Test Reminder. CSE21: Lecture 7 1

Size: px
Start display at page:

Download "Test Reminder. CSE21: Lecture 7 1"

Transcription

1 Test Reminder Quiz 2 will be in the first 15 minutes of Tomorrow s class. You can use any resources you have during the quiz. It covers the first three sections of Unit 2. It has four questions, two of them will be choices. Midterm will be at this Monday s class. One hour and twenty minutes long. It covers all four sections of Unit 1 and the first three sections of Unit 2. You can bring one letter size paper (8.5 by 11 ) for notes (front and back, hand written). Write down your name on the paper, and turn this in with your test. No other resources are allowed. Extra question: we will have one question in the end with extra points. It will be added to your score without exceeding the maximal score. Midterm practice is online now. TA will discuss it on Thursday. CSE21: Lecture 7 1

2 Quiz 1 Result The papers for Quiz 1 will handed out at the end of this class. I ll curve scores up if they are final scores. Scores of each test will be at GradeSource The first quiz s score information will be sent out today. If you are not happy with the score, Try to read ahead notes/textbook for the next class. Try to solve more exercise questions after class. Ask help at Piazza or office hour. CSE21: Lecture 7 2

3 Piazza Advertisement for Piazza forum the last time Over 30 questions so far. The average response time is 24 minutes. Announcements will be posted there. Some students help others on piazza. Thanks! CSE21: Lecture 7 3

4 CSE 21 Mathematics for Algorithm and System Analysis Unit 2: Functions Section 3: Other Combinatorial Aspects of Functions CSE21: Lecture 7 4

5 Review: Subset and Set Partition (CL-25) The set of all subsets of A: P(A). P(A) =2 A A partition of a set B is a collection of nonempty subsets of B such that each element of B appears in exactly one subset. Each subset is called a block of the partition. Example: the 15 partitions of {1, 2, 3, 4} by number of blocks are 1 block: {{1, 2, 3, 4}} 2 blocks: {{1, 2, 3}, {4}}, {{1,2},{3,4}}, 4 blocks: {{1}, {2}, {3}, {4}} CSE21: Lecture 7 5

6 Review: Set Partitions (CL-25) S(n,k) is denoted to be the number of partitions of an n-set having exactly k blocks. S(n, k) = S(n 1, k 1) 1 + k S(n 1, k) Tabular representation k n S(n,k) CSE21: Lecture 7 6

7 Review : Function (Fn-2) The set of the first n positive integers, {1, 2,..., n} : n If A and B are sets, a function from A to B is a rule that tells us how to find a unique b Bfor each a A. f : A B means f is a function from A to B, which is the same with f B A. We call the set A the domain of f and the set B the range/codomain of f. One line form: when A is ordered by a 1, a 2,..., a A, a function can be written in one-line form: (f(a 1 ), f(a 2 ),..., f(a A )) or f(a 1 ), f(a 2 ),..., f(a A ) CSE21: Lecture 7 7

8 Learning Outcomes By the end of this lesson, you should be able to Understand coimage concept and use it to solve function counting problems. Understand the monotone functions and their relationship with sets/multisets. Use the above relationship to count sets/multisets and functions. CSE21: Lecture 7 8

9 Why do we need to learn them? Coimage and related concepts show how we can create functions and bijections. To organize and store objects in computer, we sometimes need to order them first. Monotone functions are good ways to order objects. CSE21: Lecture 7 9

10 Two parts in this section The Inverse of an Arbitrary Function Inverse Image, Coimage, etc. Monotonic Lists and Unordered Lists Monotone functions, counting sets/multisets, etc. CSE21: Lecture 7 10

11 Image and Inverse Image For function f : A B, Image of Function The image of f is the set of values f actually takes on: Image(f ) = { f (a) a A}. Image(f ) Range(f ) Inverse Image For each b B, the inverse image of b, written f 1 (b) is the set of those elements in A whose image is b; i.e., f 1 (b) = {a a A and f(a) = b}. Such an f 1 is not a function from B to A unless f is a bijection. Suppose f is given by the functional relation R A B. Then f 1 (b) is all those a such that (a,b) R. CSE21: Lecture 7 11

