Protection. Thierry Sans

Size: px
Start display at page:

Download "Protection. Thierry Sans"

Transcription

1 Protection Thierry Sans

2 Protecting Programs How to lower the risk of a program security flaw resulting from a bug? 1. Build better programs 2. Build better operating systems

3 Build Better Programs

4 Why are we still vulnerable to buffer overflows? Why code written in assembly code or C are subject to buffer overflow attacks? Because C has primitives to manipulate the memory directly (pointers ect...)

5 Choosing a better programming language Some languages are type-safe (i.e memory safe) Pure Lisp, pure Java, ADA, ML Some languages isolate potentially unsafe code Modula-3, Java with native methods, C# Some languages are hopeless Assembly languages, C

6 Type-Safe Programs Cannot access arbitrary memory addresses Cannot corrupt their own memory Do not crash

7 So why are we still using unsafe programming languages? If other programming languages are memory safe, why are we not using them instead? Because C and assembly code are used when a program requires high performances (audio, vide, calculus ) or when dealing with hardware directly (OS, drivers.)

8 Can we write better programs with unsafe programming languages? Good Programmer Approach 1. Adopting good programming practices 2. Being security aware programmer Proactive Approach 3. Using security libraries 4. Performing penetration testing Formal Approach 5. Using formal methods to verify a program 6. Using formal methods to generate a program

9 Good Programmer Approach

10 2. Adopting good programming practices Modularity Have separate modules for separate functionalities Easier to find security flaws when components are independent Encapsulation Limit the interaction between the components Avoid wrong usage of the components Information hiding Hide the implementation Black box model does not improve security

11 2. Being security aware programmer Check the inputs, even between components that belongs to the same application (mutual suspicion) Be fault tolerant by having a consistent policy to handle failure (managing exceptions) Reuse known and widely used code by using design patterns and existing libraries

12 Proactive Approach

13 3. Using security libraries - stack smashing protection Check that the stack has not been altered when a function returns If it has been altered, the program exits with a segmentation fault Verification embedded into the program by the compiler

14 3. Using security libraries - examples Libsafe StackGuard ProPolice (gcc patches) Microsoft's Data Execution Prevention

15 4. Testing and Penetration Testing Testing the functionalities Unit test, Integration test, Performance test and so on Testing the security Penetration tests Try to make the software fail by pushing the limits of a normal usage i.e test what the program is not supposed to do

16 Formal Approach

17 5. Using formal methods to verify a program Static analysis - analyzing the code to detect security flaws Control flow - analyzing the sequence of instructions Data flow - analyzing how the date are accessed Data structure - analyzing how data are organized Abstract interpretation [Cousot] Verification of critical embedded software in Airbus aircrafts

18 6. Using formal methods to generate a program Mathematical description of the problem Refinement steps Proof of correctness Executable code or hardware design

19 6. Using formal methods to generate a program Hardware design (VHDL, Verilog) Used by semi-conductor companies such as Intel Critical embedded software (B/Z, Lustre/Esterel) Urban Transportation (METEOR Metro Line 14 in Paris by Alstom) Rail transportation (Eurostar) Aeronautic (Airbus, Eurocopter, Dassault) Nuclear plants (Schneider Electric)

20 Pros and cons of using formal methods Nothing better than a mathematical proof A code proven safe is safe Development is time and effort (and so money) consuming Should be motivated by the risk analysis Do not prevent from specification bugs Example of network protocols

21 Build Better Operating Systems

22 Memory and address protection Programs (and data) used the same address space They should not access memory addresses that has not been allocated to them When a program tries to access to an authorized memory address, an exception is raised The well known segmentation fault

23 Basic (but inefficient) protection - segmentation Cutting the program into pieces (segments) that can be located dynamically wherever in the memory (useful for caching) A program can access a segment only if it appears in the segment table But Shellcode are located in the same segment table

24 What else can we do?

25 Tagged Architecture Tagging memory cells as data or instructions during execution Data in a buffer cannot be turned into a instructions like in buffer overflow attacks Processors implementing this technique Intel XD (EDB) or AMD64 NX (EVP) Operating Systems using it OpenBSD and OSX

26 Return Address Protection Encrypt the return address on stack by XORing with a random string Attacker will not know what address to use in his string Operating System using this technique Windows Vista

