Assignment 4 Section Notes #2

Size: px
Start display at page:

Download "Assignment 4 Section Notes #2"

Transcription

1 Assignment 4 Section Notes #2 CS161 Course Staff April 2, Administrivia The assignment is due Wednesday, April 27 at 5:00PM. There is a course-wide extension until Friday, April 29 at 5:00PM. 2 Unlinked Files As (hopefully) discussed in designs, you need some kind on-disk morgue / graveyard / orphanage / homeless shelter for holding files that have been unlinked but not yet reclaimed. There are various possible ways to implement this. The right way is to use an extra inode, and either reserve its inode number or store the number in the superblock. If you use an inode, you can use sfs metaio and other already-existing functions to manipulate it. (You can even make it a directory and use the directory functions to manipulate it.) However, there are other cheesier things you can get away with here that you probably wouldn t want to do if you were writing a file system for production use, like reserve a special block or even use space in the superblock. In any of these cases, you want to make it a first-class citizen of the file system, meaning have mksfs initialize it; teach dumpsfs to dump it for debugging; teach sfsck to know it s there so it doesn t think the blocks involved are leaked; journal all updates to it that occur at run time. Ideally you also want sfsck to check that it s empty (exercise: why should sfsck always see it empty?) but this is less critical. To use your morgue / graveyard / orphanage / homeless shelter, you ll want to move files and directories to it when they re unlinked, which is in sfs rmdir and sfs remove. Then when they re reclaimed, in sfs reclaim, take them out again. (Both regular files and directories should be handled this way as both can be held open after being unlinked.) Recovering with the journal will give you a file system where any leftover unreclaimed files are sitting in the graveyard. Therefore, after this is done, but before mount finishes, you can go through the graveyard and finish reclaiming the files there. This involves both truncating and freeing the 1

2 inode - note that you don t need to write special code to do this, but can instead just load a vnode and drop the reference that gives you; that will go through VOP RECLAIM in the normal way. Clearing the graveyard will create journal records, because it updates the disk, so after you re done with this you may want to issue another checkpoint before going fully live. Note that directories are truncated at rmdir time, because the semantics of directories require that you can t use them once they re unlinked; but regular files aren t. Consequently some of the objects in the graveyard will need truncation, and some won t; this doesn t really matter though. 3 Implementing Journal Records Some tips for implementing journal records without going crazy: Define a struct for each record type. If you have common pieces, use more structs for those. Give each record type a type code. Create #defines for these, or an enum. Put all this material in kern/sfs.h so it s visible in userland code. When reading records out of the journal, switch on the type code first. Do something reasonable (panic, fail) if you get an unknown type code. This will likely happen to you at least once due to bugs. Don t ignore unknown records. Assert that the size of the record is what it s supposed to be, or within the bounds of what it s allowed to be. Only then touch the blob pointer. Unless you re sure your records are always fully word-aligned, memcpy out of the journal into an instance of the record type declared locally. Don t waste time debugging alignment errors. You can make a union of all your record types, but you shouldn t need to. Also, use the type codes, record structs, and any accessor macros or other material you have to teach dumpsfs to print out your journal records. You will be dumping the journal to see what s going on, probably a lot. If you change kern/sfs.h, remember to do make includes in the top level of the kernel source to install the new version before rebuilding dumpsfs. (Rebuilding everything from the top does this but in general takes long enough to be annoying.) We strongly recommend having a place (one specific place, maybe in a big comment in kern/sfs.h, maybe in the design doc) where you document exactly what the record types are, what each field of each record type is, and what each of these things means, and keep it up to date if/when you make changes. Also, if you need to make substantive changes, either to the contents of a record or (more so) to its semantics, use a new record type name and new type code number and retire the old one. This helps make sure all references in the code get updated, and also means that if you accidentally fail to and encounter the old record at recovery time you can panic instead of doing wrong things. If you are really clear on what the records are and what they mean, it s perfectly feasible for one partner to work on the recovery code and one to work on the record issuing code. However, because it s difficult to test the recovery code until you have records coming out, this split might actually not work so well in practice. 2

