Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Size: px
Start display at page:

Download "Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford"

Transcription

1 Department of Engineering Science University of Oxford January 27, 2017

2 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically group the datapoints into coherent subsets/clusters. Examples: market segmentation of shoppers based on browsing and purchase histories different types of breast cancer based on the gene expression measurements discovering communities in social networks image segmentation

3 Types of Model-based clustering: Each cluster is described using a probability model. Model-free clustering: Defined by similarity/dissimilarity among instances within clusters.

4 This Lecture: Model-free Methods K-means clustering: a partition-based method into K clusters. Finds groups such that variation within each group is small. The number of clusters K is usually fixed beforehand or various values of K are investigated as a part of the analysis.

5 K-means K-means Partition-based methods seek to divide data points into a pre-assigned number of clusters C 1,..., C K where for all k, k {1,..., K}, C k {1,..., n}, C k C k = k k, K C k = {1,..., n}. k=1 For each cluster, represent it using a prototype or cluster centroid µ k.

6 K-means K-means We can measure the quality of a cluster with its within-cluster deviation W (C k, µ k ) = i C k x i µ k 2 2. The overall quality of the clustering is given by the total within-cluster deviation: W = K W (C k, µ k ). k=1 The overall objective is to choose both the cluster centroids and allocation of points to minimize the objective function.

7 K-means K-means W = K k=1 i C k x i µ k 2 2 = n x i µ ci 2 2 where c i = k if and only if i C k. Given partition {C k }, we can find the optimal prototypes easily by differentiating W with respect to µ k : W = 2 (x i µ k ) = 0 µ k = 1 x i µ k C k i C k i C k Given prototypes, we can easily find the optimal partition by assigning each data point to the closest cluster prototype: i=1 c i = arg min k x i µ k 2 2 But joint minimization over both is computationally difficult.

8 K-means K-means The K-means algorithm is a widely used method that returns a local optimum of the objective function W, using iterative and alternating minimization. Step 1: Randomly initialize K cluster centroids µ 1,..., µ K. Step 2: Cluster assignment: For each i = 1,..., n, assign each x i to the cluster with the nearest centroid, c i := arg min k x i µ k 2 2 Set C k := {i : c i = k} for each k.

9 K-means K-means Step 3: Move centroids: Set µ 1,..., µ K to the averages of the new clusters: µ k := 1 x i C k i C k Step 4: Repeat steps 2-3 until convergence. Step 5: Return the partition {C 1,..., C K } and means µ 1,..., µ K.

10 K-means K-means The algorithm stops in a finite number of iterations. Between steps 2 and 3, W either stays constant or it decreases, this implies that we never revisit the same partition. As there are only finitely many partitions, the number of iterations cannot exceed this.

11 y y y K-means K-means The K-means algorithm need not converge to global optimum. K-means is a heuristic search algorithm so it can get stuck at suboptimal configurations. The result depends on the starting configuration. Typically perform a number of runs from different configurations, and pick the end result with minimum W. W= W= W= x x x

12 K-means K-means Additional Comments Good practice initialization. Randomly pick K training examples (without replacement) and set µ 1, µ 2,..., µ K equal to those examples Sensitivity to distance measure. Euclidean distance can be greatly affected by measurement unit and by strong correlations. Can use Mahalanobis distance instead: x y M = (x y) M 1 (x y) where M is positive semi-definite matrix, e.g. sample covariance.

13 K-means K-means Additional Comments Determination of K. The K-means objective will always improve with larger number of clusters K. Determination of K requires an additional regularization criterion. E.g., W = K k=1 i C k x i µ k λk

14 Originally developed by the signal processing community for data compression (audio, image and video compression), the VQ idea has been picked up the statistics community and extended to tackle a variety of tasks (including clustering and classification). VQ is a simple idea for summarising data by use of codewords. The algorithm is very closely related to the K-means algorithm, yet works sequentially through the data when updating cluster centers.

15 Given p-dimensional data, a finite set of vectors Y = {y 1,..., y K } of the same dimensionality must be found. Vectors y k are called codewords and Y the codebook. All n observations are mapped to the indices of the code book using the following rule, x i y k x i y k x i y k k. Such a mapping induces a partition of R p into Voronoi regions defined as V k = { x R p : x y k x y k k } where K k=1 V k = R p and V k s are disjoint except for boundaries.

16 Finding a Useful Codebook As with K-means, a predefined number of K codewords must be found. They should be chosen to give the greatest compression in the data with minimal loss in data quality. Where we have more codewords than clusters, it is easy to see that we should simply place codewords at the center of areas of high density, i.e. good codebooks find cluster centers.