12 Definition 4 : Coimage For function f : A B, The coimage of f is the set of nonempty inverse images of elements of B. Coimage(f ) = {f 1 (b) b B, f 1 (b) } = {f 1 (b) b Image(f )}. Coimage(f ) = Image(f ) Coimage(f ), Coimage(f ) Examples: If f {a, b, c} 5 in one line form is (a,c,a,a,c), then f(1) = f(3) = f(4) = a, f(2) = f(5) = c Image(f) = {a, c} Range(f )={a, b, c} Coimage(f) = {f 1 (a), f 1 (c)} = {{1,3,4},{2,5}} CSE21: Lecture 7 12

13 Partition by Coimage The coimage of f is a partition of its domain. Example: If f {a, b, c} 5 in one line form is (a,c,a,a,c), then Coimage(f ) = {f 1 (a), f 1 (c)} = {{1,3,4},{2,5}} If f is constant, namely its value is the same for all domain elements, the partition by the coimage of f has only one block and the block is the domain set. Example: If f {a, b, c} 5 in one line form is (a,a,a,a,a), then f(i) =a for all i {1,2,3,4,5}, then Coimage(f ) = {f 1 (a)} = {{1,2,3,4,5}} CSE21: Lecture 7 13

14 Example 12 : Inverse Image as Function Recall inverse image f 1 is not a function from B to A unless f is a bijection. Can we make f 1 always a function by changing the range? Given function f : A B, for each b B, f 1 (b) = {a a Aand f(a) = b} P(A), which is the set of all subsets of A. So f 1 is a function from B to P(A). Example: f {a, b, c} 5 in one line form is (a,c,a,a,c), then f 1 is a b c {1,3,4} Φ {2,5} CSE21: Lecture 7 14

15 Example 12 : Inverse Image as Function(2) Can we make inverse image f 1 always a bijection function by changing both domain and range? Given function f : A B, for each b Image(f ), f 1 (b) = {a a Aand f(a) = b} Coimage(f ). f 1 is a bijection: Image(f ) Coimage(f ). Last example: f {a, b, c} 5 in one line form is (a,c,a,a,c), then f 1 is a {1,3,4} c {2,5} CSE21: Lecture 7 15

16 Example 12 : Inverse Image as Function(3) If we know {{1, 3, 4}, {2, 5}} is the coimage of a function g with codomain/range {a, b, c}, how many g functions we can have? The domain of g is {1, 2, 3, 4, 5}, we need to know image and rule from domain to image. Image set: coimage block number is the size of image, 3 3! select 2-subset from 3-set {a, b, c}: = = 3 2 2!(3 2)! Rule from domain to image (select one element in image for{1,3,4}, and another one for {2, 5}, rule of product): 2! The results are 3 2!=6. We got the same result using a solution different from text book. CSE21: Lecture 7 16

17 Example 13 : Counting Functions with Specified Image Size How many functions in B A, namely f : A B, have an image with exactly k elements? B B! Get image set (k-subset) from B: = k k!( B k)! Get coimage set from A: If image has k elements, coimage has to be a partition of domain with k blocks. Get the number of partitions of set of size A into k blocks: S( A, k) Rule from k blocks in coimage to k elements in image: k! Results: B S( A, k) k k! = S( A, k) B! ( B k)! CSE21: Lecture 7 17

18 Second part in this section The Inverse of an Arbitrary Function Inverse Image, Coimage, etc. Monotonic Lists and Unordered Lists Monotone functions, counting sets/multisets, etc. CSE21: Lecture 7 18