3 4 The Container Code Ideally you won t have to wade into sfs jphys.c; but you do have to live with it, so here are some things you probably do want to know. Verbose recovery. If you uncomment SFS VERBOSE RECOVERY in sfsprivate.h, the containerlevel recovery in sfs jphys loadup will print what it s doing. This can be useful. Even more useful is to use this hook to have your own recovery code print stuff while it runs. (If your experience is anything like mine, you ll leave verbose recovery on until you re almost done with the assignment.) There s a SAY macro in sfsprivate.h that s a conditional wrapper around kprintf for printing stuff when verbose recovery is on. (There s also an UNSAID macro that you can use to avoid related unused variable warnings when verbose recovery is off.) Internal records. The jphys code uses two record types of its own, pad records and trim records. Pad records appear when a journal block is not otherwise full. (However, if padding smaller than the size of a record header is needed, it s implicit.) Trim records keep track of where the on-disk journal tail is and are issued with sfs jphys trim during checkpointing. These records are not directly exposed (the journal iterators skip over them) but you will see them if you dump the journal, which you will do a lot. The journal buffers. The jphys code keeps two buffers available: one for the current journal head (where new records are added) and one that s not directly used but will become the next head buffer. When the current head block fills up, that buffer s released and the next buffer is moved into place. This happens inside the journal lock. However, it isn t safe to get more buffers inside the journal lock (because getting buffers can trigger buffer evictions, and evictions might need to flush the journal), so the new next buffer isn t fetched until after the current journal write is finished and the journal lock can be released. If at this point other threads come along to write journal records, they block on a CV (jp nextcv) until the new next buffer appears. This avoids cases where a flood of incoming requests can fill up the newly deployed journal head buffer before there s a new next buffer to replace it with. (If that happens, the jphys code panics.) Flushing-related metadata. The jphys code keeps track of the first LSN in each journal buffer, and the oldest journal block that s still in memory. This material has its own spinlock (which you shouldn t have to interact with) and is used for flushing the journal out. Head/tail collisions. The jphys code does not detect head/tail collisions. This is a bug, and will hopefully get fixed next year if I have time it ll get fixed next week, but I can t make any promises. If the in-memory head collides with the in-memory tail (meaning the whole journal is still in memory) you will probably deadlock. This is very unlikely to happen, because the syncer is making sure blocks get written out reasonably promptly and that should trigger journal flushes. If this happens, it almost certainly means you aren t flushing the journal. 3

4 If the on-disk head collides with the on-disk tail, the result will be that when you go to load up the journal it either can t find a trim record at all (if the last one disappeared under the tide of new journal records) or it finds a trim record but it can t find the journal tail. Apart from the cases with very large writes and truncates that we explicitly don t intend you to worry about, if this happens it almost certainly means you aren t checkpointing, either often enough or possibly at all. 5 Testing There s a fairly wide variety of test workloads in testbin/. Use the doom counter to crash the system in the middle. Early on, pressing Ĉ while the system s running will serve fine; later on, the advantage of the doom counter is that it will give repeatable results (or mostly repeatable results) and also, by incrementing the doom number one at a time you can exercise different combinations of buffers being written out. Some of the tests have phases; crashing in the different phases is usually a materially different recovery problem. Particularly in frack, some tests have an explicit sync between phases; generally this means that the first part is setup for the second part and crashing in the second part is what s supposed to be interesting. When you first start testing, don t even bother trying to run recovery; instead, just dump the journal and check it to see if it s correct and complete. (The first few times, it won t be.) Once you re generating the right log records you can proceed to trying to recover with them. Testing recovery from wrong log records isn t very rewarding. Poisondisk. The poisondisk program clears a disk image to a known nonzero value (0xa9). Run this on your test disk image, then run mksfs, then run a test workload; if you see 0xa9 coming through (or 0xa9a9, or 0xa9a9a9a9) you know you re getting stale block data. Mostly this will manifest in user data if you aren t handling uninitialized user data right; but it can crop up in metadata structures too if you have the right (wrong) bugs. frack. The frack (filesystem crack) test contains a large number of test workloads and a validator for them. As described in the assignment text, use frack run to run a workload; then after crashing and running recovery, use frack check to validate the filesystem state. It will match what it finds in the filesystem against the sequence of states arising from the workload. If it doesn t find an exact match, it finds the closest match (the logic it uses for this is primitive and may not do a great job) and lists the discrepancies. When it finds zeroed ranges of files, it will announce them; this isn t complaining or a failure per se. If it finds the wrong data, it will complain. Note that it doesn t react all that well to half-finished write operations; e.g. if the workload wrote out a 16K and 8K made it to disk (so the file length is 8K and the data is there) it will get upset, whereas if it sees a 16K file with the same 8K of data and 8K of zeros from the unfinished write it will be fine with that. Since allowing writes to be half-finished is a reasonable way of dealing with partially written user data, it would be nice if frack were smarter about this; but it isn t entirely trivial to make it so. 4

5 6 Some Other Stuff The freemap. As noted before/elsewhere, the free block bitmap is not handled through the buffer cache. This makes it a special case needing special handling. (This should really be fixed sometime.) Treat it as a special case of buffer; give it the same metadata as a buffer and scan that metadata when you d scan buffer metadata. Also, because by default it only gets written during an explicit sync, youll want to write it out from time to time. Because sfs freemapio does go through sfs writeblock you will not need any special handling to ensure WAL for the freemap beyond scanning the freemap metadata just as you d scan the buffer metadata to properly flush the journal in advance of writing blocks to disk. Buffer reservation during recovery. Before scanning the journal, reserve some buffers with reserve buffers, and unreserve them again when done. Otherwise you ll assert inside the buffer cache. 7 The Issue in Truncate In 2015, a patch was issued mid-assignment to fix a problem with truncate. This is an explanation of that bug; it s an example of the kinds of things that can go wrong at recovery time if one isn t careful. The code in sfs itrunc, as you may have noticed if you ve waded into it, releases blocks with sfs bfree as it goes, which in turn locks and unlocks the freemap for each change. This means that blocks released by truncate can be reallocated for use by something else before the truncate completes. The in-memory state of things gets away with this because sfs itrunc doesn t really attempt to unwind itself on error. However, in combination with journaling this isn t so innocuous. Suppose that process P is truncating a large file. Now process Q creates a new file and calls write on it, which allocates blocks; let s say that the first data block Q gets for its new file is a block B released by P. The write finishes and commits, Q goes about its business, and the machine crashes before P s truncate finishes. What happens then? At recovery time, the write is a committed transaction so it isn t going to be undone. But the truncate is not a committed transaction, so it is going to be undone. Which means that block B is restored to P s large file; but it s also part of Q s new file. Now the volume s corrupt. What was wrong that allowed this to happen? sfs itrunc didn t follow the two-phase locking rule; Q s transaction read dirty data; this made Q s transaction dependent on P s, but it committed without waiting for P s transaction to commit first. Implementing support for dependent transactions is possible but not what we want. The fix is to follow two-phase locking and not release the freemap lock until truncate is done. 5

