CMPT 125 Assignment 2 Solutions

Size: px
Start display at page:

Download "CMPT 125 Assignment 2 Solutions"

Transcription

1 CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address of elemet 0 of this array? Write the C code for your aswer. it *pa = &a[0]; or it *pa = a; II. Usig pa, how would you obtai the value of the ext elemet (elemet ) of the array? pa poits to the first elemet of the array. So the ext elemet would be *(pa+) III. Explai i 2-3 seteces what the statemet pa = a[]; would do. The statemet would chage the address to which pa poits to the value stored i a[], which is meat to store a iteger, ot a address. While this code will compile, tryig to access the value of pa by usig *pa may cause a segmetatio fault (memory error). IV. Is the statemet a = pa; valid (would it cause compilatio errors)? How about a++;? Explai briefly i 3-4 seteces. No. There is oe key differece betwee a array ame ad poiter. A poiter is a variable, so pa=a ad pa++ are legal. But a array ame is ot a variable; costructios like a=pa ad a++ are thus illegal. V. Write C code to prit all the elemets from this array. Oe possible solutio: #iclude <stdio.h> it mai() { it a[0] = {0,,2,3,4,5,6,7,8,9; for (it *i = a; i <= a+9; i++) { pritf( %d\, *i); b) Cosider the two variables below. (5 marks) char amessage[] = "ow is the time"; char *pmessage = "ow is the time"; Page of 7

2 I. What is the differece betwee the two variables amessage ad pmessage? ( mark) char amessage[] is a array, whereas char *pmessage is a poiter iitialized to poit to a strig costat. II. Write a C code to chage the character t from time to uppercase T i the variable amessage. (5 marks) Oe possible solutio: #iclude <stdio.h> #iclude <strig.h> it mai() { char amessage[] = "ow is the time"; it c = 0; while (amessage[c]!= '\0') { if(amessage[c] == 't' && amessage[c+] == 'i') { amessage[c] = 'T'; pritf("letter: %c\", amessage[c]); c++; c) Cosider the followig code. (5 marks) void strcopy(char s[], char s2[]) { it le = strle(s2); for (it i = 0; i<=le; i++) { s[i] = s2[i]; it mai () { char s2[0] = "copy this"; char s[0]; strcopy(s, s2); The above code copies the character from s2 to s usig the cocept of array, i the strcopy fuctio. Implemet aother fuctio strcopy2 that achieves the same result, but that takes as iput poiters to character arrays that is, complete the strcopy2 fuctio i the followig code so that the code copies the cotet of s2 ito s. void strcopy2(char *s, char *s2) { Page 2 of 7

3 while (*s2!= '\0') { *s = *s2; s++; s2++; it mai () { char s2[0] = "copy this"; char s[0]; strcopy2(s, s2); Page 3 of 7

4 Questio 2 (0 marks, each part is 2 marks) Assume that each of the expressios below gives the processig time T() spet by a algorithm for solvig a problem of size. Fid the domiat term(s) havig the steepest icrease i ad specify the lowest Big-O complexity of each algorithm. Expressio Domiat term(s) O( ) 0.00 log 4 + log 2 (log 2 ) 0.00 log 4 O(log ) 3 log 2 + (log 2 ) 2 3 log 2 O( 3 log ) O( 3 ) , O(.5 ) 3 log 8 + log 2 (log 2 (log 2 )) 3 log 8 O(log ) Note that the base of log does t matter (by default, it s base 2 i this class). I additio, costats are dropped whe usig the Big-O otatio. To compare two terms to see which is domiat, oe ca take their ratio ad let. Example : Iitial evaluatio of gives, so we use L Hopital s rule ad take the derivative of the top ad bottom. log 2 (log 2 ) lim 0.00 log 4 = 000 lim l 2 log 2 l 2 l 4 log = costat lim 2 = costat lim log 2 = 0 This meas that the 0.00 log 4 term becomes much larger as. Note that the costat i frot, o matter how small, does ot make a differece as. Example 2: First we ca cacel a buch of thigs. (log 2 ) 2 lim 3 log 2 = lim log 2 2 Page 4 of 7

