generative Methods CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Stages of Supervised Learning To

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 1 Introduction Lucas C. Parra, parra@ccny.cuny.edu 1 Content Topics: Physics of medial imaging modalities (blue) Digital Image Processing (black) Schedule: 1. Introduction,

More information

Detecting and Identifying Moving Objects in Real-Time

Detecting and Identifying Moving Objects in Real-Time Chapter 9 Detecting and Identifying Moving Objects in Real-Time For surveillance applications or for human-computer interaction, the automated real-time tracking of moving objects in images from a stationary

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

VC 17/18 TP14 Pattern Recognition

VC 17/18 TP14 Pattern Recognition VC 17/18 TP14 Pattern Recognition Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Introduction to Pattern Recognition

More information

Nearest Neighbors Classifiers

Nearest Neighbors Classifiers Nearest Neighbors Classifiers Raúl Rojas Freie Universität Berlin July 2014 In pattern recognition we want to analyze data sets of many different types (pictures, vectors of health symptoms, audio streams,

More information

Classification Methods for CT-Scanned Carcass Midsections

Classification Methods for CT-Scanned Carcass Midsections Classification Methods for CT-Scanned Carcass Midsections A Study of Noise Stability Jacob Lercke Skytte 1, Anders Lindbjerg Dahl 1, Rasmus Larsen 1, Lars Bager Christensen 2, and Bjarne Kjær Ersbøll 1

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 14, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 3) Lecture 14 March 07, 2012 1 Outline Review: intensity thresholding based image segmentation Morphological

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Clustering Color/Intensity. Group together pixels of similar color/intensity.

Clustering Color/Intensity. Group together pixels of similar color/intensity. Clustering Color/Intensity Group together pixels of similar color/intensity. Agglomerative Clustering Cluster = connected pixels with similar color. Optimal decomposition may be hard. For example, find

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques.

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques. . Non-Parameteric Techniques University of Cambridge Engineering Part IIB Paper 4F: Statistical Pattern Processing Handout : Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 23 Introduction

More information

Machine Learning A WS15/16 1sst KU Version: January 11, b) [1 P] For the probability distribution P (A, B, C, D) with the factorization

Machine Learning A WS15/16 1sst KU Version: January 11, b) [1 P] For the probability distribution P (A, B, C, D) with the factorization Machine Learning A 708.064 WS15/16 1sst KU Version: January 11, 2016 Exercises Problems marked with * are optional. 1 Conditional Independence I [3 P] a) [1 P] For the probability distribution P (A, B,

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2015 11. Non-Parameteric Techniques

More information

Machine Learning A W 1sst KU. b) [1 P] For the probability distribution P (A, B, C, D) with the factorization

Machine Learning A W 1sst KU. b) [1 P] For the probability distribution P (A, B, C, D) with the factorization Machine Learning A 708.064 13W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence a) [1 P] For the probability distribution P (A, B, C, D) with the factorization P (A, B,

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Prostate Detection Using Principal Component Analysis

Prostate Detection Using Principal Component Analysis Prostate Detection Using Principal Component Analysis Aamir Virani (avirani@stanford.edu) CS 229 Machine Learning Stanford University 16 December 2005 Introduction During the past two decades, computed

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/27/2017 Jumble of unlabeled images HISTOGRAM blue

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Introduction to Medical Image Processing

Introduction to Medical Image Processing Introduction to Medical Image Processing Δ Essential environments of a medical imaging system Subject Image Analysis Energy Imaging System Images Image Processing Feature Images Image processing may be

More information

A problem - too many features. TDA 231 Dimension Reduction: PCA. Features. Making new features

A problem - too many features. TDA 231 Dimension Reduction: PCA. Features. Making new features A problem - too many features TDA 1 Dimension Reduction: Aim: To build a classifier that can diagnose leukaemia using Gene expression data. Data: 7 healthy samples,11 leukaemia samples (N = 8). Each sample

More information

The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CT. Piergiorgio Cerello - INFN

The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CT. Piergiorgio Cerello - INFN The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CT Piergiorgio Cerello - INFN Frascati, 27/11/2009 Computer Assisted Detection (CAD) MAGIC-5 & Distributed Computing Infrastructure

More information

Learning from Data: Adaptive Basis Functions

Learning from Data: Adaptive Basis Functions Learning from Data: Adaptive Basis Functions November 21, 2005 http://www.anc.ed.ac.uk/ amos/lfd/ Neural Networks Hidden to output layer - a linear parameter model But adapt the features of the model.