Assignment 4 Section Notes

Assignment 4 Section Notes Assignment 4 Section Notes CS161 Course Staff April 14, 2015 1 Administrivia The in-class design review is Thursday. Final designs are due Saturday at 6pm. There is/will be at least one update to the base

More information

Ext3/4 file systems. Don Porter CSE 506

Ext3/4 file systems. Don Porter CSE 506 Ext3/4 file systems Don Porter CSE 506 Logical Diagram Binary Formats Memory Allocators System Calls Threads User Today s Lecture Kernel RCU File System Networking Sync Memory Management Device Drivers

More information

ò Very reliable, best-of-breed traditional file system design ò Much like the JOS file system you are building now

ò Very reliable, best-of-breed traditional file system design ò Much like the JOS file system you are building now Ext2 review Very reliable, best-of-breed traditional file system design Ext3/4 file systems Don Porter CSE 506 Much like the JOS file system you are building now Fixed location super blocks A few direct

More information

Crash Consistency: FSCK and Journaling. Dongkun Shin, SKKU

Crash Consistency: FSCK and Journaling. Dongkun Shin, SKKU Crash Consistency: FSCK and Journaling 1 Crash-consistency problem File system data structures must persist stored on HDD/SSD despite power loss or system crash Crash-consistency problem The system may

More information

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability

Topics. File Buffer Cache for Performance. What to Cache? COS 318: Operating Systems. File Performance and Reliability Topics COS 318: Operating Systems File Performance and Reliability File buffer cache Disk failure and recovery tools Consistent updates Transactions and logging 2 File Buffer Cache for Performance What

More information

File System Consistency. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

File System Consistency. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University File System Consistency Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Crash Consistency File system may perform several disk writes to complete

More information

FS Consistency & Journaling

FS Consistency & Journaling FS Consistency & Journaling Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Why Is Consistency Challenging? File system may perform several disk writes to serve a single request Caching

More information

Lecture 11: Linux ext3 crash recovery

Lecture 11: Linux ext3 crash recovery 6.828 2011 Lecture 11: Linux ext3 crash recovery topic crash recovery crash may interrupt a multi-disk-write operation leave file system in an unuseable state most common solution: logging last lecture:

More information

File System Consistency

File System Consistency File System Consistency Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Administrivia. Last Class. Faloutsos/Pavlo CMU /615

Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications. Administrivia. Last Class. Faloutsos/Pavlo CMU /615 Carnegie Mellon Univ. Dept. of Computer Science 15-415/615 - DB Applications C. Faloutsos A. Pavlo Lecture#23: Crash Recovery Part 2 (R&G ch. 18) Administrivia HW8 is due Thurs April 24 th Faloutsos/Pavlo

More information

Review: FFS [McKusic] basics. Review: FFS background. Basic FFS data structures. FFS disk layout. FFS superblock. Cylinder groups

Review: FFS [McKusic] basics. Review: FFS background. Basic FFS data structures. FFS disk layout. FFS superblock. Cylinder groups Review: FFS background 1980s improvement to original Unix FS, which had: - 512-byte blocks - Free blocks in linked list - All inodes at beginning of disk - Low throughput: 512 bytes per average seek time

More information

Review: FFS background

Review: FFS background 1/37 Review: FFS background 1980s improvement to original Unix FS, which had: - 512-byte blocks - Free blocks in linked list - All inodes at beginning of disk - Low throughput: 512 bytes per average seek

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 17: File System Crash Consistency Ryan Huang Administrivia Lab 3 deadline Thursday Nov 9 th 11:59pm Thursday class cancelled, work on the lab Some

More information

Journaling. CS 161: Lecture 14 4/4/17

Journaling. CS 161: Lecture 14 4/4/17 Journaling CS 161: Lecture 14 4/4/17 In The Last Episode... FFS uses fsck to ensure that the file system is usable after a crash fsck makes a series of passes through the file system to ensure that metadata

More information

PROJECT 6: PINTOS FILE SYSTEM. CS124 Operating Systems Winter , Lecture 25

PROJECT 6: PINTOS FILE SYSTEM. CS124 Operating Systems Winter , Lecture 25 PROJECT 6: PINTOS FILE SYSTEM CS124 Operating Systems Winter 2015-2016, Lecture 25 2 Project 6: Pintos File System Last project is to improve the Pintos file system Note: Please ask before using late tokens

More information

Assignment 1c: Compiler organization and backend programming

Assignment 1c: Compiler organization and backend programming Assignment 1c: Compiler organization and backend programming Roel Jordans 2016 Organization Welcome to the third and final part of assignment 1. This time we will try to further improve the code generation

More information

The Art and Science of Memory Allocation

The Art and Science of Memory Allocation Logical Diagram The Art and Science of Memory Allocation Don Porter CSE 506 Binary Formats RCU Memory Management Memory Allocators CPU Scheduler User System Calls Kernel Today s Lecture File System Networking

More information

[537] Journaling. Tyler Harter

[537] Journaling. Tyler Harter [537] Journaling Tyler Harter FFS Review Problem 1 What structs must be updated in addition to the data block itself? [worksheet] Problem 1 What structs must be updated in addition to the data block itself?

