Lookahead Saturation with Restriction for SAT

Size: px
Start display at page:

Download "Lookahead Saturation with Restriction for SAT"

Transcription

1 Lookahead Saturation with Restriction for SAT Anbulagan 1 and John Slaney 1,2 1 Logic and Computation Program, National ICT Australia Ltd., Canberra, Australia 2 Computer Sciences Laboratory, Australian National University, Canberra, Australia {anbulagan, john.slaney}@nicta.com.au Abstract. We present a new and more efficient heuristic by restricting lookahead saturation (LAS) with NVO (neighbourhood variable ordering) and DEW (dynamic equality weighting). We report on the integration of this heuristic in Satz, a high-performance SAT solver, showing empirically that it significantly improves the performance on an extensive range of benchmark problems that exhibit hard structure. 1 Introduction During the last decade, many new techniques have been proposed to enhance the performance of the DPLL procedure for solving various hard real-world problems represented in conjunctive normal form (CNF). One of the main improvements of this decision procedure has been the development of better branching variable selection through the use of unit propagation (UP) heuristics [1], which detect failed literals through a one-step lookahead. The effect of integrating the UP heuristic into DPLL is to prune the search tree earlier. In this paper, we provide a new heuristic, DEW-NVO-LAS, which restricts lookahead saturation (LAS) with NVO (neighbourhood variable ordering) and DEW (dynamic equality weighting). DEW weighs equality literals during NVOrestricted lookahead saturation, firstly to restrict the variables to be propagated through the lookahead process, and secondly so that the next branching variable chosen can be the one having the highest score. We report on the integration of the DEW-NVO-LAS heuristic into Satz, showing empirically that it significantly improves Satz s performance on a range of benchmark problems, such as bounded model checking, cryptographic key search, FPGA routing, equivalence checking in circuits, and, particularly, the challenging 32-bit parity learning problems. The same problems are used for a comparative study between Dew Satz, the DEW-NVO-LAS-enhanced Satz solver, and other state-of-the-art SAT solvers. 2 Lookahead Saturation with Restriction Lookahead saturation (LAS) based DPLL was studied in [2]. The key idea underlying LAS is to choose a branching variable which is really the best from an irreducible sub-formula at a given node of search tree. LAS is very similar to the singleton arc consistency (SAC) algorithm in CSP reasoning [3].

2 Intuitively, although a reasoning-intensive process such as LAS can reduce the search tree size enormously, this increased efficiency is outweighed by the cost in terms of runtime. For that reason, we restrict the LAS process using the NVO and DEW heuristics. While the NVO heuristic concentrates on restricting the number of variables to be examined in the next iterative lookahead process by considering only the neighbours of the currently assigned variable in the currently size-reduced clauses, the DEW heuristic restricts the number of literals to be examined during the iterative lookahead process. DEW alone is not particularly useful in this regard, it must be incorporated into NVO-LAS to be really effective. The basic concept of DEW is as follow. Whenever the binary equality clause x i x j, which is equivalent to 2 CNF clauses x i x j and x i x j, occurs in the formula at a node, Satz needs to perform the lookahead process on x i, x i, x j, and x j. As result, variables x i and x j will be associated the same weight, (i.e. 3 following the computation at line 25 of Algorithm 1). Clearly, the processing of x j and x j is redundant, so avoid it by assigning the implied literal x j (x j s) the weight of its parent literal x i (x i s), and then by restricting the lookahead process to literals with weight zero. By doing so, we save two lookahead processes. To clarify the concept, we present a concrete example. Consider the following simple formula with binary equality clauses: (x 1 x 2 ) (x 2 x 3 ) (x 1 x 4 ). The Satz solver evaluates iteratively each variable of the formula by two forced unit propagations, where there is no failed literal found. Each literal of the formula gets the same weight, i.e. 3. Intuitively, we do not need to lookahead on variables x 2, x 3 and x 4 after performing lookahead on x 1 : all three get the weight of the parent x 1. The effect of the DEW heuristic is that the weight of each implied literal accumulates dynamically during the lookahead process, and if it is greater than zero then no lookahead process is done on that literal. The DEW heuristic is executed only whenever binary equality clauses occur in the current state formula. Our main observation is that DEW benefits markedly from NVO-LAS. We integrate DEW-NVO-LAS heuristic into Satz, and call the new solver by Dew Satz. Intuitively, the merged heuristic will enhance the performance of NVO-LAS by avoiding the redundant lookahead process, which is computed by DEW. At the same time the DEW heuristic benefits from NVO-LAS as this dynamically bounds the number of variables to be weighed. The two mutually compatible heuristics work together to improve lookahead-based DPLL. Dew Satz also inherits from Satz a preprocessor for saturating the input clauses under resolution with the restriction to clauses of length 3, removing subsumed clauses and tautologies along the way. In certain cases, the preprocessor may remove some equality clauses. Algorithm 1 sketches the branching rule of Dew Satz. The procedure Compute DEW(x i ) is called for weighting the implied literals of the parent variable x i. The function UP(F i ) at line 7 (10) of Algorithm 1 is executed if w(x i )=0 (w( x i )=0). When there is no conflict found during the two unit propagations, then variable x i will be piled into the branching variable candidates stack B.