19 Ordering in Computer In computers, data need to ordered for storage and retrieve. The most common orders are arrays and linked lists. Enable ordering in computer for mathematical objects Use the order of mathematical objects directly. Example: One-line notation for a function is an ordered list based on the order of domain set. So functions can be stored in computer as ordered lists. Add an order of mathematical objects in program, called canonical or unique ordering. Example: add order to sets and multisets that are unordered mathematical objects. CSE21: Lecture 7 19

20 Different Types of Order We need a unique way to order elements in a set or multiset to have an ordered list. Example: 3-element multisets whose elements are chosen from 5. An intuitive order in each 3-multiset:(1,1,1); (1,1,2); (1,1,3); An ordered list (b 1,b 2,...,b k ) is in weakly increasing order if b 1 b 2 b k weakly decreasing order if b 1 b 2 b k strictly increasing order if b 1 < b 2 < < b k strictly decreasing order if b 1 > b 2 > > b k CSE21: Lecture 7 20

21 Functions with Different Types of Orders Functions with domain k can be viewed as k-lists in one line form. Example: 3-list for f(1)=a, f(2)=b, f(3)=c is (a, b, c). f n k is a weakly increasing function if its one-line form is weakly increasing, i.e., f(1) f (2) f (k) Example: f(1)=1, f(2)=2, f(3)=2. Functions with other orders, e.g., weakly decreasing function, can be also defined. All these functions are called monotone functions. CSE21: Lecture 7 21

22 Relation between Sets/Multisets and Ordered Functions We have bijection from the k-multisets whose elements lie in n to the weakly increasing/decreasing functions in n k written in one-line form. Example: 3-element multisets from 5. Each multiset, e.g.,{2, 5, 5} corresponds to a weakly increasing function e.g., f = (2, 5, 5) and a weakly decreasing function (read in opposite direction) e.g., f = (5, 5, 2) in one line form. Replace the above multisets to sets, we will get strictly increasing/decreasing functions. Example: {1, 2, 3} corresponds to strictly increasing function f = (1, 2, 3) and strictly decreasing function f = (3, 2, 1) in one line form. CSE21: Lecture 7 22

23 Theorem 2 : Sets, Unordered Lists and Monotone Functions There are bijection between each of the following: { k-multisets} whose elements lie in n, k-sets { weakly} the increasing ordered k-lists made from n, strictly { weakly} the increasing functions in n k. strictly CSE21: Lecture 7 23

24 Example 14 : Counting Multisets How many different 3-element multisets have elements from 5? Convert the problem. First arrange the elements in multisets in weakly increasing order, e.g.: 1,1,1;1,1,2, then add 0 to the first item, add 1 to the second item, add 2 to the third item. 1,1,1 becomes 1,2,3; ; 1,2,5 becomes 1,3,7 It becomes listing strictly increasing k-lists from 7, or all subsets of 7 of size 3. The result is 7 3 = 7! 3! 4! = 35 CSE21: Lecture 7 24

25 Example 14 : Counting Multisets (2) How many different k-element multisets have elements from n? Arrange elements in multisets in weakly increasing order, then add 0 to the first item, add 1 to the second item, and add k-1 to the last item. It becomes listing all subsets of n of size k: Based on Theorem 2, we can get same number for: the weakly increasing ordered k-lists made from n, the weakly increasing functions in n k. n + k 1 k CSE21: Lecture 7 25

26 Homework and Pre-Reading Assignment Homework: Exercise 3.1, 3.4, 3.6, 3.7, 3.8 in page Fn-19 to Fn- 21 Prepare quiz 2 For next class, please read first a few pages of Section 1 in Unit 3, NOT Section 4 in Unit 2. Try to understand decision tree through examples. Try to understand different ways to traverse decision trees through examples. CSE21: Lecture 7 26

Class Note #02. [Overall Information] [During the Lecture]

Class Note #02. [Overall Information] [During the Lecture] Class Note #02 Date: 01/11/2006 [Overall Information] In this class, after a few additional announcements, we study the worst-case running time of Insertion Sort. The asymptotic notation (also called,

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. Functions functions 1 Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. a A! b B b is assigned to a a A! b B f ( a) = b Notation: If