5 At this poit oe ca see that the 2 will is much bigger tha the log 2, so the domiat term is 3 log 2. However, to be completely pedatic, let s take. Iitial evaluatio of gives, so we use L Hopital s rule ad take the derivative of the top ad bottom. log 2 lim 2 = lim l 2 2 = l 2 lim 2 2 = 0 Questio 3 (8 marks, each part is 2 marks) For the followig parts, try to get the best Big-O estimate that you ca ad briefly justify your aswers. Part a) it i, j; it = 00; for (i = ; i <= ; i++) { for (j = 3*i; j <= ; j++) { pritf("programmig is fu\"); The ier loop goes from j = 3i to j =. This is 3i + times. Now, i goes from to, so the total umber of pritf calls is i= ( 3i + ). This is at most i= (), which is 2, so the total ruig time is O( 2 ). Part b) it i, j; it = ; for (i = ; i <= ; i++) { for (j = ; j <= 0000; j++) { pritf("%d %d\", i, j); Outer loop is executed O() times. For every executio of the outer loop, ier loop is executed 0000 times, which is a costat umber of times. So, total ruig time is 0000 = O(). Part c) Page 5 of 7

6 it i = 0; it = 0; it j; while (i < ) { j = i; while (i < ) { pritf("hello %d\", i); i = j; Outer loop executes times. For every executio of the outer loop, the ier loop is executed for j = i (the value of i i the outer loop) to, which is i + times. So the total executio cout of pritf is i= ( i + ), which is at most i= () = 2 = O( 2 ). Part d) it i = 0; it = 0; it j; while (i < ) { j = i; while (i < ) { pritf("hello %d\", i); break; i = j; Outer loop executes O() times. Ier loop has a break statemet so it becomes O(), costat. Total ruig time is O(). Questio 4 (5 marks) Write a program i C that prompts a user to select ay five beverages of your choice (e.g Coke, Lemo Tea, etc.). User should be able to select oe of these optios usig oly itegers from 0 to 4 as iputs. Oce a user has made the choice, prit the chose drik alog with its calorie iformatio. You may look up the calorie iformatio olie. Example iput: 3 Example output: Selected drik: Coca Cola Calorie cout: 40 Calories Page 6 of 7

7 Notes: You ca assume that the user will iput itegers. You do ot eed to hadle ivalid iputs of other types (such as strigs, floats, etc.). Your program should gracefully termiate if a user eters wrog iput three times. I additio, after every ivalid attempt, your program should tell the user how may tries he/she has remaiig. For example, the prompt should work somethig like this: o Prompt : User eters 6. Your program should tell that iput is ivalid ad eter agai. Also prit the remaiig tries (2). o Prompt 2: User eters -. Your program should tell that iput is ivalid ad eter agai. Also prit the remaiig tries (). o Prompt 3: User eters 200. Your program should tell that iput is ivalid ad termiate. Also prit the remaiig tries (0). o If the user eters a correct iput o or before the last try, the program should behave ormally, ad output should be like the provided example. #iclude <stdio.h> #iclude <strig.h> it beverages() { pritf("\please make a selectio of your favourite beverage by typig a umber\" "0 - Coca Cola\" " - Pepsi\" "2 - Lemo Tea\" "3 - Redbull\" "4 - Coffee\"); it tries = 3; it selectio; cost char *display[] = { "Selected drik: Coca Cola. Calorie cout: 40 Calories\", "Selected drik: Pepsi. Calorie cout: 50 Calories\", "Selected drik: Lemo Tea. Calorie cout: 90 Calories\", "Selected drik: Redbull. Calorie cout: 200 Calories\", "Selected drik: Coffee. Calorie cout: 60 Calories\", ; while(tries > 0) { tries--; pritf("eter a umber\"); scaf("%d", &selectio); if(selectio >= 0 && selectio <= 4) { pritf(display[selectio]); break; else { pritf("iput is ivalid. Remaiig tries (%d)\", tries); retur 0; Page 7 of 7

1. (a) Write a C program to display the texts Hello, World! on the screen. (2 points)

1. (a) Write a C program to display the texts Hello, World! on the screen. (2 points) 1. (a) Write a C program to display the texts Hello, World! o the scree. (2 poits) Solutio 1: pritf("hello, World!\"); Solutio 2: void mai() { pritf("hello, World!\"); (b) Write a C program to output a