More information

FILE SYSTEMS, PART 2. CS124 Operating Systems Winter , Lecture 24

FILE SYSTEMS, PART 2. CS124 Operating Systems Winter , Lecture 24 FILE SYSTEMS, PART 2 CS124 Operating Systems Winter 2015-2016, Lecture 24 2 Files and Processes The OS maintains a buffer of storage blocks in memory Storage devices are often much slower than the CPU;

More information

ext3 Journaling File System

ext3 Journaling File System ext3 Journaling File System absolute consistency of the filesystem in every respect after a reboot, with no loss of existing functionality chadd williams SHRUG 10/05/2001 Contents Design Goals File System

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Week 02 Module 06 Lecture - 14 Merge Sort: Analysis

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Week 02 Module 06 Lecture - 14 Merge Sort: Analysis Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Week 02 Module 06 Lecture - 14 Merge Sort: Analysis So, we have seen how to use a divide and conquer strategy, we

More information

Week 5, continued. This is CS50. Harvard University. Fall Cheng Gong

Week 5, continued. This is CS50. Harvard University. Fall Cheng Gong This is CS50. Harvard University. Fall 2014. Cheng Gong Table of Contents News... 1 Buffer Overflow... 1 Malloc... 6 Linked Lists... 7 Searching... 13 Inserting... 16 Removing... 19 News Good news everyone!

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems File Systems Traditional File Systems FS, UFS/FFS, Ext2, Several simple on disk structures Superblock magic value to identify filesystem type Places to find metadata on disk

More information

QUIZ. What is wrong with this code that uses default arguments?

QUIZ. What is wrong with this code that uses default arguments? QUIZ What is wrong with this code that uses default arguments? Solution The value of the default argument should be placed in either declaration or definition, not both! QUIZ What is wrong with this code

More information

Transactions and Recovery Study Question Solutions

Transactions and Recovery Study Question Solutions 1 1 Questions Transactions and Recovery Study Question Solutions 1. Suppose your database system never STOLE pages e.g., that dirty pages were never written to disk. How would that affect the design of

More information

These are notes for the third lecture; if statements and loops.

These are notes for the third lecture; if statements and loops. These are notes for the third lecture; if statements and loops. 1 Yeah, this is going to be the second slide in a lot of lectures. 2 - Dominant language for desktop application development - Most modern

More information

HW 3: Malloc CS 162. Due: Monday, March 28, 2016

HW 3: Malloc CS 162. Due: Monday, March 28, 2016 CS 162 Due: Monday, March 28, 2016 1 Introduction Your task in this assignment is to implement your own memory allocator from scratch. This will expose you to POSIX interfaces, force you to reason about

More information

Recovery and Logging

Recovery and Logging Recovery and Logging Computer Science E-66 Harvard University David G. Sullivan, Ph.D. Review: ACID Properties A transaction has the following ACID properties: Atomicity: either all of its changes take

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole File System Performance File System Performance Memory mapped files - Avoid system call overhead Buffer cache - Avoid disk I/O overhead Careful data

More information

Chapter 17: Recovery System

Chapter 17: Recovery System Chapter 17: Recovery System! Failure Classification! Storage Structure! Recovery and Atomicity! Log-Based Recovery! Shadow Paging! Recovery With Concurrent Transactions! Buffer Management! Failure with

More information

Failure Classification. Chapter 17: Recovery System. Recovery Algorithms. Storage Structure

Failure Classification. Chapter 17: Recovery System. Recovery Algorithms. Storage Structure Chapter 17: Recovery System Failure Classification! Failure Classification! Storage Structure! Recovery and Atomicity! Log-Based Recovery! Shadow Paging! Recovery With Concurrent Transactions! Buffer Management!

More information

Announcements. Persistence: Crash Consistency

Announcements. Persistence: Crash Consistency Announcements P4 graded: In Learn@UW by end of day P5: Available - File systems Can work on both parts with project partner Fill out form BEFORE tomorrow (WED) morning for match Watch videos; discussion

More information

Filesystem. Disclaimer: some slides are adopted from book authors slides with permission 1

Filesystem. Disclaimer: some slides are adopted from book authors slides with permission 1 Filesystem Disclaimer: some slides are adopted from book authors slides with permission 1 Storage Subsystem in Linux OS Inode cache User Applications System call Interface Virtual File System (VFS) Filesystem

More information

Lesson 9 Transcript: Backup and Recovery

Lesson 9 Transcript: Backup and Recovery Lesson 9 Transcript: Backup and Recovery Slide 1: Cover Welcome to lesson 9 of the DB2 on Campus Lecture Series. We are going to talk in this presentation about database logging and backup and recovery.