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 4: Basic Concepts in Graph Theory Section 3: Trees 1 Review : Decision Tree (DT-Section 1) Root of the decision tree on the left: 1 Leaves of the

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

c) the set of students at your school who either are sophomores or are taking discrete mathematics

c) the set of students at your school who either are sophomores or are taking discrete mathematics Exercises Exercises Page 136 1. Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets. a) A B

More information

3. Determine whether f is a function from the set of all bit strings to the set of integers if

3. Determine whether f is a function from the set of all bit strings to the set of integers if Exercises Exercises 1. Why is f not a function from R to R if a) f(x) = 1/x? b) c) 2. Determine whether f is a function from Z to R if a) f(n) = ± n. b). c) f(n) = 1/(n2 4). 3. Determine whether f is a

More information

Lesson 11.1 Dilations

Lesson 11.1 Dilations Lesson 11.1 Dilations Key concepts: Scale Factor Center of Dilation Similarity A A dilation changes the size of a figure. B C Pre Image: 1 A A' B C Pre Image: B' C' Image: What does a dilation NOT change?

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Lecture 25 : Counting DRAFT

Lecture 25 : Counting DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/28/2011 Lecture 25 : Counting Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Today we start the last topic of the course, counting. For

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

More on Arrays CS 16: Solving Problems with Computers I Lecture #13

More on Arrays CS 16: Solving Problems with Computers I Lecture #13 More on Arrays CS 16: Solving Problems with Computers I Lecture #13 Ziad Matni Dept. of Computer Science, UCSB Announcements Homework #12 due today No homework assigned today!! Lab #7 is due on Monday,

More information

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5.

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5. Notation Index (there exists) (for all) Fn-4 Fn-4 (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5 ( n ) k (binomial coefficient) CL-15 ( n m 1,m 2,...) (multinomial coefficient)

More information

CMPSCI 250: Introduction to Computation. Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014

CMPSCI 250: Introduction to Computation. Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014 CMPSCI 250: Introduction to Computation Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014 Things, Sets, and Strings The Mathematical Method Administrative Stuff The Objects of Mathematics

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall CSE 20 https://goo.gl/forms/1o 1KOd17RMoURxjn2 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Explain the steps in a proof by mathematical and/or structural

More information

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of 2 A 2 B? Answer: 2 A 2 B = 2 A 2 B = 2 A 2 B = 8 16 = 128 Exercises Question 2: Is it true for all sets

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING

CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING Unit 12: Functions These pages correspond to tet reading and are not covered in the lectures. Based on slides by Patrice Belleville and Steve

More information

CMSC Theory of Algorithms Second Midterm

CMSC Theory of Algorithms Second Midterm NAME (please PRINT in large letters): SECTION: 01 02 (circle one) CMSC 27200 Theory of Algorithms Second Midterm 02-26-2015 The exam is closed book. Do not use notes. The use of ELECTRONIC DEVICES is strictly

More information

CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

CS264: Homework #1. Due by midnight on Thursday, January 19, 2017

CS264: Homework #1. Due by midnight on Thursday, January 19, 2017 CS264: Homework #1 Due by midnight on Thursday, January 19, 2017 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. See the course site for submission

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

DAVID CALLAN. Department of Statistics. Medical Science Center University Ave. September 21, Abstract

DAVID CALLAN. Department of Statistics. Medical Science Center University Ave. September 21, Abstract On Conjugates for Set Partitions and Integer Compositions DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 1300 University Ave Madison, WI 53706-1532 callan@stat.wisc.edu

More information

2. There are 7 people to be seated at a round table. How many seating arrangements are possible? How many times must they change places so that

2. There are 7 people to be seated at a round table. How many seating arrangements are possible? How many times must they change places so that Example 1.1 1. Two students witness burglar Bill making off from a crime scene in his getaway car. The first student tells the police that the number plate began with and R or a P and that the first numerical