More information

CS 11 C track: lecture 1

CS 11 C track: lecture 1 CS 11 C track: lecture 1 Prelimiaries Need a CMS cluster accout http://acctreq.cms.caltech.edu/cgi-bi/request.cgi Need to kow UNIX IMSS tutorial liked from track home page Track home page: http://courses.cms.caltech.edu/courses/cs11/material

More information

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions:

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions: CS 604 Data Structures Midterm Sprig, 00 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PROSI M UNI VERSI TY Istructios: Prit your ame i the space provided below. This examiatio is closed book ad closed

More information

High-Order Language APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL

High-Order Language APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL Chapter 2 C High-Order Laguage APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL 6 ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL MICROCODE LEVEL LOGIC GATE LEVEL Figure 2. 7 6 5 4

More information

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis Overview Chapter 6 Writig a Program Bjare Stroustrup Some thoughts o software developmet The idea of a calculator Usig a grammar Expressio evaluatio Program orgaizatio www.stroustrup.com/programmig 3 Buildig

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures Uiversity of Waterloo Departmet of Electrical ad Computer Egieerig ECE 250 Algorithms ad Data Structures Midterm Examiatio ( pages) Istructor: Douglas Harder February 7, 2004 7:30-9:00 Name (last, first)

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

n Maurice Wilkes, 1949 n Organize software to minimize errors. n Eliminate most of the errors we made anyway.

n Maurice Wilkes, 1949 n Organize software to minimize errors. n Eliminate most of the errors we made anyway. Bjare Stroustrup www.stroustrup.com/programmig Chapter 5 Errors Abstract Whe we program, we have to deal with errors. Our most basic aim is correctess, but we must deal with icomplete problem specificatios,

More information

10/23/18. File class in Java. Scanner reminder. Files. Opening a file for reading. Scanner reminder. File Input and Output

10/23/18. File class in Java. Scanner reminder. Files. Opening a file for reading. Scanner reminder. File Input and Output File class i Java File Iput ad Output TOPICS File Iput Exceptio Hadlig File Output Programmers refer to iput/output as "I/O". The File class represets files as objects. The class is defied i the java.io

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

Chapter 8. Strings and Vectors. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 8. Strings and Vectors. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 8 Strigs ad Vectors Overview 8.1 A Array Type for Strigs 8.2 The Stadard strig Class 8.3 Vectors Slide 8-3 8.1 A Array Type for Strigs A Array Type for Strigs C-strigs ca be used to represet strigs

More information

Guide to Applying Online

Guide to Applying Online Guide to Applyig Olie Itroductio Respodig to requests for additioal iformatio Reportig: submittig your moitorig or ed of grat Pledges: submittig your Itroductio This guide is to help charities submit their

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup Note:

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup   Note: Chapter 4 Computatio Bjare Stroustrup www.stroustrup.com/programmig Abstract Today, I ll preset the basics of computatio. I particular, we ll discuss expressios, how to iterate over a series of values

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Chapter 8. Strings and Vectors. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 8. Strings and Vectors. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 8 Strigs ad Vectors Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 8.1 A Array Type for Strigs 8.2 The Stadard strig Class 8.3 Vectors Copyright 2015 Pearso Educatio, Ltd..

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Weston Anniversary Fund

Weston Anniversary Fund Westo Olie Applicatio Guide 2018 1 This guide is desiged to help charities applyig to the Westo to use our olie applicatio form. The Westo is ope to applicatios from 5th Jauary 2018 ad closes o 30th Jue

More information

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames Uit 4, Part 3 Recursio Computer Sciece S-111 Harvard Uiversity David G. Sulliva, Ph.D. Review: Method Frames Whe you make a method call, the Java rutime sets aside a block of memory kow as the frame of

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions CS 111: Program Desig I Lecture # 7: First Loop, Web Crawler, Fuctios Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 18, 2018 What will this prit? x = 5 if x == 3: prit("hi!")