3 Algorithm 1 DEW-NVO-LAS-BranchingRule(F) 1: Push each variable x i V to NVO STACK; 2: repeat 3: B := ; F init := F; 4: for each variable x i NVO STACK do 5: Let F i and F i be two copies of F; 6: if w{x i} = 0 then 7: F i := UP(F i {x i}); 8: end if 9: if w{ x i} = 0 then 10: F i := UP(F i { x i}); 11: end if 12: if empty clause F i and empty clause F i then 13: return unsatisfiable ; 14: else if empty clause F i then 15: F := F i ; NVO(x i); 16: else if empty clause F i then 17: F := F i; NVO(x i); 18: else 19: w(x i) := diff (F i, F); w( x i) := diff (F i, F); 20: B := B {x i}; Compute DEW(x i); 21: end if 22: end for 23: until F = F init 24: for each variable x i B do 25: W(x i) := w(x i) w( x i) + w(x i) + w( x i); 26: end for 27: NVO(x i); 28: return x i with highest W(x i) to branch on; 3 Experimental Results The 32-bit parity problem instances are considered as a challenging problem [4]. To answer the challenge, equality reasoning has been integrated differently in different solvers [5 8]. EqSatz uses equality reasoning in the search process while Lsat and March eq use it in their preprocessors. In Table 1, we present the performance of Dew Satz on par16* and the challenging par32* instances in comparison with the following state-of-the-art solvers: EqSatz, Satz (ver. Satz215), zchaff (ver ), March eq (ver. March eq 010), Lsat (ver. 1.1). It is important to observe that Dew Satz can solve the 32-bit parity problem in the range of 411 to 17,564 seconds. It solved the par32-5 and par32-5-c instances without using the preprocessor (with preprocessing, these instances took 27 and 29 hours respectively). The results of Dew Satz refute the pessimistic view that lookahead-based DPLL must perform poorly on such highly structured problems. In order to evaluate further the performance of Dew Satz versus other solvers used above, we extended the empirical study to include some well-known circuit-

4 Instance (#Vars/#Cls) Satz Dew Satz EqSatz Lsat March eq zchaff par16* par32-1 (3176/10227) >24h 12, >24h par32-2 (3176/10253) >24h 5, >24h par32-3 (3176/10297) >24h 7,198 2, >24h par32-4 (3176/10313) >24h 11, >24h par32-5 (3176/10325) >24h 17,564 2, >24h par32-1-c (1315/5254) >24h 10, >24h par32-2-c (1303/5206) >24h >24h par32-3-c (1325/5294) >24h 4,474 1, >24h par32-4-c (1333/5326) >24h 7, >24h par32-5-c (1339/5350) >24h 11,899 2, >24h Table 1. CPU time (in seconds) comparison. >24h shows that the problem cannot be solved in 24 hours. Problem Dew Satz Satz EqSatz March eq zchaff barrel barrel , barrel8 72 >5, barrel9 158 >5, longmult longmult ,625 longmult , ,643 longmult , ,225 longmult , ,456 longmult , queueinvar queueinvar queueinvar queueinvar queueinvar cnf-r3*(8) (1) 12,032 2, bart*(21) (17) 85,403 (1) 6, homer*(15) 3,054 (15) 75,000 (15) 75,000 (15) 75,000 (1) 9,245 lisa*(14) 2,955 1,721 5,788 1,211 (3) 30,349 hwb-n20*(3) ,355 hwb-n22*(3) ,700 hwb-n24*(3) 3,457 3,115 4,170 1,115 (3) 15,000 pb-sat*(12) (2) 13,818 (2) 15,793 (4) 24,478 7,869 (4) 21,099 pb-unsat*(12) 19,547 22,269 (4) 24,293 (1) 19,659 (8) 44,144 philips-org 697 3, >5,000 >5,000 philips 295 1, >5,000 Table 2. CPU time (in seconds) on realistic benchmark problems.

5 related benchmark problems. All problems used in the study are taken from SATLIB ( where some of them are used in previous SAT competitions. Some of the problem instances contain more than 600,000 variables. The problems cnf-r3*, bart*, lisa* and pb-sat* are satisfiable, and the others are unsatisfiable. The timebound for this experiment is 5,000 seconds per problem instance. Table 2 shows the runtimes of Dew Satz, Satz, EqSatz, March eq and zchaff on these problems. The numbers of instances of some problems are indicated in brackets after the problem names, and the number of instances on which each solver failed is also indicated in brackets before the total time. We count 5,000 as the increment in runtime for an unsolved instance. The experimentations were conducted on Intel Pentium 4 PCs with 3 GHz CPU, under Linux. In general, this extended study further confirms the superior performance of Dew Satz in comparison with the other four solvers. Where Dew Satz fails to solve 2 instances in the given timebound (instance pb-sat needs 6,005 seconds and instance pb-sat needs 12,958 seconds), Satz, EqSatz, March eq and zchaff fail on 20, 40, 18 and 21 instances respectively of the 108 given. The empirical results also show that unit propagation based lookahead in DPLL is still a powerful technique. Simply enhancing it with a straightforward heuristic allows us to solve many more hard problems, as shown by the results above. Acknowledgments This work was funded by National ICT Australia (NICTA). National ICT Australia is funded through the Australian Government s Backing Australia s Ability initiative, in part through the Australian Research Council. References 1. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Proceedings of 15th IJCAI, Nagoya, Aichi, Japan (1997) Anbulagan: Extending unit propagation look-ahead of DPLL procedure. In: Procs of 8th PRICAI, Auckland, New Zealand, Springer, LNAI 3157 (2004) Bessière, C., Debruyne, R.: Theoretical analysis of singleton arc consistency. In: ECAI-04 Workshop on Modeling and Solving Problems with Constraints, Valencia, Spain (2004) Selman, B., Kautz, H., McAllester, D.: Ten challenges in propositional reasoning and search. In: Proceedings of 15th IJCAI, Nagoya, Aichi, Japan (1997) Warners, J.P., van Maaren, H.: A two-phase algorithm for solving a class of hard satisfiability problems. Operations Research Letters 23 (1998) Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Proceedings of 17th AAAI, USA, AAAI Press (2000) Ostrowski, R., Grégoire, E., Mazure, B., Sais, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Proceedings of 8th CP. (2002) Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Proceedings of 7th SAT, Vancouver, Canada (2004)