More information

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan MATH 22 Lecture M: 10/14/2003 MORE ABOUT FUNCTIONS Form follows function. Louis Henri Sullivan This frightful word, function, was born under other skies than those I have loved. Le Corbusier D ora innanzi

More information

Sorting Algorithms. CSE21 Winter 2017, Day 2 (B00), Day 1-2 (A00) January 11, 2017

Sorting Algorithms. CSE21 Winter 2017, Day 2 (B00), Day 1-2 (A00) January 11, 2017 Sorting Algorithms CSE21 Winter 2017, Day 2 (B00), Day 1-2 (A00) January 11, 2017 Sorting (or Ordering) Section 3.1 in Rosen vs. * Assume elements of the set to be sorted have some underlying order Why

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Lesson Plan #001. Class: Geometry Date: Wednesday September 9 th, 2015

Lesson Plan #001. Class: Geometry Date: Wednesday September 9 th, 2015 Lesson Plan #001 1 Class: Geometry Date: Wednesday September 9 th, 2015 Topic: Points, lines, and planes Aim: What are points, lines and planes? Objectives: 1) Students will be able to describe what is

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

Graphs and Puzzles. Eulerian and Hamiltonian Tours.

Graphs and Puzzles. Eulerian and Hamiltonian Tours. Graphs and Puzzles. Eulerian and Hamiltonian Tours. CSE21 Winter 2017, Day 11 (B00), Day 7 (A00) February 3, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Exam Announcements Seating Chart on Website Good

More information

Congruence Arithmetic

Congruence Arithmetic Module 4 Congruence Arithmetic Popper 4 Introduction to what is like Modulus choices Partitions by modulus Mod 5 Mod 7 Mod 30 Modular Arithmetic Addition Subtraction Multiplication INTEGERS! Mod 12 Cayley

More information

1 The range query problem

1 The range query problem CS268: Geometric Algorithms Handout #12 Design and Analysis Original Handout #12 Stanford University Thursday, 19 May 1994 Original Lecture #12: Thursday, May 19, 1994 Topics: Range Searching with Partition

More information

CSE 202: Design and Analysis of Algorithms Lecture 4

CSE 202: Design and Analysis of Algorithms Lecture 4 CSE 202: Design and Analysis of Algorithms Lecture 4 Instructor: Kamalika Chaudhuri Announcements HW 1 due in class on Tue Jan 24 Email me your homework partner name, or if you need a partner today Greedy

More information

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability)

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) Last modified: September 16, 2004 Reference: Apostol, Calculus, Vol. 2, section 13.19 (attached). The aim

More information

Lesson 10. Student Outcomes. Lesson Notes

Lesson 10. Student Outcomes. Lesson Notes Student Outcomes Students understand that a function from one set (called the domain) to another set (called the range) assigns each element of the domain to exactly one element of the range and understand

More information

Comparing sizes of sets

Comparing sizes of sets Comparing sizes of sets Sets A and B are the same size if there is a bijection from A to B. (That was a definition!) For finite sets A, B, it is not difficult to verify that there is a bijection from A

More information

Let A(x) be x is an element of A, and B(x) be x is an element of B.

Let A(x) be x is an element of A, and B(x) be x is an element of B. Homework 6. CSE 240, Fall, 2014 Due, Tuesday October 28. Can turn in at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Given two arbitrary

More information

Overloading Functions & Command Line Use in C++ CS 16: Solving Problems with Computers I Lecture #6

Overloading Functions & Command Line Use in C++ CS 16: Solving Problems with Computers I Lecture #6 Overloading Functions & Command Line Use in C++ CS 16: Solving Problems with Computers I Lecture #6 Ziad Matni Dept. of Computer Science, UCSB A reminder about Labs Announcements Please make sure you READ

More information

CSE 421 Applications of DFS(?) Topological sort

CSE 421 Applications of DFS(?) Topological sort CSE 421 Applications of DFS(?) Topological sort Yin Tat Lee 1 Precedence Constraints In a directed graph, an edge (i, j) means task i must occur before task j. Applications Course prerequisite: course