More information

Filesystem. Disclaimer: some slides are adopted from book authors slides with permission

Filesystem. Disclaimer: some slides are adopted from book authors slides with permission Filesystem Disclaimer: some slides are adopted from book authors slides with permission 1 Recap Directory A special file contains (inode, filename) mappings Caching Directory cache Accelerate to find inode

More information

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24 FILE SYSTEMS, PART 2 CS124 Operating Systems Fall 2017-2018, Lecture 24 2 Last Time: File Systems Introduced the concept of file systems Explored several ways of managing the contents of files Contiguous

More information

The name of our class will be Yo. Type that in where it says Class Name. Don t hit the OK button yet.

The name of our class will be Yo. Type that in where it says Class Name. Don t hit the OK button yet. Mr G s Java Jive #2: Yo! Our First Program With this handout you ll write your first program, which we ll call Yo. Programs, Classes, and Objects, Oh My! People regularly refer to Java as a language that

More information

CS 167 Final Exam Solutions

CS 167 Final Exam Solutions CS 167 Final Exam Solutions Spring 2018 Do all questions. 1. [20%] This question concerns a system employing a single (single-core) processor running a Unix-like operating system, in which interrupts are

More information

XP: Backup Your Important Files for Safety

XP: Backup Your Important Files for Safety XP: Backup Your Important Files for Safety X 380 / 1 Protect Your Personal Files Against Accidental Loss with XP s Backup Wizard Your computer contains a great many important files, but when it comes to

More information

2. PICTURE: Cut and paste from paper

2. PICTURE: Cut and paste from paper File System Layout 1. QUESTION: What were technology trends enabling this? a. CPU speeds getting faster relative to disk i. QUESTION: What is implication? Can do more work per disk block to make good decisions

More information

Name: Instructions. Problem 1 : Short answer. [63 points] CMU Storage Systems 12 Oct 2006 Fall 2006 Exam 1

Name: Instructions. Problem 1 : Short answer. [63 points] CMU Storage Systems 12 Oct 2006 Fall 2006 Exam 1 CMU 18 746 Storage Systems 12 Oct 2006 Fall 2006 Exam 1 Instructions Name: There are four (4) questions on the exam. You may find questions that could have several answers and require an explanation or

More information

JOURNALING FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 26

JOURNALING FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 26 JOURNALING FILE SYSTEMS CS124 Operating Systems Winter 2015-2016, Lecture 26 2 File System Robustness The operating system keeps a cache of filesystem data Secondary storage devices are much slower than

More information

Final Examination CS 111, Fall 2016 UCLA. Name:

Final Examination CS 111, Fall 2016 UCLA. Name: Final Examination CS 111, Fall 2016 UCLA Name: This is an open book, open note test. You may use electronic devices to take the test, but may not access the network during the test. You have three hours

More information

CSE 410 Final Exam 6/09/09. Suppose we have a memory and a direct-mapped cache with the following characteristics.

CSE 410 Final Exam 6/09/09. Suppose we have a memory and a direct-mapped cache with the following characteristics. Question 1. (10 points) (Caches) Suppose we have a memory and a direct-mapped cache with the following characteristics. Memory is byte addressable Memory addresses are 16 bits (i.e., the total memory size

More information

Section 9: Intro to Lab 5 CSE WI

Section 9: Intro to Lab 5 CSE WI Section 9: Intro to Lab 5 CSE 451 18WI Debugging Tip: GDB Watchpoints Many Lab 4 bugs happen due to unintentional inconsistencies in memory Corrupt code/stack page, corrupt virtual/physical metadata page,

More information

UNIT 9 Crash Recovery. Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8

UNIT 9 Crash Recovery. Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8 UNIT 9 Crash Recovery Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8 Learning Goals Describe the steal and force buffer policies and explain how they affect a transaction s properties

More information

Shared snapshots. 1 Abstract. 2 Introduction. Mikulas Patocka Red Hat Czech, s.r.o. Purkynova , Brno Czech Republic

Shared snapshots. 1 Abstract. 2 Introduction. Mikulas Patocka Red Hat Czech, s.r.o. Purkynova , Brno Czech Republic Shared snapshots Mikulas Patocka Red Hat Czech, s.r.o. Purkynova 99 612 45, Brno Czech Republic mpatocka@redhat.com 1 Abstract Shared snapshots enable the administrator to take many snapshots of the same

More information

Administrative Details. CS 140 Final Review Session. Pre-Midterm. Plan For Today. Disks + I/O. Pre-Midterm, cont.