Dynamic Variable Filtering for Hard Random 3-SAT Problems

Dynamic Variable Filtering for Hard Random 3-SAT Problems Dynamic Variable Filtering for Hard Random 3-SAT Problems Anbulagan, John Thornton, and Abdul Sattar School of Information Technology Gold Coast Campus, Griffith University PMB 50 Gold Coast Mail Centre,

More information

March dl: Adding Adaptive Heuristics and a New Branching Strategy

March dl: Adding Adaptive Heuristics and a New Branching Strategy Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 47-59 March dl: Adding Adaptive Heuristics and a New Branching Strategy Marijn J.H. Heule m.j.h.heule@ewi.tudelft.nl Hans van Maaren

More information

Crossword Puzzles as a Constraint Problem

Crossword Puzzles as a Constraint Problem Crossword Puzzles as a Constraint Problem Anbulagan and Adi Botea NICTA and Australian National University, Canberra, Australia {anbulagan,adi.botea}@nicta.com.au Abstract. We present new results in crossword

More information

Trends in Constraint Programming. Frédéric BENHAMOU Narendra JUSSIEN Barry O SULLIVAN

Trends in Constraint Programming. Frédéric BENHAMOU Narendra JUSSIEN Barry O SULLIVAN Trends in Constraint Programming Frédéric BENHAMOU Narendra JUSSIEN Barry O SULLIVAN November 24, 2006 2 Contents FIRST PART. LOCAL SEARCH TECHNIQUES IN CONSTRAINT SATISFAC- TION..........................................

More information

Enhancing Davis Putnam with Extended Binary Clause Reasoning

Enhancing Davis Putnam with Extended Binary Clause Reasoning From: AAAI-02 Proceedings. Copyright 2002, AAAI (www.aaai.org). All rights reserved. Enhancing Davis Putnam with Extended Binary Clause Reasoning Fahiem Bacchus Dept. Of Computer Science University Of

More information

NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances

NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances Sathiamoorthy Subbarayan 1 and Dhiraj K Pradhan 2 1 Department of Innovation, IT-University of Copenhagen, Copenhagen,

More information

Modeling Choices in Quasigroup Completion: SAT vs. CSP

Modeling Choices in Quasigroup Completion: SAT vs. CSP Modeling Choices in Quasigroup Completion: SAT vs. CSP Carlos Ansótegui Computer Science Department Universitat de Lleida Jaume II, 69, E-25001 Lleida, Spain carlos@eup.udl.es Alvaro del Val and Iván Dotú

More information

Full CNF Encoding: The Counting Constraints Case

Full CNF Encoding: The Counting Constraints Case Full CNF Encoding: The Counting Constraints Case Olivier Bailleux 1 and Yacine Boufkhad 2 1 LERSIA, Université de Bourgogne Avenue Alain Savary, BP 47870 21078 Dijon Cedex olivier.bailleux@u-bourgogne.fr

More information

Satisfiability-Based Algorithms for 0-1 Integer Programming

Satisfiability-Based Algorithms for 0-1 Integer Programming Satisfiability-Based Algorithms for 0-1 Integer Programming Vasco M. Manquinho, João P. Marques Silva, Arlindo L. Oliveira and Karem A. Sakallah Cadence European Laboratories / INESC Instituto Superior

More information

CS-E3220 Declarative Programming

CS-E3220 Declarative Programming CS-E3220 Declarative Programming Lecture 5: Premises for Modern SAT Solving Aalto University School of Science Department of Computer Science Spring 2018 Motivation The Davis-Putnam-Logemann-Loveland (DPLL)

More information

CS-E3200 Discrete Models and Search

CS-E3200 Discrete Models and Search Shahab Tasharrofi Department of Information and Computer Science, Aalto University Lecture 7: Complete and local search methods for SAT Outline Algorithms for solving Boolean satisfiability problems Complete

More information

Satisfiability. Michail G. Lagoudakis. Department of Computer Science Duke University Durham, NC SATISFIABILITY

Satisfiability. Michail G. Lagoudakis. Department of Computer Science Duke University Durham, NC SATISFIABILITY Satisfiability Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 COMPSCI 271 - Spring 2001 DUKE UNIVERSITY Page 1 Why SAT? Historical Reasons The first NP-COMPLETE problem

More information

SAT Solvers. Ranjit Jhala, UC San Diego. April 9, 2013

SAT Solvers. Ranjit Jhala, UC San Diego. April 9, 2013 SAT Solvers Ranjit Jhala, UC San Diego April 9, 2013 Decision Procedures We will look very closely at the following 1. Propositional Logic 2. Theory of Equality 3. Theory of Uninterpreted Functions 4.

More information

On Computing Minimum Size Prime Implicants

On Computing Minimum Size Prime Implicants On Computing Minimum Size Prime Implicants João P. Marques Silva Cadence European Laboratories / IST-INESC Lisbon, Portugal jpms@inesc.pt Abstract In this paper we describe a new model and algorithm for

More information

Unrestricted Nogood Recording in CSP search

Unrestricted Nogood Recording in CSP search Unrestricted Nogood Recording in CSP search George Katsirelos and Fahiem Bacchus Department of Computer Science, University Of Toronto, Toronto, Ontario, Canada [gkatsi,fbacchus]@cs.toronto.edu Abstract.