More information

MATH20902: Discrete Maths, Solutions to Problem Set 1. These solutions, as well as the corresponding problems, are available at

MATH20902: Discrete Maths, Solutions to Problem Set 1. These solutions, as well as the corresponding problems, are available at MATH20902: Discrete Maths, Solutions to Problem Set 1 These solutions, as well as the corresponding problems, are available at https://bit.ly/mancmathsdiscrete.. (1). The upper panel in the figure below

More information

Applied Algorithm Design Lecture 3

Applied Algorithm Design Lecture 3 Applied Algorithm Design Lecture 3 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 3 1 / 75 PART I : GREEDY ALGORITHMS Pietro Michiardi (Eurecom) Applied Algorithm

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

Announcements. CSEP 521 Applied Algorithms. Announcements. Polynomial time efficiency. Definitions of efficiency 1/14/2013

Announcements. CSEP 521 Applied Algorithms. Announcements. Polynomial time efficiency. Definitions of efficiency 1/14/2013 Announcements CSEP 51 Applied Algorithms Richard Anderson Winter 013 Lecture Reading Chapter.1,. Chapter 3 Chapter Homework Guidelines Prove that your algorithm works A proof is a convincing argument Give

More information

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14 CSE341T/CSE549T 10/20/2014 Lecture 14 Graph Contraction Graph Contraction So far we have mostly talking about standard techniques for solving problems on graphs that were developed in the context of sequential

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Announcements. Using Electronics in Class. Review. Staff Instructor: Alvin Cheung Office hour on Wednesdays, 1-2pm. Class Overview

Announcements. Using Electronics in Class. Review. Staff Instructor: Alvin Cheung Office hour on Wednesdays, 1-2pm. Class Overview Announcements Introduction to Databases CSE 414 Lecture 2: Data Models HW1 and WQ1 released Both due next Tuesday Office hours start this week Sections tomorrow Make sure you sign up on piazza Please ask

More information

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in .

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in  . 0.1 More on innity.math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in email. 0.1.1 If you haven't read 1.3, do so now! In notes#1

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1}

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1} CSE 5 Homework 2 Due: Monday October 6, 27 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16. In-Class Midterm. ( 11:35 AM 12:50 PM : 75 Minutes )

CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16. In-Class Midterm. ( 11:35 AM 12:50 PM : 75 Minutes ) CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16 In-Class Midterm ( 11:35 AM 12:50 PM : 75 Minutes ) This exam will account for either 15% or 30% of your overall grade depending on your

More information

COS 226 Fall 2015 Midterm Exam pts.; 60 minutes; 8 Qs; 15 pgs :00 p.m. Name:

COS 226 Fall 2015 Midterm Exam pts.; 60 minutes; 8 Qs; 15 pgs :00 p.m. Name: COS 226 Fall 2015 Midterm Exam 1 60 + 10 pts.; 60 minutes; 8 Qs; 15 pgs. 2015-10-08 2:00 p.m. c 2015 Sudarshan S. Chawathe Name: 1. (1 pt.) Read all material carefully. If in doubt whether something is

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Intro to Contemporary Math

Intro to Contemporary Math Intro to Contemporary Math Conditional Probability Intro Department of Mathematics UK Announcement You have a homework assignment due next Monday. Sequences of Experiments Suppose two experiments are performed,

More information

Chapter 2: The Normal Distribution

Chapter 2: The Normal Distribution Chapter 2: The Normal Distribution 2.1 Density Curves and the Normal Distributions 2.2 Standard Normal Calculations 1 2 Histogram for Strength of Yarn Bobbins 15.60 16.10 16.60 17.10 17.60 18.10 18.60

More information

61A LECTURE 1 FUNCTIONS, VALUES. Steven Tang and Eric Tzeng June 24, 2013

61A LECTURE 1 FUNCTIONS, VALUES. Steven Tang and Eric Tzeng June 24, 2013 61A LECTURE 1 FUNCTIONS, VALUES Steven Tang and Eric Tzeng June 24, 2013 Welcome to CS61A! The Course Staff - Lecturers Steven Tang Graduated L&S CS from Cal Back for a PhD in Education Eric Tzeng Graduated

More information

Main approach: always make the choice that looks best at the moment.