27 Address Space Layout Randomization (ASLR) Randomize the return address on the stack dynamically Attacker cannot guess the return address as it expires rapidly Operating Systems using this technique OpenBSD Linux (since ) Windows (since Vista) Mac OSX (fully supported since 10.7 Lion) ios (since 4.3) Android (since 4.0 Ice Cream Sandwich)

28 Confined execution environment - Sandbox A sandbox is tightly-controlled set of resources for untrusted programs to run in Sandboxing servers - virtual machines Sandboxing programs Chroot and AppArmor in Linux Sandbox in MacOS Lion Metro App Sandboxing in Windows 8 Sandboxing applets - Java and Flash in web browsers

29 Intrusion Detection/Prevention Systems Host-based Intrusion Detection Systems (IDS) Host-based Intrusion Prevention systems (IPS) Based on signatures (well known programs) Based on behaviors (unknown programs) Example : Syslog and Systrace on Linux Vulnerable to malicious programs residing in the kernel called rootkits

30 Coming next More on attacks Lecture about malicious code More on countermeasures Lecture about Security Assurance Lecture on Trusted Systems

Software Security: Buffer Overflow Defenses

Software Security: Buffer Overflow Defenses CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Defenses Fall 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

Buffer Overflow Defenses

Buffer Overflow Defenses Buffer Overflow Defenses Some examples, pros, and cons of various defenses against buffer overflows. Caveats: 1. Not intended to be a complete list of products that defend against buffer overflows. 2.

More information

Software Security: Buffer Overflow Attacks (continued)

Software Security: Buffer Overflow Attacks (continued) CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Attacks (continued) Spring 2015 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann,

More information

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS)

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS) Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns Jonathan Pincus(MSR) and Brandon Baker (MS) Buffer Overflows and How they Occur Buffer is a contiguous segment of memory of a fixed

More information

Modern Buffer Overflow Prevention Techniques: How they work and why they don t

Modern Buffer Overflow Prevention Techniques: How they work and why they don t Modern Buffer Overflow Prevention Techniques: How they work and why they don t Russ Osborn CS182 JT 4/13/2006 1 In the past 10 years, computer viruses have been a growing problem. In 1995, there were approximately

More information

Software Vulnerabilities August 31, 2011 / CS261 Computer Security

Software Vulnerabilities August 31, 2011 / CS261 Computer Security Software Vulnerabilities August 31, 2011 / CS261 Computer Security Software Vulnerabilities...1 Review paper discussion...2 Trampolining...2 Heap smashing...2 malloc/free...2 Double freeing...4 Defenses...5

More information

Last time. Security Policies and Models. Trusted Operating System Design. Bell La-Padula and Biba Security Models Information Flow Control

Last time. Security Policies and Models. Trusted Operating System Design. Bell La-Padula and Biba Security Models Information Flow Control Last time Security Policies and Models Bell La-Padula and Biba Security Models Information Flow Control Trusted Operating System Design Design Elements Security Features 10-1 This time Trusted Operating

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 14: Software Security Department of Computer Science and Engineering University at Buffalo 1 Software Security Exploiting software vulnerabilities is paramount

More information

Confinement. Steven M. Bellovin November 1,

Confinement. Steven M. Bellovin November 1, Confinement Steven M. Bellovin November 1, 2016 1 Security Architecture We ve been looking at how particular applications are secured We need to secure not just a few particular applications, but many

More information

Software Security: Buffer Overflow Attacks

Software Security: Buffer Overflow Attacks CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Attacks (continued) Autumn 2018 Tadayoshi (Yoshi) Kohno yoshi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann,

More information

Buffer overflow background

Buffer overflow background and heap buffer background Comp Sci 3600 Security Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Address Space and heap buffer

More information

Is Exploitation Over? Bypassing Memory Protections in Windows 7

Is Exploitation Over? Bypassing Memory Protections in Windows 7 Is Exploitation Over? Bypassing Memory Protections in Windows 7 Alexander Sotirov alex@sotirov.net About me Exploit development since 1999 Published research into reliable exploitation techniques: Heap

More information

Security Architecture

Security Architecture Security Architecture We ve been looking at how particular applications are secured We need to secure not just a few particular applications, but many applications, running on separate machines We need

More information

4. Jump to *RA 4. StackGuard 5. Execute code 5. Instruction Set Randomization 6. Make system call 6. System call Randomization