More information

Learning Techniques for Pseudo-Boolean Solving and Optimization

Learning Techniques for Pseudo-Boolean Solving and Optimization Learning Techniques for Pseudo-Boolean Solving and Optimization José Faustino Fragoso Fremenin dos Santos September 29, 2008 Abstract The extension of conflict-based learning from Propositional Satisfiability

More information

Boolean Functions (Formulas) and Propositional Logic

Boolean Functions (Formulas) and Propositional Logic EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Part I: Basics Sanjit A. Seshia EECS, UC Berkeley Boolean Functions (Formulas) and Propositional Logic Variables: x 1, x 2, x 3,, x

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley Project Proposals Due Friday, February 13 on bcourses Will discuss project topics on Monday Instructions

More information

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Formal Methods Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley The Boolean Satisfiability Problem (SAT) Given: A Boolean formula F(x 1, x 2, x 3,, x n ) Can F evaluate to 1

More information

Inference methods for a pseudo-boolean satisfiability solver

Inference methods for a pseudo-boolean satisfiability solver Inference methods for a pseudo-boolean satisfiability solver Heidi E. Dixon and Matthew L. Ginsberg CIRL 1269 University of Oregon Eugene, OR 97403-1269 {dixon, ginsberg}@cirl.uoregon.edu Abstract We describe

More information

Evolving Variable-Ordering Heuristics for Constrained Optimisation

Evolving Variable-Ordering Heuristics for Constrained Optimisation Griffith Research Online https://research-repository.griffith.edu.au Evolving Variable-Ordering Heuristics for Constrained Optimisation Author Bain, Stuart, Thornton, John, Sattar, Abdul Published 2005

More information

Heuristic Backtracking Algorithms for SAT

Heuristic Backtracking Algorithms for SAT Heuristic Backtracking Algorithms for SAT A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva IST/INESC-ID, Technical University of Lisbon, Portugal fateet,ines,jts,jpmsg@sat.inesc.pt Abstract In recent

More information

Solving Non-clausal Formulas with DPLL search

Solving Non-clausal Formulas with DPLL search Solving Non-clausal Formulas with DPLL search Christian Thiffault 1, Fahiem Bacchus 1, and Toby Walsh 2 1 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada [cat fbacchus]@cs.toronto.edu

More information

Planning as Search. Progression. Partial-Order causal link: UCPOP. Node. World State. Partial Plans World States. Regress Action.

Planning as Search. Progression. Partial-Order causal link: UCPOP. Node. World State. Partial Plans World States. Regress Action. Planning as Search State Space Plan Space Algorihtm Progression Regression Partial-Order causal link: UCPOP Node World State Set of Partial Plans World States Edge Apply Action If prec satisfied, Add adds,

More information

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction A Scalable Algorithm for Minimal Unsatisfiable Core Extraction Nachum Dershowitz 1, Ziyad Hanna 2, and Alexander Nadel 1,2 1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel {nachumd,

More information

Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposition

Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposition Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposition Wei Li and Peter van Beek School of Computer Science University of Waterloo 200 University Ave. West Waterloo, Ontario N2L

More information

Exact Max-SAT solvers for over-constrained problems

Exact Max-SAT solvers for over-constrained problems J Heuristics (2006) 12: 375 392 DOI 10.1007/s10732-006-7234-9 Exact Max-SAT solvers for over-constrained problems Josep Argelich Felip Manyà C Science + Business Media, LLC 2006 Abstract We present a new

More information

EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS

EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS TKK Reports in Information and Computer Science Espoo 2010 TKK-ICS-R32 EXTENDING SAT SOLVER WITH PARITY CONSTRAINTS Tero Laitinen TKK Reports in Information and Computer Science Espoo 2010 TKK-ICS-R32

More information

Normal Forms for Boolean Expressions

Normal Forms for Boolean Expressions Normal Forms for Boolean Expressions A NORMAL FORM defines a class expressions s.t. a. Satisfy certain structural properties b. Are usually universal: able to express every boolean function 1. Disjunctive

More information

Lower Bounds and Upper Bounds for MaxSAT

Lower Bounds and Upper Bounds for MaxSAT Lower Bounds and Upper Bounds for MaxSAT Federico Heras, Antonio Morgado, and Joao Marques-Silva CASL, University College Dublin, Ireland Abstract. This paper presents several ways to compute lower and

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Tuomas Sandholm Carnegie Mellon University Computer Science Department [Read Chapter 6 of Russell & Norvig] Constraint satisfaction problems (CSPs) Standard search problem:

More information

Multi Domain Logic and its Applications to SAT

Multi Domain Logic and its Applications to SAT Multi Domain Logic and its Applications to SAT Tudor Jebelean RISC Linz, Austria Tudor.Jebelean@risc.uni-linz.ac.at Gábor Kusper Eszterházy Károly College gkusper@aries.ektf.hu Abstract We describe a new

More information

Seminar decision procedures: Certification of SAT and unsat proofs

Seminar decision procedures: Certification of SAT and unsat proofs Seminar decision procedures: Certification of SAT and unsat proofs Wolfgang Nicka Technische Universität München June 14, 2016 Boolean satisfiability problem Term The boolean satisfiability problem (SAT)

More information

A Stochastic Non-CNF SAT Solver

A Stochastic Non-CNF SAT Solver A Stochastic Non-CNF SAT Solver Rafiq Muhammad and Peter J. Stuckey NICTA Victoria Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Victoria 3010, Australia

More information

arxiv: v1 [cs.lo] 17 Oct 2013

arxiv: v1 [cs.lo] 17 Oct 2013 Effectiveness of pre- and inprocessing for CDCL-based SAT solving Andreas Wotzlaw, Alexander van der Grinten, and Ewald Speckenmeyer Institut für Informatik, Universität zu Köln, Pohligstr. 1, D-50969

More information

MajorSat: A SAT Solver to Majority Logic

MajorSat: A SAT Solver to Majority Logic MajorSat: A SAT Solver to Majority Logic Speaker : Ching-Yi Huang Authors: Yu-Min Chou, Yung-Chih Chen *, Chun-Yao Wang, Ching-Yi Huang National Tsing Hua University, Taiwan * Yuan Ze University, Taiwan