More information

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency

Math 214 Introductory Statistics Summer Class Notes Sections 3.2, : 1-21 odd 3.3: 7-13, Measures of Central Tendency Math 14 Introductory Statistics Summer 008 6-9-08 Class Notes Sections 3, 33 3: 1-1 odd 33: 7-13, 35-39 Measures of Central Tendency odd Notation: Let N be the size of the population, n the size of the

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Lecture 11: Classification

Lecture 11: Classification Lecture 11: Classification 1 2009-04-28 Patrik Malm Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapters for this lecture 12.1 12.2 in

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

CS787: Assignment 3, Robust and Mixture Models for Optic Flow Due: 3:30pm, Mon. Mar. 12, 2007.

CS787: Assignment 3, Robust and Mixture Models for Optic Flow Due: 3:30pm, Mon. Mar. 12, 2007. CS787: Assignment 3, Robust and Mixture Models for Optic Flow Due: 3:30pm, Mon. Mar. 12, 2007. Many image features, such as image lines, curves, local image velocity, and local stereo disparity, can be

More information

Face Detection on Similar Color Photographs

Face Detection on Similar Color Photographs Face Detection on Similar Color Photographs Scott Leahy EE368: Digital Image Processing Professor: Bernd Girod Stanford University Spring 2003 Final Project: Face Detection Leahy, 2/2 Table of Contents

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

Processing of binary images

Processing of binary images Binary Image Processing Tuesday, 14/02/2017 ntonis rgyros e-mail: argyros@csd.uoc.gr 1 Today From gray level to binary images Processing of binary images Mathematical morphology 2 Computer Vision, Spring

More information

Probabilistic Learning Classification using Naïve Bayes

Probabilistic Learning Classification using Naïve Bayes Probabilistic Learning Classification using Naïve Bayes Weather forecasts are usually provided in terms such as 70 percent chance of rain. These forecasts are known as probabilities of precipitation reports.

More information

Cortical Bone Classification by Local Context Analysis

Cortical Bone Classification by Local Context Analysis Cortical Bone Classification by Local Context Analysis S. Battiato 1, G. M. Farinella 1, G. Impoco 1, O. Garretto 2, and C. Privitera 2 1 Computer Science Department, University of Catania, Catania, ITALY

More information

Digital Image Processing. Prof. P.K. Biswas. Department of Electronics & Electrical Communication Engineering

Digital Image Processing. Prof. P.K. Biswas. Department of Electronics & Electrical Communication Engineering Digital Image Processing Prof. P.K. Biswas Department of Electronics & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Image Segmentation - III Lecture - 31 Hello, welcome

More information

Final Exam Schedule. Final exam has been scheduled. 12:30 pm 3:00 pm, May 7. Location: INNOVA It will cover all the topics discussed in class

Final Exam Schedule. Final exam has been scheduled. 12:30 pm 3:00 pm, May 7. Location: INNOVA It will cover all the topics discussed in class Final Exam Schedule Final exam has been scheduled 12:30 pm 3:00 pm, May 7 Location: INNOVA 1400 It will cover all the topics discussed in class One page double-sided cheat sheet is allowed A calculator

More information

K-Means Clustering Using Localized Histogram Analysis

K-Means Clustering Using Localized Histogram Analysis K-Means Clustering Using Localized Histogram Analysis Michael Bryson University of South Carolina, Department of Computer Science Columbia, SC brysonm@cse.sc.edu Abstract. The first step required for many

More information

SD 372 Pattern Recognition

SD 372 Pattern Recognition SD 372 Pattern Recognition Lab 2: Model Estimation and Discriminant Functions 1 Purpose This lab examines the areas of statistical model estimation and classifier aggregation. Model estimation will be

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

What do we mean by recognition?

What do we mean by recognition? Announcements Recognition Project 3 due today Project 4 out today (help session + photos end-of-class) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski, Chapter 14 1 Recognition What

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Løkkestrukturer. Trykknap: Button, Se eksempler / Digital / Button. Decision: If: Version 01/ Loops, løkker mm. i Arduino.