Main approach: always make the choice that looks best at the moment. Greedy algorithms Main approach: always make the choice that looks best at the moment. - More efficient than dynamic programming - Always make the choice that looks best at the moment (just one choice;

More information

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques.

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques. Graph theory Po-Shen Loh June 013 1 Basic results We begin by collecting some basic facts which can be proved via bare-hands techniques. 1. The sum of all of the degrees is equal to twice the number of

More information

Lesson 16: Applying the Properties of Operations to Multiply and Divide Rational Numbers

Lesson 16: Applying the Properties of Operations to Multiply and Divide Rational Numbers Lesson 16: Applying the Properties of Operations to Multiply and Divide Rational Student Outcomes Students use properties of operations to multiply and divide rational numbers without the use of a calculator.

More information

Angles Formed by Intersecting Lines

Angles Formed by Intersecting Lines 1 3 Locker LESSON 19.1 Angles Formed by Intersecting Lines Common Core Math Standards The student is expected to: G-CO.9 Prove theorems about lines and angles. Mathematical Practices MP.3 Logic Name Class

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

Introduction to Graphs

Introduction to Graphs Introduction to Graphs CSE21 Winter 2017, Day 10 (B00), Day 6-7 (A00) February 1, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 What is a graph? A (directed) graph G is A nonempty set of vertices V, also

More information

CS264: Homework #4. Due by midnight on Wednesday, October 22, 2014

CS264: Homework #4. Due by midnight on Wednesday, October 22, 2014 CS264: Homework #4 Due by midnight on Wednesday, October 22, 2014 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Turn in your solutions

More information

Abstract Combinatorial Games

Abstract Combinatorial Games Abstract Combinatorial Games Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@email.uncc.edu

More information

1. The Normal Distribution, continued

1. The Normal Distribution, continued Math 1125-Introductory Statistics Lecture 16 10/9/06 1. The Normal Distribution, continued Recall that the standard normal distribution is symmetric about z = 0, so the area to the right of zero is 0.5000.

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

Combinatorial Gems. Po-Shen Loh. June 2009

Combinatorial Gems. Po-Shen Loh. June 2009 Combinatorial Gems Po-Shen Loh June 2009 Although this lecture does not contain many offical Olympiad problems, the arguments which are used are all common elements of Olympiad problem solving. Some of

More information

W13:Homework:H08. CS40 Foundations of Computer Science W13. From 40wiki

W13:Homework:H08. CS40 Foundations of Computer Science W13. From 40wiki W13:Homework:H08 From 40wiki CS40 Foundations of Computer Science W13 W13:Exams W13:Homework in Class and Web Work W13:Calendar W13:Syllabus and Lecture Notes UCSB-CS40-W13 on Facebook (https://www.facebook.com/groups/ucsb.cs40.w13/)

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

LECTURE 8: SETS. Software Engineering Mike Wooldridge

LECTURE 8: SETS. Software Engineering Mike Wooldridge LECTURE 8: SETS Mike Wooldridge 1 What is a Set? The concept of a set is used throughout mathematics; its formal definition matches closely our intuitive understanding of the word. Definition: A set is

More information

Lecture 2: Introduction to SQL

Lecture 2: Introduction to SQL Lecture 2: Introduction to SQL Lecture 2 Announcements! 1. If you still have Jupyter trouble, let us know! 2. Enroll to Piazza!!! 3. People are looking for groups. Team up! 4. Enrollment should be finalized

