D-BAUG Informatik I. Exercise session: week 5 HS 2018

Size: px
Start display at page:

Download "D-BAUG Informatik I. Exercise session: week 5 HS 2018"

Transcription

1 1 D-BAUG Informatik I Exercise session: week 5 HS 2018

2 Homework 2 Questions?

3 Matrix and Vector in Java 3 Vector v of length n:

4 Matrix and Vector in Java 3 Vector v of length n: double[] v = new double[n]; Matrix M with n rows and m columns:

5 Matrix and Vector in Java 3 Vector v of length n: double[] v = new double[n]; Matrix M with n rows and m columns: double M[][] = new double[n][m]; (a vector of length n of vectors of length m)

6 Task 4 Write a program that reads an n m matrix of integers from the input. The input is top to bottom, left to right: elements of the first column, followed by elements of the second column, etc. Print the matrix in the typical orientation (a row on the matrix on each row of the output). 1 Allocate an n m matrix.

7 4 Task Write a program that reads an n m matrix of integers from the input. The input is top to bottom, left to right: elements of the first column, followed by elements of the second column, etc. Print the matrix in the typical orientation (a row on the matrix on each row of the output). 1 Allocate an n m matrix. 2 For each column j (m in total), row i (n in total), read an integer from input and store it in the matrix.

8 4 Task Write a program that reads an n m matrix of integers from the input. The input is top to bottom, left to right: elements of the first column, followed by elements of the second column, etc. Print the matrix in the typical orientation (a row on the matrix on each row of the output). 1 Allocate an n m matrix. 2 For each column j (m in total), row i (n in total), read an integer from input and store it in the matrix. 3 For each row i (n in total), column j (m in total), print M[i][j]. Print a new line at the end of each row.

9 Matrix-Matrix-Multiplication 5 Let an n m matrix A and an m p matrix B be given A 11 A 12 A 1m B 11 B 12 B 1p A = A 21 A 22 A 2m B = B 21 B 22 B 2p A n1 A n2 A nm B m1 B m2 B mp

10 Matrix-Matrix-Multiplication 6 The matrix product of n m matrix A and m p matrix B is a new n p matrix C C 11 C 12 C 1p A B = B =: C 21 C 22 C 2p C n1 C n2 C np

11 Matrix-Matrix-Multiplication 7 m m B n A p C = A B

12 Matrix-Matrix-Multiplication 8 m C ij = A ik B kj 1 i p, 1 j n k=1

13 Task 9 Write a program that you can use to multiply two matrices. 1 First think about the input: what kind of format do you use for input?

14 9 Task Write a program that you can use to multiply two matrices. 1 First think about the input: what kind of format do you use for input? 2 Now think about the output: what kind of format do you use for output?

15 9 Task Write a program that you can use to multiply two matrices. 1 First think about the input: what kind of format do you use for input? 2 Now think about the output: what kind of format do you use for output? 3 Write funtions for In- and Output and test them. Always test small parts. What do you write first: input or output function?

16 9 Task Write a program that you can use to multiply two matrices. 1 First think about the input: what kind of format do you use for input? 2 Now think about the output: what kind of format do you use for output? 3 Write funtions for In- and Output and test them. Always test small parts. What do you write first: input or output function? 4 Write the core function for matrix multiplication.

17 9 Task Write a program that you can use to multiply two matrices. 1 First think about the input: what kind of format do you use for input? 2 Now think about the output: what kind of format do you use for output? 3 Write funtions for In- and Output and test them. Always test small parts. What do you write first: input or output function? 4 Write the core function for matrix multiplication. 5 Test your function with some test cases. How do you choose the cases?

18 Challenge 10 Now use your working function in our setup for image transformation: consider the Main method and add your matrix-matrix- multiplication function accordingly.

Lab #10 Multi-dimensional Arrays

Lab #10 Multi-dimensional Arrays Multi-dimensional Arrays Sheet s Owner Student ID Name Signature Group partner 1. Two-Dimensional Arrays Arrays that we have seen and used so far are one dimensional arrays, where each element is indexed

More information

Partha Sarathi Manal

Partha Sarathi Manal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 29 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Manal psm@iitg.ernet.in Dept.