Administrative Details. CS 140 Final Review Session. Pre-Midterm. Plan For Today. Disks + I/O. Pre-Midterm, cont. Administrative Details CS 140 Final Review Session Final exam: 12:15-3:15pm, Thursday March 18, Skilling Aud (here) Questions about course material or the exam? Post to the newsgroup with Exam Question

More information

Ext4 Filesystem Scaling

Ext4 Filesystem Scaling Ext4 Filesystem Scaling Jan Kára SUSE Labs Overview Handling of orphan inodes in ext4 Shrinking cache of logical to physical block mappings Cleanup of transaction checkpoint lists 2 Orphan

More information

CS125 : Introduction to Computer Science. Lecture Notes #38 and #39 Quicksort. c 2005, 2003, 2002, 2000 Jason Zych

CS125 : Introduction to Computer Science. Lecture Notes #38 and #39 Quicksort. c 2005, 2003, 2002, 2000 Jason Zych CS125 : Introduction to Computer Science Lecture Notes #38 and #39 Quicksort c 2005, 2003, 2002, 2000 Jason Zych 1 Lectures 38 and 39 : Quicksort Quicksort is the best sorting algorithm known which is

More information

Lecture 11 Unbounded Arrays

Lecture 11 Unbounded Arrays Lecture 11 Unbounded Arrays 15-122: Principles of Imperative Computation (Spring 2018) Rob Simmons, Frank Pfenning Arrays have efficient O(1) access to elements given an index, but their size is set at

More information

CS122 Lecture 15 Winter Term,

CS122 Lecture 15 Winter Term, CS122 Lecture 15 Winter Term, 2017-2018 2 Transaction Processing Last time, introduced transaction processing ACID properties: Atomicity, consistency, isolation, durability Began talking about implementing

More information

Operating System Principles: Memory Management Swapping, Paging, and Virtual Memory CS 111. Operating Systems Peter Reiher

Operating System Principles: Memory Management Swapping, Paging, and Virtual Memory CS 111. Operating Systems Peter Reiher Operating System Principles: Memory Management Swapping, Paging, and Virtual Memory Operating Systems Peter Reiher Page 1 Outline Swapping Paging Virtual memory Page 2 Swapping What if we don t have enough

More information

Linux Filesystems Ext2, Ext3. Nafisa Kazi

Linux Filesystems Ext2, Ext3. Nafisa Kazi Linux Filesystems Ext2, Ext3 Nafisa Kazi 1 What is a Filesystem A filesystem: Stores files and data in the files Organizes data for easy access Stores the information about files such as size, file permissions,

More information

EXPLODE: a Lightweight, General System for Finding Serious Storage System Errors. Junfeng Yang, Can Sar, Dawson Engler Stanford University

EXPLODE: a Lightweight, General System for Finding Serious Storage System Errors. Junfeng Yang, Can Sar, Dawson Engler Stanford University EXPLODE: a Lightweight, General System for Finding Serious Storage System Errors Junfeng Yang, Can Sar, Dawson Engler Stanford University Why check storage systems? Storage system errors are among the

More information

File System Performance (and Abstractions) Kevin Webb Swarthmore College April 5, 2018

File System Performance (and Abstractions) Kevin Webb Swarthmore College April 5, 2018 File System Performance (and Abstractions) Kevin Webb Swarthmore College April 5, 2018 Today s Goals Supporting multiple file systems in one name space. Schedulers not just for CPUs, but disks too! Caching

More information

CS5460: Operating Systems Lecture 20: File System Reliability

CS5460: Operating Systems Lecture 20: File System Reliability CS5460: Operating Systems Lecture 20: File System Reliability File System Optimizations Modern Historic Technique Disk buffer cache Aggregated disk I/O Prefetching Disk head scheduling Disk interleaving

More information

PERSISTENCE: FSCK, JOURNALING. Shivaram Venkataraman CS 537, Spring 2019

PERSISTENCE: FSCK, JOURNALING. Shivaram Venkataraman CS 537, Spring 2019 PERSISTENCE: FSCK, JOURNALING Shivaram Venkataraman CS 537, Spring 2019 ADMINISTRIVIA Project 4b: Due today! Project 5: Out by tomorrow Discussion this week: Project 5 AGENDA / LEARNING OUTCOMES How does

More information

Client Code - the code that uses the classes under discussion. Coupling - code in one module depends on code in another module

Client Code - the code that uses the classes under discussion. Coupling - code in one module depends on code in another module Basic Class Design Goal of OOP: Reduce complexity of software development by keeping details, and especially changes to details, from spreading throughout the entire program. Actually, the same goal as

More information

Chapter 10: Case Studies. So what happens in a real operating system?

Chapter 10: Case Studies. So what happens in a real operating system? Chapter 10: Case Studies So what happens in a real operating system? Operating systems in the real world Studied mechanisms used by operating systems Processes & scheduling Memory management File systems

More information

Midterm evaluations. Thank you for doing midterm evaluations! First time not everyone thought I was going too fast

Midterm evaluations. Thank you for doing midterm evaluations! First time not everyone thought I was going too fast p. 1/3 Midterm evaluations Thank you for doing midterm evaluations! First time not everyone thought I was going too fast - Some people didn t like Q&A - But this is useful for me to gauge if people are

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems Block Cache Address Space Abstraction Given a file, which physical pages store its data? Each file inode has an address space (0 file size) So do block devices that cache data

More information

File Systems: Recovery

File Systems: Recovery File Systems: Recovery Learning Objectives Identify ways that a file system can be corrupt after a crash. Articulate approaches a file system can take to limit the kinds of failures that can occur. Describe

More information

Lecture 21: Reliable, High Performance Storage. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 21: Reliable, High Performance Storage. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 21: Reliable, High Performance Storage CSC 469H1F Fall 2006 Angela Demke Brown 1 Review We ve looked at fault tolerance via server replication Continue operating with up to f failures Recovery