More information

8.2.1 and 2 Lesson Date: Definition of Translation and Three Basic Properties

8.2.1 and 2 Lesson Date: Definition of Translation and Three Basic Properties 8.2.1 and 2 Lesson Date: Definition of Translation and Three Basic Properties Student Objectives I can perform translations of figures along a specific vector. I can label the image of the figure using

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

CS 374 Fall 2014 Homework 5 Due Tuesday, October 14, 2014 at noon

CS 374 Fall 2014 Homework 5 Due Tuesday, October 14, 2014 at noon CS 374 Fall 2014 Homework 5 Due Tuesday, October 14, 2014 at noon 1. Dance Dance Revolution is a dance video game, first introduced in Japan by Konami in 1998. Players stand on a platform marked with four

More information

Lecture 1. Course Overview Types & Expressions

Lecture 1. Course Overview Types & Expressions Lecture 1 Course Overview Types & Expressions CS 1110 Spring 2012: Walker White Outcomes: Basics of (Java) procedural programming Usage of assignments, conditionals, and loops. Ability to write recursive

More information

Master Theorem, Introduction to Graphs

Master Theorem, Introduction to Graphs Master Theorem, Introduction to Graphs CSE21 Winter 2017, Day 10 (B00), Day 6-7 (A00) February 1, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Divide & Conquer: General Strategy Divide the problem of

More information

Suppose we have a function p : X Y from a topological space X onto a set Y. we want to give a topology on Y so that p becomes a continuous map.

Suppose we have a function p : X Y from a topological space X onto a set Y. we want to give a topology on Y so that p becomes a continuous map. V.3 Quotient Space Suppose we have a function p : X Y from a topological space X onto a set Y. we want to give a topology on Y so that p becomes a continuous map. Remark If we assign the indiscrete topology

More information

Notation Index 9 (there exists) Fn-4 8 (for all) Fn-4 3 (such that) Fn-4 B n (Bell numbers) CL-25 s ο t (equivalence relation) GT-4 n k (binomial coef

Notation Index 9 (there exists) Fn-4 8 (for all) Fn-4 3 (such that) Fn-4 B n (Bell numbers) CL-25 s ο t (equivalence relation) GT-4 n k (binomial coef Notation 9 (there exists) Fn-4 8 (for all) Fn-4 3 (such that) Fn-4 B n (Bell numbers) CL-25 s ο t (equivalence relation) GT-4 n k (binomial coefficient) CL-14 (multinomial coefficient) CL-18 n m 1 ;m 2

More information

Lecture 12 March 4th

Lecture 12 March 4th Math 239: Discrete Mathematics for the Life Sciences Spring 2008 Lecture 12 March 4th Lecturer: Lior Pachter Scribe/ Editor: Wenjing Zheng/ Shaowei Lin 12.1 Alignment Polytopes Recall that the alignment

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

BSP Trees. Chapter Introduction. 8.2 Overview

BSP Trees. Chapter Introduction. 8.2 Overview Chapter 8 BSP Trees 8.1 Introduction In this document, we assume that the objects we are dealing with are represented by polygons. In fact, the algorithms we develop actually assume the polygons are triangles,

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

Discrete Structures. Fall Homework3

Discrete Structures. Fall Homework3 Discrete Structures Fall 2015 Homework3 Chapter 5 1. Section 5.1 page 329 Problems: 3,5,7,9,11,15 3. Let P(n) be the statement that 1 2 + 2 2 + +n 2 = n(n + 1)(2n + 1)/6 for the positive integer n. a)

More information

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets.

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets. Sets A B C This Lecture We will first introduce some basic set theory before we do counting. Basic Definitions Operations on Sets Set Identities Defining Sets Definition: A set is an unordered collection

More information

Main approach: always make the choice that looks best at the moment. - Doesn t always result in globally optimal solution, but for many problems does

Main approach: always make the choice that looks best at the moment. - Doesn t always result in globally optimal solution, but for many problems does Greedy algorithms Main approach: always make the choice that looks best at the moment. - More efficient than dynamic programming - Doesn t always result in globally optimal solution, but for many problems

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information