17 The following iterative algorithm finds a good approximate solutions to this problem. 1 Randomly choose K observations to initialise the codebook. 2 Sample an observation x and let V c be the Voronoi region where it falls. 3 Update the codebook y c = y c + α(t) [x y c ] y k = y k k c. α(t) quantifies the amount by which y c moves towards of the x and decays over time to 0. 4 Repeat 2-3 until there is no change. 5 Return the codebook Y = {y 1,..., y K }

18 Compression For compression purposes, any observation x R p is now just mapped to the set {1,..., K} of codewords, according to which Voronoi region the observation falls into. If a large number of observations x 1,..., x n needs to be transferred, alternatively the vector of corresponding codewords in {1,..., K} n can be transferred to achieve a compression (with a certain loss of information). Some audio and video codecs use this method. As with K-means, K must be specified. Increasing K improves the quality of the compressed image but worsens the data compression rate, so there is a clear tradeoff. (For clustering, the choice of K is harder and does not have an entirely satisfactory answer).

19 Example: Image Compression 3 3 block VQ: View each block of 3 3 pixels as single observation

20 Example: Image Compression Original image (24 bits/pixel, uncompressed size 1,402 kb)

21 Example: Image Compression Codebook length 1024 (1.11 bits/pixel, total size 88kB)

22 Example: Image Compression Codebook length 128 (0.78 bits/pixel, total size 50kB)

23 Example: Image Compression Codebook length 16 (0.44 bits/pixel, total size 27kB)

24 Naive Bayes Naive Bayes Department of Engineering Science University of Oxford February 12, 2017 Naive Bayes

25 Naive Bayes Overview Overview Naive Bayes - a classifier with a simple generative model. Easy to implement. Given a Dataset: D = (x i, y i ) n i=1 with n entries. x i = (x (1) i,..., x (d) i ) R d is a feature vector y i Y is a label with Y = {1,..., m} for classification and Y = R for regression. (x 1, y 1 ),..., (x n, y n ) P θ i.i.d. for some parameters θ. Goal: For a new x R d, predict its label y. Compute the probability of each label given a feature x (i.e. P(y x)) Naive Bayes

26 Naive Bayes Naive Bayes Assumption Naive Bayes Assumption Assume a family of distributions P θ such that for x R d, y Y, P θ (x, y) = P θ (x y) P θ (y) = P θ (x (1) y)... P θ (x (d) y) P θ (y) d = P θ (x (j) y) P θ (y) j=1 (conditional independent assumption.) If (x, y) P θ, then x (1),..., x (d) are independent given y. Naive Bayes Assumption: All measured features are independent given the label (i.e. x (j) y x (k) y if j k) Naive Bayes

27 Naive Bayes Methodology Methodology Methodology: Estimate the conditional probability distribution (P θ (x y)) and prior (P θ (y)) that describe the entire population from which the random samples (x i, y i ) n i=1 are drawn. Algorithm: Estimate ˆθ from the dataset D. Compute ŷ arg max Pˆθ (y x) = arg max Pˆθ (x y) Pˆθ (y) y Y y Y = arg max Pˆθ (x (1) y)... Pˆθ (x (d) y) Pˆθ (y) y Y Naive Bayes

28 Naive Bayes Methodology Methodology Using the Bayes rule, Pˆθ(y x) Pˆθ (x y) Pˆθ (y) = Pˆθ(x) Pˆθ (x y) Pˆθ (y) = y Y Pˆθ(x y) Pˆθ(y) By the conditional independent assumption, (Pˆθ(x y) = d j=1 Pˆθ(x (j) y)) d j=1 = Pˆθ (x (j) y) Pˆθ (y) y Y Pˆθ(y) d j=1 Pˆθ(x (j) y) Pˆθ(y) Therefore, we need to estimate Prior: Pˆθ(y) Conditional PDF: Pˆθ (x (j) y) Naive Bayes

29 Naive Bayes Methodology Methodology How to choose P θ? For classification, let (x, y) P θ, y Y = {1,..., m}. Then P θ (y) = π y, where π = (π 1,..., π m ) P θ (x i y) where θ = {all parameters of the distributions} If x i {1,..., N} then, P θ (x i y) can be estimated using the sample mean If x i R then assume parametric distribution such as Gaussian or Gamma distributions, and estimate the parameter. How to estimate θ? Using Maximum Likelihood Estimation (MLE) or Maximum A Posteriori Probability Estimation (MAP). Naive Bayes

30 Naive Bayes Methodology Maximum Likelihood Estimation (MLE) Prior Estimation with MLE: Pˆθ (y = k) = ˆπ k = 1 n n i=1 I(y i = k) = n k n Conditional PDF: For discrete features: Pˆθ(x (j) = l y = k) = 1 n k n i=1 I(x (j) i = l) I(y i = k) = n lk n k For the continuous feature: Use parametric distribution assumption to estimate the parameters with MLE. Then, based on the estimated parameters, compute the conditional pdf. Naive Bayes