More information

Adding a New Conflict Based Branching Heuristic in two Evolved DPLL SAT Solvers

Adding a New Conflict Based Branching Heuristic in two Evolved DPLL SAT Solvers Adding a New Conflict Based Branching Heuristic in two Evolved DPLL SAT Solvers Renato Bruni, Andrea Santori Università di Roma La Sapienza, Dip. di Informatica e Sistemistica, Via Michelangelo Buonarroti

More information

The log-support encoding of CSP into SAT

The log-support encoding of CSP into SAT The log-support encoding of CSP into SAT Marco Gavanelli 1 Dept. of Engineering, Ferrara University, WWW home page: http://www.ing.unife.it/docenti/marcogavanelli/ Abstract. Various encodings have been

More information

The Impact of Branching Heuristics in Propositional Satisfiability Algorithms

The Impact of Branching Heuristics in Propositional Satisfiability Algorithms The Impact of Branching Heuristics in Propositional Satisfiability Algorithms João Marques-Silva Technical University of Lisbon, IST/INESC, Lisbon, Portugal jpms@inesc.pt URL: http://algos.inesc.pt/~jpms

More information

Example: Map coloring

Example: Map coloring Today s s lecture Local Search Lecture 7: Search - 6 Heuristic Repair CSP and 3-SAT Solving CSPs using Systematic Search. Victor Lesser CMPSCI 683 Fall 2004 The relationship between problem structure and

More information

Effective Preprocessing with Hyper-Resolution and Equality Reduction

Effective Preprocessing with Hyper-Resolution and Equality Reduction Effective Preprocessing with Hyper-Resolution and Equality Reduction Fahiem Bacchus 1 and Jonathan Winter 1 Department of Computer Science, University Of Toronto, Toronto, Ontario, Canada [fbacchus winter]@cs.toronto.edu

More information

Chapter 5 USING PROBLEM STRUCTURE FOR EFFICIENT CLAUSE LEARNING

Chapter 5 USING PROBLEM STRUCTURE FOR EFFICIENT CLAUSE LEARNING 78 Chapter 5 USING PROBLEM STRUCTURE FOR EFFICIENT CLAUSE LEARNING Given the results about the strengths and limitations of clause learning in Chapter 4, it is natural to ask how the understanding we gain

More information

An Experimental Evaluation of Conflict Diagnosis and Recursive Learning in Boolean Satisfiability

An Experimental Evaluation of Conflict Diagnosis and Recursive Learning in Boolean Satisfiability An Experimental Evaluation of Conflict Diagnosis and Recursive Learning in Boolean Satisfiability Fadi A. Aloul and Karem A. Sakallah Department of Electrical Engineering and Computer Science University

More information

Foundations of AI. 8. Satisfiability and Model Construction. Davis-Putnam, Phase Transitions, GSAT and GWSAT. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 8. Satisfiability and Model Construction. Davis-Putnam, Phase Transitions, GSAT and GWSAT. Wolfram Burgard & Bernhard Nebel Foundations of AI 8. Satisfiability and Model Construction Davis-Putnam, Phase Transitions, GSAT and GWSAT Wolfram Burgard & Bernhard Nebel Contents Motivation Davis-Putnam Procedure Average complexity

More information

ESE535: Electronic Design Automation CNF. Today CNF. 3-SAT Universal. Problem (A+B+/C)*(/B+D)*(C+/A+/E)

ESE535: Electronic Design Automation CNF. Today CNF. 3-SAT Universal. Problem (A+B+/C)*(/B+D)*(C+/A+/E) ESE535: Electronic Design Automation CNF Day 21: April 21, 2008 Modern SAT Solvers ({z}chaff, GRASP,miniSAT) Conjunctive Normal Form Logical AND of a set of clauses Product of sums Clauses: logical OR

More information

Extracting Logic Circuit Structure from Conjunctive Normal Form Descriptions

Extracting Logic Circuit Structure from Conjunctive Normal Form Descriptions Extracting Logic Circuit Structure from Conjunctive Normal Form Descriptions Zhaohui Fu Sharad Malik Department of Electrical Engineering Princeton University Princeton, NJ 08544, USA {zfu,sharad}@princeton.edu

More information

Look-Ahead Versus Look-Back for Satisability. Problems. Chu Min Li and Anbulagan. LaRIA, Universite de Picardie Jules Verne

Look-Ahead Versus Look-Back for Satisability. Problems. Chu Min Li and Anbulagan. LaRIA, Universite de Picardie Jules Verne Look-Ahead Versus Look-Back for Satisability Problems Chu Min Li and Anbulagan LaRIA, Universite de Picardie Jules Verne 33, Rue St. Leu, 80039 Amiens Cedex 01, France tel: (33) 3 22 82 78 75, fax: (33)

More information

Chapter 2 PRELIMINARIES

Chapter 2 PRELIMINARIES 8 Chapter 2 PRELIMINARIES Throughout this thesis, we work with propositional or Boolean variables, that is, variables that take value in the set {true, false}. A propositional formula F representing a

More information

Unrestricted Backtracking Algorithms for Satisfiability

Unrestricted Backtracking Algorithms for Satisfiability From: AAAI Technical Report FS-01-04. Compilation copyright 2001, AAAI (www.aaai.org). All rights reserved. Unrestricted Backtracking Algorithms for Satisfiability I. Lynce, L. Baptista and J. Marques-Silva

More information

A New Algorithm for Singleton Arc Consistency

A New Algorithm for Singleton Arc Consistency A New Algorithm for Singleton Arc Consistency Roman Barták, Radek Erben Charles University, Institute for Theoretical Computer Science Malostranské nám. 2/25, 118 Praha 1, Czech Republic bartak@kti.mff.cuni.cz,