4. Jump to *RA 4. StackGuard 5. Execute code 5. Instruction Set Randomization 6. Make system call 6. System call Randomization 04/04/06 Lecture Notes Untrusted Beili Wang Stages of Static Overflow Solution 1. Find bug in 1. Static Analysis 2. Send overflowing input 2. CCured 3. Overwrite return address 3. Address Space Randomization

More information

Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI)

Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI) Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI) Brad Karp UCL Computer Science CS GZ03 / M030 9 th December 2011 Motivation: Vulnerabilities in C Seen dangers of vulnerabilities: injection

More information

Runtime Defenses against Memory Corruption

Runtime Defenses against Memory Corruption CS 380S Runtime Defenses against Memory Corruption Vitaly Shmatikov slide 1 Reading Assignment Cowan et al. Buffer overflows: Attacks and defenses for the vulnerability of the decade (DISCEX 2000). Avijit,

More information

Influential OS Research Security. Michael Raitza

Influential OS Research Security. Michael Raitza Influential OS Research Security Michael Raitza raitza@os.inf.tu-dresden.de 1 Security recap Various layers of security Application System Communication Aspects of security Access control / authorization

More information

Operating System Security

Operating System Security Operating System Security Operating Systems Defined Hardware: I/o...Memory.CPU Operating Systems: Windows or Android, etc Applications run on operating system Operating Systems Makes it easier to use resources.

More information

Lecture 4 September Required reading materials for this class

Lecture 4 September Required reading materials for this class EECS 261: Computer Security Fall 2007 Lecture 4 September 6 Lecturer: David Wagner Scribe: DK Moon 4.1 Required reading materials for this class Beyond Stack Smashing: Recent Advances in Exploiting Buffer

More information

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras

Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Introduction to Operating Systems Prof. Chester Rebeiro Department of Computer Science and Engineering Indian Institute of Technology, Madras Week 08 Lecture 38 Preventing Buffer Overflow Attacks Hello.

More information

Lecture 08 Control-flow Hijacking Defenses

Lecture 08 Control-flow Hijacking Defenses Lecture 08 Control-flow Hijacking Defenses Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Slides adapted from Miller, Bailey, and Brumley Control Flow Hijack: Always control + computation

More information

Computer Security Course. Midterm Review

Computer Security Course. Midterm Review Computer Security Course. Dawn Song Midterm Review In class: Logistics On time: 4:10-5:30pm Wed 1 8x11 page cheat sheet allowed Special requirements: see TA Part I, II, III Scope Software Security Secure

More information

Memory corruption countermeasures

Memory corruption countermeasures Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 30th January 2014 Outline Announcement Recap Containment and curtailment Stack tamper detection

More information

Software Security: Buffer Overflow Defenses and Miscellaneous

Software Security: Buffer Overflow Defenses and Miscellaneous CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Defenses and Miscellaneous Spring 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 2

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 2 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 2 Announcements First project is on the web Due: Feb. 1st at midnight Form groups of 2 or 3 people If you need help finding a group,

More information

Lecture Notes for 04/04/06: UNTRUSTED CODE Fatima Zarinni.

Lecture Notes for 04/04/06: UNTRUSTED CODE Fatima Zarinni. Lecture Notes for 04/04/06 UNTRUSTED CODE Fatima Zarinni. Last class we started to talk about the different System Solutions for Stack Overflow. We are going to continue the subject. Stages of Stack Overflow

More information

Memory Protection. Philip W. L. Fong. CPSC 525/625 (Winter 2018) Department of Computer Science University of Calgary Calgary, Alberta, Canada

Memory Protection. Philip W. L. Fong. CPSC 525/625 (Winter 2018) Department of Computer Science University of Calgary Calgary, Alberta, Canada 1 / 25 Memory Protection Philip W. L. Fong Department of Computer Science University of Calgary Calgary, Alberta, Canada CPSC 525/625 (Winter 2018) 2 / 25 Multiprogramming Memory Fence Remember my Apple

More information

Lecture 15 Designing Trusted Operating Systems

Lecture 15 Designing Trusted Operating Systems Lecture 15 Designing Trusted Operating Systems Thierry Sans 15-349: Introduction to Computer and Network Security Anatomy of an operating system Concept of Kernel Definition Component that provides an

More information

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions?