31 Naive Bayes Methodology Gaussian Distribution Example (Continuous features) Estimate the Gaussian parameters for P(x (j) = x y = k) Mean: Variance: µ jk = 1 n k n σ 2 jk = 1 n k n i=1 i=1 x (j) i I(y i = k) (x (j) i µ jk ) 2 I(y i = k) Compute the conditional pdf based on the estimated parameters P(x (j) = x y = k) = 1 2πσjk 2 e 1 2σ jk 2 (x µ jk ) 2 Naive Bayes

32 Naive Bayes Text Document Classification Example Text Document Classification Example Often used in text document classification, e.g. of scientific articles or s. A basic standard model for text classification consists of considering a pre-specified dictionary of p workds and summarizing each document i by a binary vector x i where x (j) i = { 1 if word j is present in document 0 otherwise. Naive Bayes

33 Naive Bayes Text Document Classification Example Text Document Classification Example Presence of the word j is the j-th feature/dimension. Naive Bayes is a plug-in classifier which ignores feature correlations and assumes: g k (x i ) = P(x = x i y = k) = = p j=1 P(x (j) = x (j) i y = k) p (φ kj ) x (j) i j=1 (j) 1 x (1 φ kj ) i where we denoted parametrized conditional PMF with φ kj = P(x (j) = 1 y = k) (probability that j-th word appears in class k document). Given dataset, the MLE of the parameters is: ˆπ k = n k n, ˆφ kj = i:y k =k x (j) i n k, Naive Bayes

34 Naive Bayes Text Document Classification Example Text Document Classification Example A problem with MLE: if the l-th word did not appear in document labeled as class k then ˆφ kl = 0 and P(y = k x with l-th entry equal to 1) p ˆπ k ( ˆφ kj ) x(j) (1 ˆφ kj ) 1 x(j) = 0 j=1 i.e. we will never attribute a new document containing word l to class k (regardless of other words in it). This is an example of overfitting. Naive Bayes

35 Naive Bayes Why Conditional Independent Assumption? Why Conditional Independent Assumption? Conditional Independent Assumption: P θ (x y) = P θ (x (1) y)... P θ (x (d) y) Can estimate θ more accurately with less data. Wrong but simple can be better than correct and complicated. Naive Bayes

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013 Voronoi Region K-means method for Signal Compression: Vector Quantization Blocks of signals: A sequence of audio. A block of image pixels. Formally: vector example: (0.2, 0.3, 0.5, 0.1) A vector quantizer

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

CS 195-5: Machine Learning Problem Set 5

CS 195-5: Machine Learning Problem Set 5 CS 195-5: Machine Learning Problem Set 5 Douglas Lanman dlanman@brown.edu 26 November 26 1 Clustering and Vector Quantization Problem 1 Part 1: In this problem we will apply Vector Quantization (VQ) to

More information

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013

Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Your Name: Your student id: Solution Sketches Midterm Exam COSC 6342 Machine Learning March 20, 2013 Problem 1 [5+?]: Hypothesis Classes Problem 2 [8]: Losses and Risks Problem 3 [11]: Model Generation

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning. Xiaojin Zhu Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018 CSCI 567, Fall 18 Haipeng Luo Homework #4 Programming Assignment Due: 11:59 pm, ovember 4, 2018 General instructions Your repository will have now a directory P4/. Please do not change the name of this

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate

Density estimation. In density estimation problems, we are given a random from an unknown density. Our objective is to estimate Density estimation In density estimation problems, we are given a random sample from an unknown density Our objective is to estimate? Applications Classification If we estimate the density for each class,

More information

May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM) Bishop Ch 7. May 3, Class HW SVM, PCA, and K-means, Bishop Ch

May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM) Bishop Ch 7. May 3, Class HW SVM, PCA, and K-means, Bishop Ch May 1, CODY, Error Backpropagation, Bischop 5.3, and Support Vector Machines (SVM) Bishop Ch 7. May 3, Class HW SVM, PCA, and K-means, Bishop Ch 12.1, 9.1 May 8, CODY Machine Learning for finding oil,

More information

SD 372 Pattern Recognition

SD 372 Pattern Recognition SD 372 Pattern Recognition Lab 2: Model Estimation and Discriminant Functions 1 Purpose This lab examines the areas of statistical model estimation and classifier aggregation. Model estimation will be

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

MCMC Methods for data modeling

MCMC Methods for data modeling MCMC Methods for data modeling Kenneth Scerri Department of Automatic Control and Systems Engineering Introduction 1. Symposium on Data Modelling 2. Outline: a. Definition and uses of MCMC b. MCMC algorithms

More information

Clustering algorithms

Clustering algorithms Clustering algorithms Machine Learning Hamid Beigy Sharif University of Technology Fall 1393 Hamid Beigy (Sharif University of Technology) Clustering algorithms Fall 1393 1 / 22 Table of contents 1 Supervised