Løkkestrukturer. Trykknap: Button, Se eksempler / Digital / Button. Decision: If: Version 01/ Loops, løkker mm. i Arduino. Loops, løkker mm. i Arduino Links til: Trykknap If, If Else If For-Loop While, Do While PWM Serial Read Funktioner Array, Matrix Trykknap: Button, Se eksempler / Digital / Button int buttonpin=2 pinmode(buttonpin,

More information

Data Science Tutorial

Data Science Tutorial Eliezer Kanal Technical Manager, CERT Daniel DeCapria Data Scientist, ETC Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 2017 SEI SEI Data Science in in Cybersecurity Symposium

More information

IMAGE SEGMENTATION. Václav Hlaváč

IMAGE SEGMENTATION. Václav Hlaváč IMAGE SEGMENTATION Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Digital Image Processing using MATLAB and STATISTICA

Digital Image Processing using MATLAB and STATISTICA The 2nd International Conference on Virtual Learning, ICVL 2007 1 Digital Image Processing using MATLAB and STATISTICA Emilia Dana Seleţchi 1, Octavian G. Duliu 1 1 University of Bucharest, Faculty of

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach

Recap: Gaussian (or Normal) Distribution. Recap: Minimizing the Expected Loss. Topics of This Lecture. Recap: Maximum Likelihood Approach Truth Course Outline Machine Learning Lecture 3 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Probability Density Estimation II 2.04.205 Discriminative Approaches (5 weeks)

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2013 TTh 17:30-18:45 FDH 204 Lecture 18 130404 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Object Recognition Intro (Chapter 14) Slides from

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh, CEO at Mapizy (www.mapizy.com) and InFarm (www.infarm.io) Lecture 02 Binary Image Analysis Objectives Revision of image formation

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu 2010, N.Schuff Slide 1/67 Overview Definitions Role of Segmentation Segmentation methods Intensity based Shape based

More information

Announcements. Segmentation (Part 2) Image Segmentation. From images to objects. Image histograms. What do histograms look like?

Announcements. Segmentation (Part 2) Image Segmentation. From images to objects. Image histograms. What do histograms look like? Announcements Segmentation (Part 2) Questions on the project? Updates to project page and lecture slides from /8 Midterm (take home) out next Friday covers material up through next Friday s lecture have

More information

/5 Stacks. Displays the slice that follows the currently displayed slice. As a shortcut, press the > key.

/5 Stacks. Displays the slice that follows the currently displayed slice. As a shortcut, press the > key. 20-02-2018 1/5 Stacks Stacks This submenu contains commands that work with stacks. Add Slice Inserts a blank slice after the currently displayed slice. Hold down the Alt key to add the slice before the

More information

CMPT 882 Week 3 Summary

CMPT 882 Week 3 Summary CMPT 882 Week 3 Summary! Artificial Neural Networks (ANNs) are networks of interconnected simple units that are based on a greatly simplified model of the brain. ANNs are useful learning tools by being

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

Applications Video Surveillance (On-line or off-line)

Applications Video Surveillance (On-line or off-line) Face Face Recognition: Dimensionality Reduction Biometrics CSE 190-a Lecture 12 CSE190a Fall 06 CSE190a Fall 06 Face Recognition Face is the most common biometric used by humans Applications range from

More information

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization CS 650: Computer Vision Bryan S. Morse Optimization Approaches to Vision / Image Processing Recurring theme: Cast vision problem as an optimization

More information

Segmenting an Image Assigning labels to pixels (cat, ball, floor) Point processing: Lecture 3: Region Based Vision. Overview

Segmenting an Image Assigning labels to pixels (cat, ball, floor) Point processing: Lecture 3: Region Based Vision. Overview Slide 2 Lecture 3: Region Based Vision Dr Carole Twining Thursday 18th March 1:00pm 1:50pm Segmenting an Image Assigning labels to pixels (cat, ball, floor) Point processing: colour or grayscale values,

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Segmentation (Part 2)

Segmentation (Part 2) Segmentation (Part 2) Today s Readings Chapters 6., 6.2, 6.4, 7., 7.2 http://www.dai.ed.ac.uk/hipr2/morops.htm Dilation, erosion, opening, closing From images to objects What Defines an Object? Subjective

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information

Fully Automatic Model Creation for Object Localization utilizing the Generalized Hough Transform

Fully Automatic Model Creation for Object Localization utilizing the Generalized Hough Transform Fully Automatic Model Creation for Object Localization utilizing the Generalized Hough Transform Heike Ruppertshofen 1,2,3, Cristian Lorenz 2, Peter Beyerlein 4, Zein Salah 3, Georg Rose 3, Hauke Schramm

More information

CSIS. Pattern Recognition. Prof. Sung-Hyuk Cha Fall of School of Computer Science & Information Systems. Artificial Intelligence CSIS

CSIS. Pattern Recognition. Prof. Sung-Hyuk Cha Fall of School of Computer Science & Information Systems. Artificial Intelligence CSIS Pattern Recognition Prof. Sung-Hyuk Cha Fall of 2002 School of Computer Science & Information Systems Artificial Intelligence 1 Perception Lena & Computer vision 2 Machine Vision Pattern Recognition Applications