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? Jeroen van Beek 1 Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? 2 Inadequate OS and application security: Data abuse Stolen information Bandwidth

More information

Bypassing Browser Memory Protections

Bypassing Browser Memory Protections Bypassing Browser Memory Protections Network Security Instructor: Dr. Shishir Nagaraja September 10, 2011. 1 Introduction to the topic A number of memory protection mechanisms like GS, SafeSEH, DEP and

More information

Operating- System Structures

Operating- System Structures Operating- System Structures 2 CHAPTER Practice Exercises 2.1 What is the purpose of system calls? Answer: System calls allow user-level processes to request services of the operating system. 2.2 What

More information

Inject malicious code Call any library functions Modify the original code

Inject malicious code Call any library functions Modify the original code Inject malicious code Call any library functions Modify the original code 2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks 2 3 Sadeghi, Davi TU Darmstadt

More information

The first Secure Programming Laboratory will be today! 3pm-6pm in Forrest Hill labs 1.B31, 1.B32.

The first Secure Programming Laboratory will be today! 3pm-6pm in Forrest Hill labs 1.B31, 1.B32. Lab session this afternoon Memory corruption attacks Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 The first Secure Programming

More information

CNIT 127: Exploit Development. Ch 14: Protection Mechanisms. Updated

CNIT 127: Exploit Development. Ch 14: Protection Mechanisms. Updated CNIT 127: Exploit Development Ch 14: Protection Mechanisms Updated 3-25-17 Topics Non-Executable Stack W^X (Either Writable or Executable Memory) Stack Data Protection Canaries Ideal Stack Layout AAAS:

More information

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions?

Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? Jeroen van Beek 1 Why bother? Default configurations Buffer overflows Authentication mechanisms Reverse engineering Questions? 2 Inadequate OS and application security: Data abuse Stolen information Bandwidth

More information

Outline. V Computer Systems Organization II (Honors) (Introductory Operating Systems) Language-based Protection: Solution

Outline. V Computer Systems Organization II (Honors) (Introductory Operating Systems) Language-based Protection: Solution Outline V22.0202-001 Computer Systems Organization II (Honors) (Introductory Operating Systems) Lecture 21 Language-Based Protection Security April 29, 2002 Announcements Lab 6 due back on May 6th Final

More information

INFLUENTIAL OPERATING SYSTEM RESEARCH: SECURITY MECHANISMS AND HOW TO USE THEM CARSTEN WEINHOLD

INFLUENTIAL OPERATING SYSTEM RESEARCH: SECURITY MECHANISMS AND HOW TO USE THEM CARSTEN WEINHOLD Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group INFLUENTIAL OPERATING SYSTEM RESEARCH: SECURITY MECHANISMS AND HOW TO USE THEM CARSTEN WEINHOLD OVERVIEW Fundamental

More information

CSE 127: Computer Security. Memory Integrity. Kirill Levchenko

CSE 127: Computer Security. Memory Integrity. Kirill Levchenko CSE 127: Computer Security Memory Integrity Kirill Levchenko November 18, 2014 Stack Buffer Overflow Stack buffer overflow: writing past end of a stackallocated buffer Also called stack smashing One of

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz I Solutions

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz I Solutions Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.893 Fall 2009 Quiz I Solutions All problems are open-ended questions. In order to receive credit you must

More information

SPIN Operating System

SPIN Operating System SPIN Operating System Motivation: general purpose, UNIX-based operating systems can perform poorly when the applications have resource usage patterns poorly handled by kernel code Why? Current crop of

More information

IS THERE A HOLE IN YOUR RISC-V SECURITY STACK? JOTHY ROSENBERG DOVER MICROSYSTEMS

IS THERE A HOLE IN YOUR RISC-V SECURITY STACK? JOTHY ROSENBERG DOVER MICROSYSTEMS IS THERE A HOLE IN YOUR RISC-V SECURITY STACK? JOTHY ROSENBERG DOVER MICROSYSTEMS I understand the difference in destruction is dramatic, but this has a whiff of August 1945. Someone just used a new weapon,

More information

Advanced Systems Security: Ordinary Operating Systems

Advanced Systems Security: Ordinary Operating Systems Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