More information

Matlab- Command Window Operations, Scalars and Arrays

Matlab- Command Window Operations, Scalars and Arrays 1 ME313 Homework #1 Matlab- Command Window Operations, Scalars and Arrays Last Updated August 17 2012. Assignment: Read and complete the suggested commands. After completing the exercise, copy the contents

More information

Introduction to Parallel Programming Message Passing Interface Practical Session Part I

Introduction to Parallel Programming Message Passing Interface Practical Session Part I Introduction to Parallel Programming Message Passing Interface Practical Session Part I T. Streit, H.-J. Pflug streit@rz.rwth-aachen.de October 28, 2008 1 1. Examples We provide codes of the theoretical

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

More information

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer:

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: Understand the relationships between statements that are equivalent to the invertibility of a square matrix (Theorem 1.5.3). Use the inversion algorithm to find the inverse of an invertible matrix. Express

More information

Parallelizing The Matrix Multiplication. 6/10/2013 LONI Parallel Programming Workshop

Parallelizing The Matrix Multiplication. 6/10/2013 LONI Parallel Programming Workshop Parallelizing The Matrix Multiplication 6/10/2013 LONI Parallel Programming Workshop 2013 1 Serial version 6/10/2013 LONI Parallel Programming Workshop 2013 2 X = A md x B dn = C mn d c i,j = a i,k b k,j

More information

Attendance (2) Performance (3) Oral (5) Total (10) Dated Sign of Subject Teacher

Attendance (2) Performance (3) Oral (5) Total (10) Dated Sign of Subject Teacher Attendance (2) Performance (3) Oral (5) Total (10) Dated Sign of Subject Teacher Date of Performance:... Actual Date of Completion:... Expected Date of Completion:... ----------------------------------------------------------------------------------------------------------------

More information

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur Lecture 5: Matrices Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur 29 th July, 2008 Types of Matrices Matrix Addition and Multiplication

More information

Parallel Algorithms CSE /22/2015. Outline of this lecture: 1 Implementation of cilk for. 2. Parallel Matrix Multiplication

Parallel Algorithms CSE /22/2015. Outline of this lecture: 1 Implementation of cilk for. 2. Parallel Matrix Multiplication CSE 539 01/22/2015 Parallel Algorithms Lecture 3 Scribe: Angelina Lee Outline of this lecture: 1. Implementation of cilk for 2. Parallel Matrix Multiplication 1 Implementation of cilk for We mentioned

More information

Agenda. Arrays 01/12/2009 INTRODUCTION TO VBA PROGRAMMING. Arrays Matrices.

Agenda. Arrays 01/12/2009 INTRODUCTION TO VBA PROGRAMMING. Arrays Matrices. INTRODUCTION TO VBA PROGRAMMING LESSON6 dario.bonino@polito.it Agenda Matrices 1 Allow to store vectorial data Geometric vectors Sets of data having something in common... Declared as Dim array_name (begin

More information

Dynamic Programming II

Dynamic Programming II June 9, 214 DP: Longest common subsequence biologists often need to find out how similar are 2 DNA sequences DNA sequences are strings of bases: A, C, T and G how to define similarity? DP: Longest common

More information

Lecture 57 Dynamic Programming. (Refer Slide Time: 00:31)

Lecture 57 Dynamic Programming. (Refer Slide Time: 00:31) Programming, Data Structures and Algorithms Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institution Technology, Madras Lecture 57 Dynamic Programming (Refer Slide Time:

More information

Lecture 13: Chain Matrix Multiplication

Lecture 13: Chain Matrix Multiplication Lecture 3: Chain Matrix Multiplication CLRS Section 5.2 Revised April 7, 2003 Outline of this Lecture Recalling matrix multiplication. The chain matrix multiplication problem. A dynamic programming algorithm

More information

Student Outcomes. Classwork. Opening Exercise (3 minutes) Example 1 (8 minutes)

Student Outcomes. Classwork. Opening Exercise (3 minutes) Example 1 (8 minutes) Student Outcomes Students model and write equivalent expressions using the distributive property. They move from a factored form to an expanded form of an expression. Classwork Opening Exercise (3 minutes)

More information

12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares

12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares 12 Dynamic Programming (2) Matrix-chain Multiplication Segmented Least Squares Optimal substructure Dynamic programming is typically applied to optimization problems. An optimal solution to the original

More information

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620 Affine and 3D Transformations Professor: Kavita Bala 1 Announcements Updated schedule on course web page 2 Prelim days finalized and posted Oct 11, Nov 29 No final exam, final project will