More information

Practical SAT Solving

Practical SAT Solving Practical SAT Solving Lecture 5 Carsten Sinz, Tomáš Balyo May 23, 2016 INSTITUTE FOR THEORETICAL COMPUTER SCIENCE KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz

More information

An Analysis and Comparison of Satisfiability Solving Techniques

An Analysis and Comparison of Satisfiability Solving Techniques An Analysis and Comparison of Satisfiability Solving Techniques Ankur Jain, Harsha V. Madhyastha, Craig M. Prince Department of Computer Science and Engineering University of Washington Seattle, WA 98195

More information

SAT Solver Heuristics

SAT Solver Heuristics SAT Solver Heuristics SAT-solver History Started with David-Putnam-Logemann-Loveland (DPLL) (1962) Able to solve 10-15 variable problems Satz (Chu Min Li, 1995) Able to solve some 1000 variable problems

More information

Heuristics Based on Unit Propagation for Satisability Problems. Chu Min Li & Anbulagan

Heuristics Based on Unit Propagation for Satisability Problems. Chu Min Li & Anbulagan Heuristics Based on Unit Propagation for Satisability Problems Chu Min Li & Anbulagan LaRIA, Univ. de Picardie Jules Verne, 33, Rue St. Leu, 80039 Amiens Cedex, France fax: (33) 3 22 82 75 02, e-mail:

More information

Integrating a SAT Solver with Isabelle/HOL

Integrating a SAT Solver with Isabelle/HOL Integrating a SAT Solver with / Tjark Weber (joint work with Alwen Tiu et al.) webertj@in.tum.de First Munich-Nancy Workshop on Decision Procedures for Theorem Provers March 6th & 7th, 2006 Integrating

More information

CSC2542 SAT-Based Planning. Sheila McIlraith Department of Computer Science University of Toronto Summer 2014

CSC2542 SAT-Based Planning. Sheila McIlraith Department of Computer Science University of Toronto Summer 2014 CSC2542 SAT-Based Planning Sheila McIlraith Department of Computer Science University of Toronto Summer 2014 1 Acknowledgements Some of the slides used in this course are modifications of Dana Nau s lecture

More information

Modelling More Realistic SAT Problems

Modelling More Realistic SAT Problems Modelling More Realistic SAT Problems Andrew Slater Computer Sciences Laboratory, Australian National University, 0200, Canberra andrew.slater@cslab.anu.edu.au Abstract. The satisfiability problem is widely

More information

Speeding Up the ESG Algorithm

Speeding Up the ESG Algorithm Speeding Up the ESG Algorithm Yousef Kilani 1 and Abdullah. Mohdzin 2 1 Prince Hussein bin Abdullah Information Technology College, Al Al-Bayt University, Jordan 2 Faculty of Information Science and Technology,

More information

I R TECHNICAL RESEARCH REPORT. On the Use of Integer Programming Models in AI Planning. by Thomas Vossen, Michael Ball, Amnon Lotem, Dana Nau TR 99-84

I R TECHNICAL RESEARCH REPORT. On the Use of Integer Programming Models in AI Planning. by Thomas Vossen, Michael Ball, Amnon Lotem, Dana Nau TR 99-84 TECHNICAL RESEARCH REPORT On the Use of Integer Programming Models in AI Planning by Thomas Vossen, Michael Ball, Amnon Lotem, Dana Nau TR 99-84 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies

More information

MaxPre: An Extended MaxSAT Preprocessor?

MaxPre: An Extended MaxSAT Preprocessor? MaxPre: An Extended MaxSAT Preprocessor? Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo HIIT, Department of Computer Science, University of Helsinki, Finland matti.jarvisalo@helsinki.fi

More information

Clone: Solving Weighted Max-SAT in a Reduced Search Space

Clone: Solving Weighted Max-SAT in a Reduced Search Space Clone: Solving Weighted Max-SAT in a Reduced Search Space Knot Pipatsrisawat and Adnan Darwiche {thammakn,darwiche}@cs.ucla.edu Computer Science Department University of California, Los Angeles Abstract.

More information

The Barcelogic SMT Solver

The Barcelogic SMT Solver The Barcelogic SMT Solver Tool Paper Miquel Bofill 1, Robert Nieuwenhuis 2, Albert Oliveras 2, Enric Rodríguez-Carbonell 2, and Albert Rubio 2 1 Universitat de Girona 2 Technical University of Catalonia,

More information

Circuit versus CNF Reasoning for Equivalence Checking

Circuit versus CNF Reasoning for Equivalence Checking Circuit versus CNF Reasoning for Equivalence Checking Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria Equivalence Checking Workshop 25 Madonna di Campiglio,

More information

Tractable Cover Compilations*

Tractable Cover Compilations* I Tractable Cover Compilations* Yacine Boufkhad 1, Eric Gregoire 2, Pierre Marquis 2, 1 LIP6 Bertrand Mazure 2, Lakhdar Sais 2,3 CRIL 3 IUT de Lens University Paris 6 University d'artois 4, place Jussieu

More information

SAT, SMT and QBF Solving in a Multi-Core Environment

SAT, SMT and QBF Solving in a Multi-Core Environment SAT, SMT and QBF Solving in a Multi-Core Environment Bernd Becker Tobias Schubert Faculty of Engineering, Albert-Ludwigs-University Freiburg, 79110 Freiburg im Breisgau, Germany {becker schubert}@informatik.uni-freiburg.de

More information

Optimal and Suboptimal Singleton Arc Consistency Algorithms

Optimal and Suboptimal Singleton Arc Consistency Algorithms Optimal and Suboptimal Singleton Arc Consistency Algorithms Christian Bessiere LIRMM (CNRS / University of Montpellier) 161 rue Ada, Montpellier, France bessiere@lirmm.fr Romuald Debruyne École des Mines