Trusted Computing and O/S Security

Trusted Computing and O/S Security Computer Security Spring 2008 Trusted Computing and O/S Security Aggelos Kiayias University of Connecticut O/S Security Fundamental concept for O/S Security: separation. hardware kernel system user Each

More information

Operating-System Structures

Operating-System Structures Operating-System Structures Chapter 2 Operating System Services One set provides functions that are helpful to the user: User interface Program execution I/O operations File-system manipulation Communications

More information

CSC 591 Systems Attacks and Defenses Stack Canaries & ASLR

CSC 591 Systems Attacks and Defenses Stack Canaries & ASLR CSC 591 Systems Attacks and Defenses Stack Canaries & ASLR Alexandros Kapravelos akaprav@ncsu.edu How can we prevent a buffer overflow? Check bounds Programmer Language Stack canaries [...more ] Buffer

More information

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures)

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 Outline Announcement Recap Containment and curtailment Tamper detection Memory

More information

Lecture 09. Ada to Software Engineering. Mr. Mubashir Ali Lecturer (Dept. of Computer Science)

Lecture 09. Ada to Software Engineering. Mr. Mubashir Ali Lecturer (Dept. of Computer Science) Lecture 09 Ada to Software Engineering Mr. Mubashir Ali Lecturer (Dept. of dr.mubashirali1@gmail.com 1 Summary of Previous Lecture 1. ALGOL 68 2. COBOL 60 3. PL/1 4. BASIC 5. Early Dynamic Languages 6.

More information

Identity-based Access Control

Identity-based Access Control Identity-based Access Control The kind of access control familiar from operating systems like Unix or Windows based on user identities This model originated in closed organisations ( enterprises ) like

More information

Cyber Moving Targets. Yashar Dehkan Asl

Cyber Moving Targets. Yashar Dehkan Asl Cyber Moving Targets Yashar Dehkan Asl Introduction An overview of different cyber moving target techniques, their threat models, and their technical details. Cyber moving target technique: Defend a system

More information

Language Techniques for Provably Safe Mobile Code

Language Techniques for Provably Safe Mobile Code Language Techniques for Provably Safe Mobile Code Frank Pfenning Carnegie Mellon University Distinguished Lecture Series Computing and Information Sciences Kansas State University October 27, 2000 Acknowledgments:

More information

Chapter 2: Operating-System Structures. Operating System Concepts 9 th Edit9on

Chapter 2: Operating-System Structures. Operating System Concepts 9 th Edit9on Chapter 2: Operating-System Structures Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Chapter 2: Operating-System Structures 1. Operating System Services 2. User Operating System

More information

We will focus on Buffer overflow attacks SQL injections. See book for other examples

We will focus on Buffer overflow attacks SQL injections. See book for other examples We will focus on Buffer overflow attacks SQL injections See book for other examples Buffer overrun is another common term Buffer Overflow A condition at an interface under which more input can be placed

More information

Verification & Validation of Open Source

Verification & Validation of Open Source Verification & Validation of Open Source 2011 WORKSHOP ON SPACECRAFT FLIGHT SOFTWARE Gordon Uchenick Coverity, Inc Open Source is Ubiquitous Most commercial and proprietary software systems have some open

More information

Memory Safety (cont d) Software Security

Memory Safety (cont d) Software Security Memory Safety (cont d) Software Security CS 161: Computer Security Prof. Raluca Ada Popa January 17, 2016 Some slides credit to David Wagner and Nick Weaver Announcements Discussion sections and office

More information

Lecture 1: Buffer Overflows

Lecture 1: Buffer Overflows CS5431 Computer Security Practicum Spring 2017 January 27, 2017 1 Conficker Lecture 1: Buffer Overflows Instructor: Eleanor Birrell In November 2008, a new piece of malware was observed in the wild. This

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

Buffer Overflows. A brief Introduction to the detection and prevention of buffer overflows for intermediate programmers.