More information

14 Dynamic. Matrix-chain multiplication. P.D. Dr. Alexander Souza. Winter term 11/12

14 Dynamic. Matrix-chain multiplication. P.D. Dr. Alexander Souza. Winter term 11/12 Algorithms Theory 14 Dynamic Programming (2) Matrix-chain multiplication P.D. Dr. Alexander Souza Optimal substructure Dynamic programming is typically applied to optimization problems. An optimal solution

More information

Self-study session 1, Discrete mathematics

Self-study session 1, Discrete mathematics Self-study session 1, Discrete mathematics First year mathematics for the technology and science programmes Aalborg University In this self-study session we are working with time complexity. Space complexity

More information

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as EXTENSION Using Matrix Row Operations to Solve Systems The elimination method used to solve systems introduced in the previous section can be streamlined into a systematic method by using matrices (singular:

More information

Modified Distribution Method

Modified Distribution Method istributors C 8 Step : Make an initial allocation with the North-West corner rule. KPP istributors C 8 V j Step : Make an initial allocation with the North-West corner rule. Step : Introduce the variables,

More information

CS 177. Lists and Matrices. Week 8

CS 177. Lists and Matrices. Week 8 CS 177 Lists and Matrices Week 8 1 Announcements Project 2 due on 7 th March, 2015 at 11.59 pm Table of Contents Lists Matrices Traversing a Matrix Construction of Matrices 3 Just a list of numbers 1D

More information

Solve the matrix equation AX B for X by using A.(1-3) Use the Inverse Matrix Calculator Link to check your work

Solve the matrix equation AX B for X by using A.(1-3) Use the Inverse Matrix Calculator Link to check your work Name: Math 1324 Activity 9(4.6)(Due by Oct. 20) Dear Instructor or Tutor, These problems are designed to let my students show me what they have learned and what they are capable of doing on their own.

More information

CE 601: Numerical Methods Lecture 5. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 5. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 601: Numerical Methods Lecture 5 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Elimination Methods For a system [A]{x} = {b} where [A]

More information

Dynamic Programming part 2

Dynamic Programming part 2 Dynamic Programming part 2 Week 7 Objectives More dynamic programming examples - Matrix Multiplication Parenthesis - Longest Common Subsequence Subproblem Optimal structure Defining the dynamic recurrence

More information

MATLAB for Experimental Research. Fall 2018 Vectors, Matrices, Matrix Operations

MATLAB for Experimental Research. Fall 2018 Vectors, Matrices, Matrix Operations MATLAB for Experimental Research Fall 2018 Vectors, Matrices, Matrix Operations Matlab is more than a calculator! The array is a fundamental form that MATLAB uses to store and manipulate data. An array

More information

Performance Optimization Tutorial. Labs

Performance Optimization Tutorial. Labs Performance Optimization Tutorial Labs Exercise 1 These exercises are intended to provide you with a general feeling about some of the issues involved in writing high performance code, both on a single

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Section 26: Associativity and Order of Operations

Section 26: Associativity and Order of Operations Section 26: Associativity and Order of Operations One of the most important properties of the matrix operations is called associativity To understand what this property is we need to discuss something

More information

FOR LOOP. for <indexmin:indexstep:indexmax> {statements} end

FOR LOOP. for <indexmin:indexstep:indexmax> {statements} end FOR LOOP for {statements} Exercise: Define a vector z R 10 (= R 10 1 ) s.t. z j = 2 j for j = 1,...,10. Solution. Create a new script wiht the following instructions: for

More information

Matrix Transformations The position of the corners of this triangle are described by the vectors: 0 1 ] 0 1 ] Transformation:

Matrix Transformations The position of the corners of this triangle are described by the vectors: 0 1 ] 0 1 ] Transformation: Matrix Transformations The position of the corners of this triangle are described by the vectors: [ 2 1 ] & [4 1 ] & [3 3 ] Use each of the matrices below to transform these corners. In each case, draw

More information

Lecture 8. Dynamic Programming

Lecture 8. Dynamic Programming Lecture 8. Dynamic Programming T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018

More information

CS 33. Caches. CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Caches. CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Caches CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Cache Performance Metrics Miss rate fraction of memory references not found in cache (misses

More information

CSC-140 Assignment 5

CSC-140 Assignment 5 CSC-140 Assignment 5 Please do not Google a solution to these problems, cause that won t teach you anything about programming - the only way to get good at it, and understand it, is to do it! 1 Introduction

More information

n = 1 What problems are interesting when n is just 1?

n = 1 What problems are interesting when n is just 1? What if n=1??? n = 1 What problems are interesting when n is just 1? Sorting? No Median finding? No Addition? How long does it take to add one pair of numbers? Multiplication? How long does it take to

More information

Homework3: Dynamic Programming - Answers

Homework3: Dynamic Programming - Answers Most Exercises are from your textbook: Homework3: Dynamic Programming - Answers 1. For the Rod Cutting problem (covered in lecture) modify the given top-down memoized algorithm (includes two procedures)

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication Nur Dean PhD Program in Computer Science The Graduate Center, CUNY 05/01/2017 Nur Dean (The Graduate Center) Matrix Multiplication 05/01/2017 1 / 36 Today, I will talk about matrix

More information

So far... Finished looking at lower bounds and linear sorts.