More information

Memory Management: Virtual Memory and Paging CS 111. Operating Systems Peter Reiher

Memory Management: Virtual Memory and Paging CS 111. Operating Systems Peter Reiher Memory Management: Virtual Memory and Paging Operating Systems Peter Reiher Page 1 Outline Paging Swapping and demand paging Virtual memory Page 2 Paging What is paging? What problem does it solve? How

More information

CS 111. Operating Systems Peter Reiher

CS 111. Operating Systems Peter Reiher Operating System Principles: File Systems Operating Systems Peter Reiher Page 1 Outline File systems: Why do we need them? Why are they challenging? Basic elements of file system design Designing file

More information

1 / 23. CS 137: File Systems. General Filesystem Design

1 / 23. CS 137: File Systems. General Filesystem Design 1 / 23 CS 137: File Systems General Filesystem Design 2 / 23 Promises Made by Disks (etc.) Promises 1. I am a linear array of fixed-size blocks 1 2. You can access any block fairly quickly, regardless

More information

Logging File Systems

Logging File Systems Logging ile Systems Learning Objectives xplain the difference between journaling file systems and log-structured file systems. Give examples of workloads for which each type of system will excel/fail miserably.

More information

CMSC162 Intro to Algorithmic Design II Blaheta. Lab March 2019

CMSC162 Intro to Algorithmic Design II Blaheta. Lab March 2019 CMSC162 Intro to Algorithmic Design II Blaheta Lab 10 28 March 2019 This week we ll take a brief break from the Set library and revisit a class we saw way back in Lab 4: Card, representing playing cards.

More information

CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11

CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11 CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11 CS 536 Spring 2015 1 Handling Overloaded Declarations Two approaches are popular: 1. Create a single symbol table

More information

Lecture 18: Reliable Storage

Lecture 18: Reliable Storage CS 422/522 Design & Implementation of Operating Systems Lecture 18: Reliable Storage Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions of

More information

Concurrent & Distributed Systems Supervision Exercises

Concurrent & Distributed Systems Supervision Exercises Concurrent & Distributed Systems Supervision Exercises Stephen Kell Stephen.Kell@cl.cam.ac.uk November 9, 2009 These exercises are intended to cover all the main points of understanding in the lecture

More information

COSC 2P91. Bringing it all together... Week 4b. Brock University. Brock University (Week 4b) Bringing it all together... 1 / 22

COSC 2P91. Bringing it all together... Week 4b. Brock University. Brock University (Week 4b) Bringing it all together... 1 / 22 COSC 2P91 Bringing it all together... Week 4b Brock University Brock University (Week 4b) Bringing it all together... 1 / 22 A note on practicality and program design... Writing a single, monolithic source

More information

CS131 Compilers: Programming Assignment 2 Due Tuesday, April 4, 2017 at 11:59pm

CS131 Compilers: Programming Assignment 2 Due Tuesday, April 4, 2017 at 11:59pm CS131 Compilers: Programming Assignment 2 Due Tuesday, April 4, 2017 at 11:59pm Fu Song 1 Policy on plagiarism These are individual homework. While you may discuss the ideas and algorithms or share the

More information

Heap Management. Heap Allocation

Heap Management. Heap Allocation Heap Management Heap Allocation A very flexible storage allocation mechanism is heap allocation. Any number of data objects can be allocated and freed in a memory pool, called a heap. Heap allocation is

More information

1 / 22. CS 135: File Systems. General Filesystem Design

1 / 22. CS 135: File Systems. General Filesystem Design 1 / 22 CS 135: File Systems General Filesystem Design Promises 2 / 22 Promises Made by Disks (etc.) 1. I am a linear array of blocks 2. You can access any block fairly quickly 3. You can read or write

More information

Retrospect 8 for Windows Reviewer s Guide

Retrospect 8 for Windows Reviewer s Guide Retrospect 8 for Windows Reviewer s Guide 2012 Retrospect, Inc. About this Reviewer s Guide This document provides a concise guide to understanding Retrospect 8 for Windows. While it is not designed to

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

UBC: An Efficient Unified I/O and Memory Caching Subsystem for NetBSD

UBC: An Efficient Unified I/O and Memory Caching Subsystem for NetBSD UBC: An Efficient Unified I/O and Memory Caching Subsystem for NetBSD Chuck Silvers The NetBSD Project chuq@chuq.com, http://www.netbsd.org/ Abstract This paper introduces UBC ( Unified Buffer Cache ),

More information

CS Lab 2: fs. Vedant Kumar, Palmer Dabbelt. February 27, Getting Started 2

CS Lab 2: fs. Vedant Kumar, Palmer Dabbelt. February 27, Getting Started 2 CS 194-24 Vedant Kumar, Palmer Dabbelt February 27, 2014 Contents 1 Getting Started 2 2 lpfs Structures and Interfaces 3 3 The Linux VFS Layer 3 3.1 Operation Tables.........................................

More information

Operating Systems. File Systems. Thomas Ropars.