Buffer Overflows. A brief Introduction to the detection and prevention of buffer overflows for intermediate programmers. Buffer Overflows A brief Introduction to the detection and prevention of buffer overflows for intermediate programmers. By: Brian Roberts What is a buffer overflow? In languages that deal with data structures

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz I

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz I Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.893 Fall 2009 Quiz I All problems are open-ended questions. In order to receive credit you must answer

More information

I run a Linux server, so we re secure

I run a Linux server, so we re secure Silent Signal vsza@silentsignal.hu 18 September 2010 Linux from a security viewpoint we re talking about the kernel, not GNU/Linux distributions Linux from a security viewpoint we re talking about the

More information

Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade Review

Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade Review Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade Review Network Security Instructor:Dr. Shishir Nagaraja Submitted By: Jyoti Leeka September 24, 2011. 1 Introduction to the topic

More information

Chapter 2: Operating-System Structures

Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Chapter 2: Operating-System Structures Operating System Services User Operating System Interface System Calls Types of System Calls System Programs Operating System

More information

Confinement (Running Untrusted Programs)

Confinement (Running Untrusted Programs) Confinement (Running Untrusted Programs) Chester Rebeiro Indian Institute of Technology Madras Untrusted Programs Untrusted Application Entire Application untrusted Part of application untrusted Modules

More information

Information Flow Analysis and Type Systems for Secure C Language (VITC Project) Jun FURUSE. The University of Tokyo

Information Flow Analysis and Type Systems for Secure C Language (VITC Project) Jun FURUSE. The University of Tokyo Information Flow Analysis and Type Systems for Secure C Language (VITC Project) Jun FURUSE The University of Tokyo furuse@yl.is.s.u-tokyo.ac.jp e-society MEXT project toward secure and reliable software

More information

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows)

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) David Aspinall, Informatics @ Edinburgh 24th January 2017 Outline Roadmap Memory corruption vulnerabilities Instant Languages and Runtimes

More information

Buffer Overflow Attacks

Buffer Overflow Attacks Buffer Overflow Attacks 1. Smashing the Stack 2. Other Buffer Overflow Attacks 3. Work on Preventing Buffer Overflow Attacks Smashing the Stack An Evil Function void func(char* inp){ } char buffer[16];

More information

COMP3441 Lecture 7: Software Vulnerabilities

COMP3441 Lecture 7: Software Vulnerabilities COMP3441 Lecture 7: Software Vulnerabilities Ron van der Meyden (University of New South Wales Sydney, Australia) April 22, 2013 Overview Buffer overflow attacks SQL injection attacks Defensive measures

More information

Exercise 6: Buffer Overflow and return-into-libc Attacks

Exercise 6: Buffer Overflow and return-into-libc Attacks Technische Universität Darmstadt Fachbereich Informatik System Security Lab Prof. Dr.-Ing. Ahmad-Reza Sadeghi M.Sc. David Gens Exercise 6: Buffer Overflow and return-into-libc Attacks Course Secure, Trusted

More information

1/31/2007 C. Edward Chow. CS591 Page 1

1/31/2007 C. Edward Chow. CS591 Page 1 Page 1 History of Buffer Overflow Attacks Buffer Overflow Attack and related Background Knowledge Linux VirtualMemory Map Shellcode Egg: No-ops/shellcode/returnAddresses Countermeasures: StackGuard StackShield

More information

This time. Defenses and other memory safety vulnerabilities. Everything you ve always wanted to know about gdb but were too afraid to ask

This time. Defenses and other memory safety vulnerabilities. Everything you ve always wanted to know about gdb but were too afraid to ask This time We will continue Buffer overflows By looking at Overflow Defenses and other memory safety vulnerabilities Everything you ve always wanted to know about gdb but were too afraid to ask Overflow

More information

Heap Off by 1 Overflow Illustrated. Eric Conrad October 2007

Heap Off by 1 Overflow Illustrated. Eric Conrad October 2007 Heap Off by 1 Overflow Illustrated Eric Conrad October 2007 1 The Attack Older CVS versions are vulnerable to an Off by 1 attack, where an attacker may insert one additional character into the heap CVS

More information

Buffer Overflows Defending against arbitrary code insertion and execution

Buffer Overflows Defending against arbitrary code insertion and execution www.harmonysecurity.com info@harmonysecurity.com Buffer Overflows Defending against arbitrary code insertion and execution By Stephen Fewer Contents 1 Introduction 2 1.1 Where does the problem lie? 2 1.1.1

More information

Efficient Software Based Fault Isolation. Software Extensibility

Efficient Software Based Fault Isolation. Software Extensibility Efficient Software Based Fault Isolation Robert Wahbe, Steven Lucco Thomas E. Anderson, Susan L. Graham Software Extensibility Operating Systems Kernel modules Device drivers Unix vnodes Application Software