So far... Finished looking at lower bounds and linear sorts. So far... Finished looking at lower bounds and linear sorts. Next: Memoization -- Optimization problems - Dynamic programming A scheduling problem Matrix multiplication optimization Longest Common Subsequence

More information

Lecture 7: Divide & Conquer 2. Integer Multiplication. & Matrix Multiplication. CS 341: Algorithms. Tuesday, Jan 29 th 2019

Lecture 7: Divide & Conquer 2. Integer Multiplication. & Matrix Multiplication. CS 341: Algorithms. Tuesday, Jan 29 th 2019 Lecture 7: Divide & Conquer 2 Integer Multiplication & Matrix Multiplication CS 341: Algorithms Tuesday, Jan 29 th 2019 1 Outline For Today 1. Integer Multiplication 2. Matrix Multiplication 2 Outline

More information

Lecture 4: Principles of Parallel Algorithm Design (part 4)

Lecture 4: Principles of Parallel Algorithm Design (part 4) Lecture 4: Principles of Parallel Algorithm Design (part 4) 1 Mapping Technique for Load Balancing Minimize execution time Reduce overheads of execution Sources of overheads: Inter-process interaction

More information

Lesson 6.8. Activity Materials square tiles

Lesson 6.8. Activity Materials square tiles Name Write Related Facts Essential Question How can you write a set of related multiplication and division facts? Unlock the Problem ALGEBRA Lesson 6.8 Operations and Algebraic Thinking 3.OA.C.7 Also 3.OA.A.2,

More information

Chain Matrix Multiplication

Chain Matrix Multiplication Chain Matrix Multiplication Version of November 5, 2014 Version of November 5, 2014 Chain Matrix Multiplication 1 / 27 Outline Outline Review of matrix multiplication. The chain matrix multiplication problem.

More information

GRADE 7 MATH LEARNING GUIDE

GRADE 7 MATH LEARNING GUIDE GRADE 7 MATH Lesson 9: Properties of the Operations on Rational Numbers Time:.5 hours Pre-requisite Concepts: Operations on rational numbers About the Lesson: The purpose of this lesson is to use properties

More information

INTRODUCTION TO FORTRAN PART II

INTRODUCTION TO FORTRAN PART II INTRODUCTION TO FORTRAN PART II Prasenjit Ghosh An example: The Fibonacci Sequence The Fibonacci sequence consists of an infinite set of integer nos. which satisfy the following recurrence relation x n

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

Exercise 4: Loops, Arrays and Files

Exercise 4: Loops, Arrays and Files Exercise 4: Loops, Arrays and Files worth 24% of the final mark November 4, 2004 Instructions Submit your programs in a floppy disk. Deliver the disk to Michele Zito at the 12noon lecture on Tuesday November

More information

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM

UML CS Algorithms Qualifying Exam Fall, 2003 ALGORITHMS QUALIFYING EXAM NAME: This exam is open: - books - notes and closed: - neighbors - calculators ALGORITHMS QUALIFYING EXAM The upper bound on exam time is 3 hours. Please put all your work on the exam paper. (Partial credit

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

COSC2430: Programming and Data Structures Sparse Matrix Multiplication: Search and Sorting Algorithms

COSC2430: Programming and Data Structures Sparse Matrix Multiplication: Search and Sorting Algorithms COSC2430: Programming and Data Structures Sparse Matrix Multiplication: Search and Sorting Algorithms 1 Introduction You will create a C++ program to multiply two sparse matrices as efficiently as possible

More information

Lesson 13: Exploring Factored Form

Lesson 13: Exploring Factored Form Opening Activity Below is a graph of the equation y = 6(x 3)(x + 2). It is also the graph of: y = 3(2x 6)(x + 2) y = 2(3x 9)(x + 2) y = 2(x 3)(3x + 6) y = 3(x 3)(2x + 4) y = (3x 9)(2x + 4) y = (2x 6)(3x