More information

CS 111 Green: Program Design I Lecture 27: Speed (cont.); parting thoughts

CS 111 Green: Program Design I Lecture 27: Speed (cont.); parting thoughts CS 111 Gree: Program Desig I Lecture 27: Speed (cot.); partig thoughts By Nascarkig - Ow work, CC BY-SA 4.0, https://commos.wikimedia.org/w/idex.php?curid=38671041 Robert H. Sloa (CS) & Rachel Poretsky

More information

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n))

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n)) ca see that time required to search/sort grows with size of We How do space/time eeds of program grow with iput size? iput. time: cout umber of operatios as fuctio of iput Executio size operatio Assigmet:

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 10 Defiig Classes Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 10.1 Structures 10.2 Classes 10.3 Abstract Data Types 10.4 Itroductio to Iheritace Copyright 2015 Pearso Educatio,

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

CS : Programming for Non-Majors, Summer 2007 Programming Project #3: Two Little Calculations Due by 12:00pm (noon) Wednesday June

CS : Programming for Non-Majors, Summer 2007 Programming Project #3: Two Little Calculations Due by 12:00pm (noon) Wednesday June CS 1313 010: Programmig for No-Majors, Summer 2007 Programmig Project #3: Two Little Calculatios Due by 12:00pm (oo) Wedesday Jue 27 2007 This third assigmet will give you experiece writig programs that

More information

CS211 Fall 2003 Prelim 2 Solutions and Grading Guide

CS211 Fall 2003 Prelim 2 Solutions and Grading Guide CS11 Fall 003 Prelim Solutios ad Gradig Guide Problem 1: (a) obj = obj1; ILLEGAL because type of referece must always be a supertype of type of object (b) obj3 = obj1; ILLEGAL because type of referece

More information

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS APPLICATION NOTE PACE175AE BUILT-IN UNCTIONS About This Note This applicatio brief is iteded to explai ad demostrate the use of the special fuctios that are built ito the PACE175AE processor. These powerful

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

COP4020 Programming Languages. Subroutines and Parameter Passing Prof. Robert van Engelen

COP4020 Programming Languages. Subroutines and Parameter Passing Prof. Robert van Engelen COP4020 Programmig Laguages Subrouties ad Parameter Passig Prof. Robert va Egele Overview Parameter passig modes Subroutie closures as parameters Special-purpose parameters Fuctio returs COP4020 Fall 2016

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Lecture 9: Exam I Review

Lecture 9: Exam I Review CS 111 (Law): Program Desig I Lecture 9: Exam I Review Robert H. Sloa & Richard Warer Uiversity of Illiois, Chicago September 22, 2016 This Class Discuss midterm topics Go over practice examples Aswer

More information

Exceptions. Your computer takes exception. The Exception Class. Causes of Exceptions

Exceptions. Your computer takes exception. The Exception Class. Causes of Exceptions Your computer takes exceptio s s are errors i the logic of a program (ru-time errors). Examples: i thread mai java.io.filenotfoud: studet.txt (The system caot fid the file specified.) i thread mai java.lag.nullpoiter:

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

CS 111: Program Design I Lecture 16: Module Review, Encodings, Lists

CS 111: Program Design I Lecture 16: Module Review, Encodings, Lists CS 111: Program Desig I Lecture 16: Module Review, Ecodigs, Lists Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 18, 2016 Last time Dot otatio ad methods Padas: user maual poit

More information

Classes and Objects. Again: Distance between points within the first quadrant. José Valente de Oliveira 4-1

Classes and Objects. Again: Distance between points within the first quadrant. José Valente de Oliveira 4-1 Classes ad Objects jvo@ualg.pt José Valete de Oliveira 4-1 Agai: Distace betwee poits withi the first quadrat Sample iput Sample output 1 1 3 4 2 jvo@ualg.pt José Valete de Oliveira 4-2 1 The simplest

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

Exercise 6 (Week 42) For the foreign students only.