More information

Combining program verification with component-based architectures. Alexander Senier BOB 2018 Berlin, February 23rd, 2018

Combining program verification with component-based architectures. Alexander Senier BOB 2018 Berlin, February 23rd, 2018 Combining program verification with component-based architectures Alexander Senier BOB 2018 Berlin, February 23rd, 2018 About Componolit 2 What happens when we use what's best? 3 What s Best? Mid-90ies:

More information

Software Security II: Memory Errors - Attacks & Defenses

Software Security II: Memory Errors - Attacks & Defenses 1 Software Security II: Memory Errors - Attacks & Defenses Chengyu Song Slides modified from Dawn Song 2 Administrivia Lab1 Writeup 3 Buffer overflow Out-of-bound memory writes (mostly sequential) Allow

More information

Key Threats Melissa (1999), Love Letter (2000) Mainly leveraging social engineering. Key Threats Internet was just growing Mail was on the verge

Key Threats Melissa (1999), Love Letter (2000) Mainly leveraging social engineering. Key Threats Internet was just growing Mail was on the verge Key Threats Internet was just growing Mail was on the verge Key Threats Melissa (1999), Love Letter (2000) Mainly leveraging social engineering Key Threats Code Red and Nimda (2001), Blaster (2003), Slammer

More information

Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR

Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR Jump Over ASLR: Attacking Branch Predictors to Bypass ASLR Presentation by Eric Newberry and Youssef Tobah Paper by Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh 1 Motivation Buffer overflow

More information

Bringing Android to Secure SDRs

Bringing Android to Secure SDRs Bringing Android to Secure SDRs David Kleidermacher Frank Vandenberg SDR 11 WinnComm - Europe Agenda Overview Why Android in SDR? Android Security Proposed Architecture Typical red-black architecture for

More information

Code with red border means vulnerable code. Code with green border means corrected code. This program asks the user for a password with the function

Code with red border means vulnerable code. Code with green border means corrected code. This program asks the user for a password with the function 1 Code with red border means vulnerable code. Code with green border means corrected code. This program asks the user for a password with the function IsPasswordOK(), and compares it with the correct password.

More information

"Secure" Coding Practices Nicholas Weaver

Secure Coding Practices Nicholas Weaver "Secure" Coding Practices based on David Wagner s slides from Sp 2016 1 Administrivia Computer Science 161 Fall 2016 2 3 This is a Remarkably Typical C Problem Computer Science 161 Fall 2016 if ((options

More information

Chapter 2. Operating-System Structures

Chapter 2. Operating-System Structures Chapter 2 Operating-System Structures 2.1 Chapter 2: Operating-System Structures Operating System Services User Operating System Interface System Calls Types of System Calls System Programs Operating System

More information

Full file at

Full file at Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 2 Multiple Choice 1. A is an example of a systems program. A) command

More information

Lecture 4: Extensibility (and finishing virtual machines) CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 4: Extensibility (and finishing virtual machines) CSC 469H1F Fall 2006 Angela Demke Brown Lecture 4: Extensibility (and finishing virtual machines) CSC 469H1F Fall 2006 Angela Demke Brown Announcements First assignment out tomorrow Today s tutorial looks at some of the tools you will need to

More information

Operating systems and security - Overview

Operating systems and security - Overview Operating systems and security - Overview Protection in Operating systems Protected objects Protecting memory, files User authentication, especially passwords Trusted operating systems, security kernels,

More information

Operating systems and security - Overview

Operating systems and security - Overview Operating systems and security - Overview Protection in Operating systems Protected objects Protecting memory, files User authentication, especially passwords Trusted operating systems, security kernels,

More information

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Return-oriented Programming Professor Trent Jaeger 1 Anatomy of Control-Flow Exploits 2 Anatomy of Control-Flow Exploits Two steps in control-flow

More information

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 3 Protecting Systems

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 3 Protecting Systems Security+ Guide to Network Security Fundamentals, Third Edition Chapter 3 Protecting Systems Objectives Explain how to harden operating systems List ways to prevent attacks through a Web browser Define

More information

CIS 5373 Systems Security

CIS 5373 Systems Security CIS 5373 Systems Security Topic 1: Introduction to Systems Security Endadul Hoque 1 Why should you care? Security impacts our day-to-day life Become a security-aware user Make safe decisions Become a security-aware