Operating Systems. File Systems. Thomas Ropars. 1 Operating Systems File Systems Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 References The content of these lectures is inspired by: The lecture notes of Prof. David Mazières. Operating

More information

Announcements. Persistence: Log-Structured FS (LFS)

Announcements. Persistence: Log-Structured FS (LFS) Announcements P4 graded: In Learn@UW; email 537-help@cs if problems P5: Available - File systems Can work on both parts with project partner Watch videos; discussion section Part a : file system checker

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Recap: Virtual Addresses A virtual address is a memory address that a process uses to access its own memory Virtual address actual physical

More information

Virtual Memory. 1 Administrivia. Tom Kelliher, CS 240. May. 1, Announcements. Homework, toolboxes due Friday. Assignment.

Virtual Memory. 1 Administrivia. Tom Kelliher, CS 240. May. 1, Announcements. Homework, toolboxes due Friday. Assignment. Virtual Memory Tom Kelliher, CS 240 May. 1, 2002 1 Administrivia Announcements Homework, toolboxes due Friday. Assignment From Last Time Introduction to caches. Outline 1. Virtual memory. 2. System support:

More information

List of Known Toolbox Problems

List of Known Toolbox Problems List of Known Toolbox Problems 17 November 2009 These are all the known bugs and missing features of the TLA + Toolbox reported as of 17 November 2009. 1. New Feature Add way to tell if the spec on which

More information

INTERNAL REPRESENTATION OF FILES:

INTERNAL REPRESENTATION OF FILES: INTERNAL REPRESENTATION OF FILES: Every file on a UNIX system has a unique inode. The inode contains the information necessary for a process to access a file, such as file ownership, access rights, file

More information

This wouldn t work without the previous declaration of X. This wouldn t work without the previous declaration of y

This wouldn t work without the previous declaration of X. This wouldn t work without the previous declaration of y Friends We want to explicitly grant access to a function that isn t a member of the current class/struct. This is accomplished by declaring that function (or an entire other struct) as friend inside the

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Memory allocation within a process What happens when you declare a variable? Allocating a page for every variable wouldn t be efficient

More information

CS 426 Fall Machine Problem 1. Machine Problem 1. CS 426 Compiler Construction Fall Semester 2017

CS 426 Fall Machine Problem 1. Machine Problem 1. CS 426 Compiler Construction Fall Semester 2017 CS 426 Fall 2017 1 Machine Problem 1 Machine Problem 1 CS 426 Compiler Construction Fall Semester 2017 Handed Out: September 6, 2017. Due: September 21, 2017, 5:00 p.m. The machine problems for this semester

More information

Percona Live September 21-23, 2015 Mövenpick Hotel Amsterdam

Percona Live September 21-23, 2015 Mövenpick Hotel Amsterdam Percona Live 2015 September 21-23, 2015 Mövenpick Hotel Amsterdam TokuDB internals Percona team, Vlad Lesin, Sveta Smirnova Slides plan Introduction in Fractal Trees and TokuDB Files Block files Fractal

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

QUIZ on Ch.5. Why is it sometimes not a good idea to place the private part of the interface in a header file?

QUIZ on Ch.5. Why is it sometimes not a good idea to place the private part of the interface in a header file? QUIZ on Ch.5 Why is it sometimes not a good idea to place the private part of the interface in a header file? Example projects where we don t want the implementation visible to the client programmer: The

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

Operating Systems, Assignment 2 Threads and Synchronization

Operating Systems, Assignment 2 Threads and Synchronization Operating Systems, Assignment 2 Threads and Synchronization Responsible TA's: Zohar and Matan Assignment overview The assignment consists of the following parts: 1) Kernel-level threads package 2) Synchronization

More information

CSE 333 Lecture 9 - storage

CSE 333 Lecture 9 - storage CSE 333 Lecture 9 - storage Steve Gribble Department of Computer Science & Engineering University of Washington Administrivia Colin s away this week - Aryan will be covering his office hours (check the

More information

Lab 4: Super Sudoku Solver CSCI 2101 Fall 2017

Lab 4: Super Sudoku Solver CSCI 2101 Fall 2017 Due: Wednesday, October 18, 11:59 pm Collaboration Policy: Level 1 Group Policy: Pair-Optional Lab 4: Super Sudoku Solver CSCI 2101 Fall 2017 In this week s lab, you will write a program that can solve

More information

CSCI-1200 Data Structures Spring 2017 Lecture 27 Garbage Collection & Smart Pointers

CSCI-1200 Data Structures Spring 2017 Lecture 27 Garbage Collection & Smart Pointers CSCI-1200 Data Structures Spring 2017 Lecture 27 Garbage Collection & Smart Pointers Announcements Please fill out your course evaluations! Those of you interested in becoming an undergraduate mentor for

More information

Tricky issues in file systems

Tricky issues in file systems Tricky issues in file systems Taylor Riastradh Campbell campbell@mumble.net riastradh@netbsd.org EuroBSDcon 2015 Stockholm, Sweden October 4, 2015 What is a file system? Standard Unix concept: hierarchy

More information

15 Sharing Main Memory Segmentation and Paging

15 Sharing Main Memory Segmentation and Paging Operating Systems 58 15 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

File Systems. Chapter 11, 13 OSPP

File Systems. Chapter 11, 13 OSPP File Systems Chapter 11, 13 OSPP What is a File? What is a Directory? Goals of File System Performance Controlled Sharing Convenience: naming Reliability File System Workload File sizes Are most files

More information