Exercise 6 (Week 42) For the foreign students only. These are the last exercises of the course. Please, remember that to pass exercises, the sum of the poits gathered by solvig the questios ad attedig the exercise groups must be at least 4% ( poits) of

More information

Chapter 6. I/O Streams as an Introduction to Objects and Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 6. I/O Streams as an Introduction to Objects and Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 6 I/O Streams as a Itroductio to Objects ad Classes Overview 6.1 Streams ad Basic File I/O 6.2 Tools for Stream I/O 6.3 Character I/O Slide 6-3 6.1 Streams ad Basic File I/O I/O Streams I/O refers

More information

Chapter 2. C++ Basics. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 2. C++ Basics. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 2 C++ Basics Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 2.1 Variables ad Assigmets 2.2 Iput ad Output 2.3 Data Types ad Expressios 2.4 Simple Flow of Cotrol 2.5 Program

More information

Behavioral Modeling in Verilog

Behavioral Modeling in Verilog Behavioral Modelig i Verilog COE 202 Digital Logic Desig Dr. Muhamed Mudawar Kig Fahd Uiversity of Petroleum ad Mierals Presetatio Outlie Itroductio to Dataflow ad Behavioral Modelig Verilog Operators

More information

Linked Lists 11/16/18. Preliminaries. Java References. Objects and references. Self references. Linking self-referential nodes

Linked Lists 11/16/18. Preliminaries. Java References. Objects and references. Self references. Linking self-referential nodes Prelimiaries Liked Lists public class StrageObject { Strig ame; StrageObject other; Arrays are ot always the optimal data structure: A array has fixed size eeds to be copied to expad its capacity Addig

More information

Data Structures Week #5. Trees (Ağaçlar)

Data Structures Week #5. Trees (Ağaçlar) Data Structures Week #5 Trees Ağaçlar) Trees Ağaçlar) Toros Gökarı Avrupa Gökarı October 28, 2014 Boraha Tümer, Ph.D. 2 Trees Ağaçlar) October 28, 2014 Boraha Tümer, Ph.D. 3 Outlie Trees Deiitios Implemetatio

More information

3. b. Present a combinatorial argument that for all positive integers n : : 2 n

3. b. Present a combinatorial argument that for all positive integers n : : 2 n . b. Preset a combiatorial argumet that for all positive itegers : : Cosider two distict sets A ad B each of size. Sice they are distict, the cardiality of A B is. The umber of ways of choosig a pair of

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

WORKED EXAMPLE 7.1. Producing a Mass Mailing. We want to automate the process of producing mass mailings. A typical letter might look as follows:

WORKED EXAMPLE 7.1. Producing a Mass Mailing. We want to automate the process of producing mass mailings. A typical letter might look as follows: Worked Example 7.1 Producig a Mass Mailig 1 WORKED EXAMPLE 7.1 Producig a Mass Mailig We wat to automate the process of producig mass mailigs. A typical letter might look as follows: To: Ms. Sally Smith

More information

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 201 Heaps 201 Goodrich ad Tamassia xkcd. http://xkcd.com/83/. Tree. Used with permissio uder

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

Data Structures Week #9. Sorting

Data Structures Week #9. Sorting Data Structures Week #9 Sortig Outlie Motivatio Types of Sortig Elemetary (O( 2 )) Sortig Techiques Other (O(*log())) Sortig Techiques 21.Aralık.2010 Boraha Tümer, Ph.D. 2 Sortig 21.Aralık.2010 Boraha

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

End Semester Examination CSE, III Yr. (I Sem), 30002: Computer Organization

End Semester Examination CSE, III Yr. (I Sem), 30002: Computer Organization Ed Semester Examiatio 2013-14 CSE, III Yr. (I Sem), 30002: Computer Orgaizatio Istructios: GROUP -A 1. Write the questio paper group (A, B, C, D), o frot page top of aswer book, as per what is metioed

More information

ENGR 132. Fall Exam 1

ENGR 132. Fall Exam 1 ENGR 3 Fall 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work. Keep your work covered at all times.. Each studet is resposible for followig directios. Read carefully.. MATLAB ad Excel

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

CS 111: Program Design I Lecture # 7: Web Crawler, Functions; Open Access

CS 111: Program Design I Lecture # 7: Web Crawler, Functions; Open Access CS 111: Program Desig I Lecture # 7: Web Crawler, Fuctios; Ope Access Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 13, 2016 Lab Hit/Remider word = "hi" word.upper() à "HI" Questio