More information

COS 318: Operating Systems

COS 318: Operating Systems COS 318: Operating Systems OS Structures and System Calls Prof. Margaret Martonosi Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Outline Protection

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 22: Remote Procedure Call (RPC)

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 22: Remote Procedure Call (RPC) CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2002 Lecture 22: Remote Procedure Call (RPC) 22.0 Main Point Send/receive One vs. two-way communication Remote Procedure

More information

Control Hijacking Attacks

Control Hijacking Attacks Control Hijacking Attacks Note: project 1 is out Section this Friday 4:15pm (Gates B03) Control hijacking attacks Attacker s goal: Take over target machine (e.g. web server) Execute arbitrary code on target

More information

Multiple Independent Layers of Security (MILS) Network Subsystem Protection Profile (MNSPP) An Approach to High Assurance Networking Rationale

Multiple Independent Layers of Security (MILS) Network Subsystem Protection Profile (MNSPP) An Approach to High Assurance Networking Rationale Multiple Independent Layers of Security (MILS) Subsystem Protection Profile (MNSPP) An Approach to High Assurance ing Rationale 1 2008 Wind River Systems, Inc. The MILS Subsystem (MNS) is A class of subsystem

More information

ELEC 377 Operating Systems. Week 1 Class 2

ELEC 377 Operating Systems. Week 1 Class 2 Operating Systems Week 1 Class 2 Labs vs. Assignments The only work to turn in are the labs. In some of the handouts I refer to the labs as assignments. There are no assignments separate from the labs.

More information

Software Security (cont.): Defenses, Adv. Attacks, & More

Software Security (cont.): Defenses, Adv. Attacks, & More CSE 484 / CSE M 584 (Autumn 2011) Software Security (cont.): Defenses, Adv. Attacks, & More Daniel Halperin Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2017 CS 161 Computer Security Discussion 2 Question 1 Software Vulnerabilities (15 min) For the following code, assume an attacker can control the value of basket passed into eval basket.

More information

A Hardware-Assisted Virtualization Based Approach on How to Protect the Kernel Space from Malicious Actions

A Hardware-Assisted Virtualization Based Approach on How to Protect the Kernel Space from Malicious Actions A Hardware-Assisted Virtualization Based Approach on How to Protect the Kernel Space from Malicious Actions Eric Lacombe 1 Ph.D Supervisors: Yves Deswarte and Vincent Nicomette 1 eric.lacombe@security-labs.org

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2011 CS 161 Computer Security Discussion 1 January 26, 2011 Question 1 Buffer Overflow Mitigations Buffer overflow mitigations generally fall into two categories: (i) eliminating the cause

More information

Black Hat Webcast Series. C/C++ AppSec in 2014

Black Hat Webcast Series. C/C++ AppSec in 2014 Black Hat Webcast Series C/C++ AppSec in 2014 Who Am I Chris Rohlf Leaf SR (Security Research) - Founder / Consultant BlackHat Speaker { 2009, 2011, 2012 } BlackHat Review Board Member http://leafsr.com

More information

Java Internals. Frank Yellin Tim Lindholm JavaSoft

Java Internals. Frank Yellin Tim Lindholm JavaSoft Java Internals Frank Yellin Tim Lindholm JavaSoft About This Talk The JavaSoft implementation of the Java Virtual Machine (JDK 1.0.2) Some companies have tweaked our implementation Alternative implementations

More information

CNIT 127: Exploit Development. Ch 18: Source Code Auditing. Updated

CNIT 127: Exploit Development. Ch 18: Source Code Auditing. Updated CNIT 127: Exploit Development Ch 18: Source Code Auditing Updated 4-10-17 Why Audit Source Code? Best way to discover vulnerabilities Can be done with just source code and grep Specialized tools make it

More information

CHAPTER 2: SYSTEM STRUCTURES. By I-Chen Lin Textbook: Operating System Concepts 9th Ed.

CHAPTER 2: SYSTEM STRUCTURES. By I-Chen Lin Textbook: Operating System Concepts 9th Ed. CHAPTER 2: SYSTEM STRUCTURES By I-Chen Lin Textbook: Operating System Concepts 9th Ed. Chapter 2: System Structures Operating System Services User Operating System Interface System Calls Types of System

More information