More information

Verification of Proofs of Unsatisfiability for CNF Formulas

Verification of Proofs of Unsatisfiability for CNF Formulas Verification of Proofs of Unsatisfiability for CNF Formulas Evgueni Goldberg Cadence Berkeley Labs (USA), Email: egold@cadence.com Yakov Novikov The United Institute of Informatics Problems, National Academy

More information

Preprocessing in Pseudo-Boolean Optimization: An Experimental Evaluation

Preprocessing in Pseudo-Boolean Optimization: An Experimental Evaluation Preprocessing in Pseudo-Boolean Optimization: An Experimental Evaluation Ruben Martins, Inês Lynce, and Vasco Manquinho IST/INESC-ID, Technical University of Lisbon, Portugal {ruben,ines,vmm}@sat.inesc-id.pt

More information

Massively Parallel Seesaw Search for MAX-SAT

Massively Parallel Seesaw Search for MAX-SAT Massively Parallel Seesaw Search for MAX-SAT Harshad Paradkar Rochester Institute of Technology hp7212@rit.edu Prof. Alan Kaminsky (Advisor) Rochester Institute of Technology ark@cs.rit.edu Abstract The

More information

Set 5: Constraint Satisfaction Problems

Set 5: Constraint Satisfaction Problems Set 5: Constraint Satisfaction Problems ICS 271 Fall 2014 Kalev Kask ICS-271:Notes 5: 1 The constraint network model Outline Variables, domains, constraints, constraint graph, solutions Examples: graph-coloring,

More information

Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications

Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications Lintao Zhang Department of Electrical Engineering Princeton University lintaoz@ee.princeton.edu

More information

Solving Optimization Problems with DLL

Solving Optimization Problems with DLL Solving Optimization Problems with DLL Enrico Giunchiglia 1 and Marco Maratea 1, 2 Abstract. Propositional satisfiability (SAT) is a success story in Computer Science and Artificial Intelligence: SAT solvers

More information

A CSP Search Algorithm with Reduced Branching Factor

A CSP Search Algorithm with Reduced Branching Factor A CSP Search Algorithm with Reduced Branching Factor Igor Razgon and Amnon Meisels Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84-105, Israel {irazgon,am}@cs.bgu.ac.il

More information

Blocked Literals are Universal

Blocked Literals are Universal Blocked Literals are Universal Marijn J.H. Heule 1, Martina Seidl 2, and Armin Biere 2 1 Department of Computer Science, The University of Texas at Austin, USA marijn@cs.utexas.edu 2 Institute for Formal

More information

Improving Unsatisfiability-based Algorithms for Boolean Optimization

Improving Unsatisfiability-based Algorithms for Boolean Optimization Improving Unsatisfiability-based Algorithms for Boolean Optimization Vasco Manquinho, Ruben Martins, and Inês Lynce IST/INESC-ID, Technical University of Lisbon, Portugal {vmm,ruben,ines}@sat.inesc-id.pt

More information

DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs

DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr. The University of Texas at Austin Abstract. The DRAT-trim tool is

More information

Problem-Sensitive Restart Heuristics for the DPLL Procedure

Problem-Sensitive Restart Heuristics for the DPLL Procedure Problem-Sensitive Restart Heuristics for the DPLL Procedure Carsten Sinz and Markus Iser Research Group Verification meets Algorithm Engineering Institute for Theoretical Computer Science University of

More information

Abstraction Refinement for Bounded Model Checking

Abstraction Refinement for Bounded Model Checking Abstraction Refinement for Bounded Model Checking Anubhav Gupta 1 and Ofer Strichman 2 1 School of Computer Science, Carnegie Mellon University, USA anubhav@cs.cmu.edu 2 Information Systems Engineering,

More information

Searching for Autarkies to Trim Unsatisfiable Clause Sets

Searching for Autarkies to Trim Unsatisfiable Clause Sets Searching for Autarkies to Trim Unsatisfiable Clause Sets Mark Liffiton and Karem Sakallah Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109-2121 {liffiton,karem}@eecs.umich.edu

More information

A strong local consistency for constraint satisfaction

A strong local consistency for constraint satisfaction A strong local consistency for constraint satisfaction Romuald Debruyne Ecole des Mines de Nantes 4, rue Alfred Kastler, La Chantrerie 4437 Nantes cedex 3 - France Email: debruyne@lirmm.fr Abstract Filtering

More information

A Parameterized Local Consistency for Redundant Modeling in Weighted CSPs

A Parameterized Local Consistency for Redundant Modeling in Weighted CSPs A Parameterized Local Consistency for Redundant Modeling in Weighted CSPs Y.C. Law, J.H.M. Lee, and M.H.C. Woo Department of Computer Science and Engineering The Chinese University of Hong Kong, Shatin,

More information

4.1 Review - the DPLL procedure

4.1 Review - the DPLL procedure Applied Logic Lecture 4: Efficient SAT solving CS 4860 Spring 2009 Thursday, January 29, 2009 The main purpose of these notes is to help me organize the material that I used to teach today s lecture. They

More information

Heuristic-Based Backtracking for Propositional Satisfiability

Heuristic-Based Backtracking for Propositional Satisfiability Heuristic-Based Backtracking for Propositional Satisfiability A. Bhalla, I. Lynce, J.T. de Sousa, and J. Marques-Silva Technical University of Lisbon, IST/INESC-ID, Lisbon, Portugal {ateet,ines,jts,jpms}@sat.inesc.pt

More information

Improved Exact Solver for the Weighted Max-SAT Problem

Improved Exact Solver for the Weighted Max-SAT Problem Adrian Faculty of Engineering and Computer Sciences Ulm University Adrian.Kuegel@uni-ulm.de Abstract Many exact Max-SAT solvers use a branch and bound algorithm, where the lower bound is calculated with