More information

K-Means Clustering 3/3/17

K-Means Clustering 3/3/17 K-Means Clustering 3/3/17 Unsupervised Learning We have a collection of unlabeled data points. We want to find underlying structure in the data. Examples: Identify groups of similar data points. Clustering

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Unsupervised Learning: Clustering Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com (Some material

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

What to come. There will be a few more topics we will cover on supervised learning

What to come. There will be a few more topics we will cover on supervised learning Summary so far Supervised learning learn to predict Continuous target regression; Categorical target classification Linear Regression Classification Discriminative models Perceptron (linear) Logistic regression

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering K-means and Hierarchical Clustering Xiaohui Xie University of California, Irvine K-means and Hierarchical Clustering p.1/18 Clustering Given n data points X = {x 1, x 2,, x n }. Clustering is the partitioning

More information

Clustering Distance measures K-Means. Lecture 22: Aykut Erdem December 2016 Hacettepe University

Clustering Distance measures K-Means. Lecture 22: Aykut Erdem December 2016 Hacettepe University Clustering Distance measures K-Means Lecture 22: Aykut Erdem December 2016 Hacettepe University Last time Boosting Idea: given a weak learner, run it multiple times on (reweighted) training data, then

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques.

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques. . Non-Parameteric Techniques University of Cambridge Engineering Part IIB Paper 4F: Statistical Pattern Processing Handout : Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 23 Introduction

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008 Cluster Analysis Jia Li Department of Statistics Penn State University Summer School in Statistics for Astronomers IV June 9-1, 8 1 Clustering A basic tool in data mining/pattern recognition: Divide a

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Chapter 4: Non-Parametric Techniques

Chapter 4: Non-Parametric Techniques Chapter 4: Non-Parametric Techniques Introduction Density Estimation Parzen Windows Kn-Nearest Neighbor Density Estimation K-Nearest Neighbor (KNN) Decision Rule Supervised Learning How to fit a density

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

CLUSTERING. JELENA JOVANOVIĆ Web:

CLUSTERING. JELENA JOVANOVIĆ   Web: CLUSTERING JELENA JOVANOVIĆ Email: jeljov@gmail.com Web: http://jelenajovanovic.net OUTLINE What is clustering? Application domains K-Means clustering Understanding it through an example The K-Means algorithm

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

Clustering Lecture 14

Clustering Lecture 14 Clustering Lecture 14 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering: Unsupervised learning Clustering Requires

More information

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray Exploratory Data Analysis using Self-Organizing Maps Madhumanti Ray Content Introduction Data Analysis methods Self-Organizing Maps Conclusion Visualization of high-dimensional data items Exploratory data

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Lecture 11: Classification

Lecture 11: Classification Lecture 11: Classification 1 2009-04-28 Patrik Malm Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapters for this lecture 12.1 12.2 in

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Pierre Gaillard ENS Paris September 28, 2018 1 Supervised vs unsupervised learning Two main categories of machine learning algorithms: - Supervised learning: predict output Y from

More information

Clustering. Supervised vs. Unsupervised Learning

Clustering. Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM. Center of Atmospheric Sciences, UNAM November 16, 2016 Cluster Analisis Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster)

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Notes and Announcements

Notes and Announcements Notes and Announcements Midterm exam: Oct 20, Wednesday, In Class Late Homeworks Turn in hardcopies to Michelle. DO NOT ask Michelle for extensions. Note down the date and time of submission. If submitting

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2015 11. Non-Parameteric Techniques

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

Clustering & Dimensionality Reduction. 273A Intro Machine Learning

Clustering & Dimensionality Reduction. 273A Intro Machine Learning Clustering & Dimensionality Reduction 273A Intro Machine Learning What is Unsupervised Learning? In supervised learning we were given attributes & targets (e.g. class labels). In unsupervised learning

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

SOCIAL MEDIA MINING. Data Mining Essentials

SOCIAL MEDIA MINING. Data Mining Essentials SOCIAL MEDIA MINING Data Mining Essentials Dear instructors/users of these slides: Please feel free to include these slides in your own material, or modify them as you see fit. If you decide to incorporate

More information

k-means Clustering David S. Rosenberg April 24, 2018 New York University

k-means Clustering David S. Rosenberg April 24, 2018 New York University k-means Clustering David S. Rosenberg New York University April 24, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 1 / 19 Contents 1 k-means Clustering 2 k-means:

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Normalized Texture Motifs and Their Application to Statistical Object Modeling

Normalized Texture Motifs and Their Application to Statistical Object Modeling Normalized Texture Motifs and Their Application to Statistical Obect Modeling S. D. Newsam B. S. Manunath Center for Applied Scientific Computing Electrical and Computer Engineering Lawrence Livermore

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis a first intuition about the

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information