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

EE University of Minnesota. Midterm Exam #1. Prof. Matthew O'Keefe TA: Eric Seppanen. Department of Electrical and Computer Engineering

EE University of Minnesota. Midterm Exam #1. Prof. Matthew O'Keefe TA: Eric Seppanen. Department of Electrical and Computer Engineering EE 4363 1 Uiversity of Miesota Midterm Exam #1 Prof. Matthew O'Keefe TA: Eric Seppae Departmet of Electrical ad Computer Egieerig Uiversity of Miesota Twi Cities Campus EE 4363 Itroductio to Microprocessors

More information

Array Applications. Sorting. Want to put the contents of an array in order. Selection Sort Bubble Sort Insertion Sort. Quicksort Quickersort

Array Applications. Sorting. Want to put the contents of an array in order. Selection Sort Bubble Sort Insertion Sort. Quicksort Quickersort Sortig Wat to put the cotets of a arra i order Selectio Sort Bubble Sort Isertio Sort Quicksort Quickersort 2 tj Bubble Sort - coceptual Sort a arra of umbers ito ascedig or descedig order Split the list

More information

A Generalized Set Theoretic Approach for Time and Space Complexity Analysis of Algorithms and Functions

A Generalized Set Theoretic Approach for Time and Space Complexity Analysis of Algorithms and Functions Proceedigs of the 10th WSEAS Iteratioal Coferece o APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3, 2006 316 A Geeralized Set Theoretic Approach for Time ad Space Complexity Aalysis of Algorithms

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Package RcppRoll. December 22, 2014

Package RcppRoll. December 22, 2014 Type Package Package RcppRoll December 22, 2014 Title Fast rollig fuctios through Rcpp ad RcppArmadillo Versio 0.1.0 Date 2013-01-10 Author Kevi Ushey Maitaier Kevi Ushey RcppRoll

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

NTH, GEOMETRIC, AND TELESCOPING TEST

NTH, GEOMETRIC, AND TELESCOPING TEST NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 viet.dag@humbleisd.et /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test SUMMARY OF TESTS FOR SERIES Lookig at the first few

More information

CSE 111 Bio: Program Design I Class 11: loops

CSE 111 Bio: Program Design I Class 11: loops SE 111 Bio: Program Desig I lass 11: loops Radall Muroe, xkcd.com/1411/ Robert H. Sloa (S) & Rachel Poretsky (Bio) Uiversity of Illiois, hicago October 2, 2016 Pytho ets Loopy! he Pytho, Busch ardes Florida

More information

Chapter 4 The Datapath

Chapter 4 The Datapath The Ageda Chapter 4 The Datapath Based o slides McGraw-Hill Additioal material 24/25/26 Lewis/Marti Additioal material 28 Roth Additioal material 2 Taylor Additioal material 2 Farmer Tae the elemets that

More information

ENGR Spring Exam 1

ENGR Spring Exam 1 ENGR 300 Sprig 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB ad

More information

It just came to me that I 8.2 GRAPHS AND CONVERGENCE

It just came to me that I 8.2 GRAPHS AND CONVERGENCE 44 Chapter 8 Discrete Mathematics: Fuctios o the Set of Natural Numbers (a) Take several odd, positive itegers for a ad write out eough terms of the 3N sequece to reach a repeatig loop (b) Show that ot

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016 CS 111: Program Desig I Lecture 15: Objects, Padas, Modules Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 13, 2016 OBJECTS AND DOT NOTATION Objects (Implicit i Chapter 2, Variables,

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup Chapter 18 Vectors ad Arrays Bjare Stroustrup Vector revisited How are they implemeted? Poiters ad free store Destructors Iitializatio Copy ad move Arrays Array ad poiter problems Chagig size Templates

More information

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1 CS200: Hash Tables Prichard Ch. 13.2 CS200 - Hash Tables 1 Table Implemetatios: average cases Search Add Remove Sorted array-based Usorted array-based Balaced Search Trees O(log ) O() O() O() O(1) O()

More information

ENGR 132. Fall Exam 1 SOLUTIONS

ENGR 132. Fall Exam 1 SOLUTIONS ENGR 3 Fall 03 Exam SOLUTIONS INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB

More information