More information

mritc: A Package for MRI Tissue Classification

mritc: A Package for MRI Tissue Classification mritc: A Package for MRI Tissue Classification Dai Feng 1 Luke Tierney 2 1 Merck Research Labratories 2 University of Iowa July 2010 Feng & Tierney (Merck & U of Iowa) MRI Tissue Classification July 2010

More information

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images Tina Memo No. 2008-003 Internal Memo Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images P. A. Bromiley Last updated 20 / 12 / 2007 Imaging Science and

More information

Combining Monocular and Stereo Depth Cues

Combining Monocular and Stereo Depth Cues Combining Monocular and Stereo Depth Cues Fraser Cameron December 16, 2005 Abstract A lot of work has been done extracting depth from image sequences, and relatively less has been done using only single

More information

Image processing & Computer vision Xử lí ảnh và thị giác máy tính

Image processing & Computer vision Xử lí ảnh và thị giác máy tính Image processing & Computer vision Xử lí ảnh và thị giác máy tính Detection and Recognition 2D et 3D Alain Boucher - IFI Introduction In this chapter, we introduce some techniques for pattern detection

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Support Vector Machines + Classification for IR

Support Vector Machines + Classification for IR Support Vector Machines + Classification for IR Pierre Lison University of Oslo, Dep. of Informatics INF3800: Søketeknologi April 30, 2014 Outline of the lecture Recap of last week Support Vector Machines

More information

Edge Detection (with a sidelight introduction to linear, associative operators). Images

Edge Detection (with a sidelight introduction to linear, associative operators). Images Images (we will, eventually, come back to imaging geometry. But, now that we know how images come from the world, we will examine operations on images). Edge Detection (with a sidelight introduction to

More information

Automatic Extraction of Tissue Form in Brain Image

Automatic Extraction of Tissue Form in Brain Image Original Paper Forma, 16, 241 246, 2001 Automatic Extraction of Tissue Form in Brain Image Takeshi MATOZAKI Department of Electronics & Communication Engineering, Musashi Institute of Technology, 1-28-1

More information

EN1610 Image Understanding Lab # 3: Edges

EN1610 Image Understanding Lab # 3: Edges EN1610 Image Understanding Lab # 3: Edges The goal of this fourth lab is to ˆ Understanding what are edges, and different ways to detect them ˆ Understand different types of edge detectors - intensity,

More information

Tumor Detection and classification of Medical MRI UsingAdvance ROIPropANN Algorithm

Tumor Detection and classification of Medical MRI UsingAdvance ROIPropANN Algorithm International Journal of Engineering Research and Advanced Technology (IJERAT) DOI:http://dx.doi.org/10.31695/IJERAT.2018.3273 E-ISSN : 2454-6135 Volume.4, Issue 6 June -2018 Tumor Detection and classification

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

9.1. K-means Clustering

9.1. K-means Clustering 424 9. MIXTURE MODELS AND EM Section 9.2 Section 9.3 Section 9.4 view of mixture distributions in which the discrete latent variables can be interpreted as defining assignments of data points to specific

More information

Problem definition Image acquisition Image segmentation Connected component analysis. Machine vision systems - 1

Problem definition Image acquisition Image segmentation Connected component analysis. Machine vision systems - 1 Machine vision systems Problem definition Image acquisition Image segmentation Connected component analysis Machine vision systems - 1 Problem definition Design a vision system to see a flat world Page

More information

Database Systemer, Forår 2006 IT Universitet i København. Lecture 10: Transaction processing. 6 april, Forelæser: Esben Rune Hansen

Database Systemer, Forår 2006 IT Universitet i København. Lecture 10: Transaction processing. 6 april, Forelæser: Esben Rune Hansen Database Systemer, Forår 2006 IT Universitet i København Lecture 10: Transaction processing 6 april, 2006 Forelæser: Esben Rune Hansen Today s lecture Part I: Transaction processing Serializability and

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition

Verification: is that a lamp? What do we mean by recognition? Recognition. Recognition Recognition Recognition The Margaret Thatcher Illusion, by Peter Thompson The Margaret Thatcher Illusion, by Peter Thompson Readings C. Bishop, Neural Networks for Pattern Recognition, Oxford University

More information

Image Processing: Final Exam November 10, :30 10:30

Image Processing: Final Exam November 10, :30 10:30 Image Processing: Final Exam November 10, 2017-8:30 10:30 Student name: Student number: Put your name and student number on all of the papers you hand in (if you take out the staple). There are always

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015 MAT 142 College Mathematics Statistics Module ST Terri Miller revised July 14, 2015 2 Statistics Data Organization and Visualization Basic Terms. A population is the set of all objects under study, a sample

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information