More information

CS227: Assignment 1 Report

CS227: Assignment 1 Report 1 CS227: Assignment 1 Report Lei Huang and Lawson Wong April 20, 2008 1 Introduction Propositional satisfiability (SAT) problems have been of great historical and practical significance in AI. Despite

More information

Multilevel Stochastic Local Search for SAT

Multilevel Stochastic Local Search for SAT Multilevel Stochastic Local Search for SAT Camilo Rostoker University of British Columbia Department of Computer Science rostokec@cs.ubc.ca Chris Dabrowski University of British Columbia Department of

More information

A Re-examination of Limited Discrepancy Search

A Re-examination of Limited Discrepancy Search A Re-examination of Limited Discrepancy Search W. Ken Jackson, Morten Irgens, and William S. Havens Intelligent Systems Lab, Centre for Systems Science Simon Fraser University Burnaby, B.C., CANADA V5A

More information

PROPOSITIONAL LOGIC (2)

PROPOSITIONAL LOGIC (2) PROPOSITIONAL LOGIC (2) based on Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004 Russell & Norvig Artificial Intelligence: A Modern Approach

More information

Effective CNF Encodings for the Towers of Hanoi

Effective CNF Encodings for the Towers of Hanoi Ruben Martins and Inês Lynce IST/INESC-ID, Technical University of Lisbon, Portugal {ruben,ines}@sat.inesc-id.pt Abstract One of the most well-known CNF benchmark encodes the problem of the Towers of Hanoi.

More information

CDCL SAT Solvers. Joao Marques-Silva. Theory and Practice of SAT Solving Dagstuhl Workshop. April INESC-ID, IST, ULisbon, Portugal

CDCL SAT Solvers. Joao Marques-Silva. Theory and Practice of SAT Solving Dagstuhl Workshop. April INESC-ID, IST, ULisbon, Portugal CDCL SAT Solvers Joao Marques-Silva INESC-ID, IST, ULisbon, Portugal Theory and Practice of SAT Solving Dagstuhl Workshop April 2015 The Success of SAT Well-known NP-complete decision problem [C71] The

More information

Using CSP Look-Back Techniques to Solve Real-World SAT Instances

Using CSP Look-Back Techniques to Solve Real-World SAT Instances Using CSP Look-Back Techniques to Solve Real-World SAT Instances Roberto J. Bayardo Jr. The University of Texas at Austin Department of Computer Sciences (C0500) Austin, TX 78712 USA bayardo@cs.utexas.edu

More information

Blocked Clause Elimination

Blocked Clause Elimination Blocked Clause Elimination Matti Järvisalo 1, Armin Biere 2, and Marijn Heule 3 1 Department of Computer Science, University of Helsinki, Finland 2 Institute for Formal Models and Verification, Johannes

More information

Turbo-Charging Lemmas on Demand with Don t Care Reasoning

Turbo-Charging Lemmas on Demand with Don t Care Reasoning Turbo-Charging Lemmas on Demand with Don t Care Reasoning Aina Niemetz, Mathias Preiner and Armin Biere Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at/

More information

of m clauses, each containing the disjunction of boolean variables from a nite set V = fv 1 ; : : : ; vng of size n [8]. Each variable occurrence with

of m clauses, each containing the disjunction of boolean variables from a nite set V = fv 1 ; : : : ; vng of size n [8]. Each variable occurrence with A Hybridised 3-SAT Algorithm Andrew Slater Automated Reasoning Project, Computer Sciences Laboratory, RSISE, Australian National University, 0200, Canberra Andrew.Slater@anu.edu.au April 9, 1999 1 Introduction

More information

The implementation is written in Python, instructions on how to run it are given in the last section.

The implementation is written in Python, instructions on how to run it are given in the last section. Algorithm I chose to code a version of the WALKSAT algorithm. This algorithm is based on the one presented in Russell and Norvig p226, copied here for simplicity: function WALKSAT(clauses max-flips) returns

More information

ABT with Clause Learning for Distributed SAT

ABT with Clause Learning for Distributed SAT ABT with Clause Learning for Distributed SAT Jesús Giráldez-Cru, Pedro Meseguer IIIA - CSIC, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain {jgiraldez,pedro}@iiia.csic.es Abstract. Transforming

More information

A Satisfiability Procedure for Quantified Boolean Formulae

A Satisfiability Procedure for Quantified Boolean Formulae A Satisfiability Procedure for Quantified Boolean Formulae David A. Plaisted Computer Science Department, University of North Carolina Chapel Hill, NC 27599-3175, USA Armin Biere ETH Zürich, Computer Systems

More information

Set 5: Constraint Satisfaction Problems

Set 5: Constraint Satisfaction Problems Set 5: Constraint Satisfaction Problems ICS 271 Fall 2013 Kalev Kask ICS-271:Notes 5: 1 The constraint network model Outline Variables, domains, constraints, constraint graph, solutions Examples: graph-coloring,

More information

DPLL(T ):Fast Decision Procedures

DPLL(T ):Fast Decision Procedures DPLL(T ):Fast Decision Procedures Harald Ganzinger George Hagen Robert Nieuwenhuis Cesare Tinelli Albert Oliveras MPI, Saarburcken The University of Iowa UPC, Barcelona Computer Aided-Verification (CAV)

More information

Set 5: Constraint Satisfaction Problems Chapter 6 R&N

Set 5: Constraint Satisfaction Problems Chapter 6 R&N Set 5: Constraint Satisfaction Problems Chapter 6 R&N ICS 271 Fall 2017 Kalev Kask ICS-271:Notes 5: 1 The constraint network model Outline Variables, domains, constraints, constraint graph, solutions Examples:

More information