More information

DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2017)

DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2017) DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2017) Veli Mäkinen Design and Analysis of Algorithms 2017 week 4 11.8.2017 1 Dynamic Programming Week 4 2 Design and Analysis of Algorithms 2017 week 4 11.8.2017

More information

Lesson 20: Every Line is a Graph of a Linear Equation

Lesson 20: Every Line is a Graph of a Linear Equation Student Outcomes Students know that any non vertical line is the graph of a linear equation in the form of, where is a constant. Students write the equation that represents the graph of a line. Lesson

More information

Programming Problem for the 1999 Comprehensive Exam

Programming Problem for the 1999 Comprehensive Exam Programming Problem for the 1999 Comprehensive Exam Out: Monday 1/25/99 at 9:00 am Due: Friday 1/29/99 at 5:00 pm Department of Computer Science Brown University Providence, RI 02912 1.0 The Task This

More information

LAB 2: Linear Equations and Matrix Algebra. Preliminaries

LAB 2: Linear Equations and Matrix Algebra. Preliminaries Math 250C, Section C2 Hard copy submission Matlab # 2 1 Revised 07/13/2016 LAB 2: Linear Equations and Matrix Algebra In this lab you will use Matlab to study the following topics: Solving a system of

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

7 Control Structures, Logical Statements

7 Control Structures, Logical Statements 7 Control Structures, Logical Statements 7.1 Logical Statements 1. Logical (true or false) statements comparing scalars or matrices can be evaluated in MATLAB. Two matrices of the same size may be compared,

More information

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has.

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has. ASSIGNMENT 0 Introduction to Linear Algebra (Basics of vectors and matrices) Due 3:30 PM, Tuesday, October 10 th. Assignments should be submitted via e-mail to: matlabfun.ucsd@gmail.com You can also submit

More information

COSC2430: Programming and Data Structures Sparse Matrix Addition 2 2: Non-recursive and recursive; arrays and linked lists

COSC2430: Programming and Data Structures Sparse Matrix Addition 2 2: Non-recursive and recursive; arrays and linked lists COSC2430: Programming and Data Structures Sparse Matrix Addition 2 2: Non-recursive and recursive; arrays and linked lists 1 Introduction You will create a C++ program to add two sparse matrices. Sparse

More information

Computer Programming: C++

Computer Programming: C++ The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Fall 2017 ECOM 2003 Muath i.alnabris Computer Programming: C++ Experiment #7 Arrays Part II Passing Array to a Function

More information

YEAR 11 GENERAL MATHEMATICS 2015 MATRICES TEST

YEAR 11 GENERAL MATHEMATICS 2015 MATRICES TEST YEAR 11 GENERAL MATHEMATICS 2015 MATRICES TEST Name: Skills /41 Analysis /19 TOTAL: /60 60 mins SECTION A: Multiple Choice (10 x 1 marks = 10 marks) Questions 1-6 are to be answered using the following

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication Material based on Chapter 10, Numerical Algorithms, of B. Wilkinson et al., PARALLEL PROGRAMMING. Techniques and Applications Using Networked Workstations and Parallel Computers c

More information

Matrix Multiplication. (Dynamic Programming)

Matrix Multiplication. (Dynamic Programming) Matrix Multiplication (Dynamic Programming) Matrix Multiplication: Review Suppose that A 1 is of size S 1 x S 2, and A 2 is of size S 2 x S 3. What is the time complexity of computing A 1 * A 2? What is

More information

Tribhuvan University Institute of Science and Technology 2065

Tribhuvan University Institute of Science and Technology 2065 1CSc.102-2065 2065 Candidates are required to give their answers in their own words as for as practicable. 1. Draw the flow chart for finding largest of three numbers and write an algorithm and explain

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2018 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Vectors and Matrices. Chapter 2. Linguaggio Programmazione Matlab-Simulink (2017/2018)

Vectors and Matrices. Chapter 2. Linguaggio Programmazione Matlab-Simulink (2017/2018) Vectors and Matrices Chapter 2 Linguaggio Programmazione Matlab-Simulink (2017/2018) Matrices A matrix is used to store a set of values of the same type; every value is stored in an element MATLAB stands

More information

Computer Project #2 (Matrix Operations)

Computer Project #2 (Matrix Operations) Math 0280 Introduction to Matrices and Linear Algebra Fall 2006 Computer Project #2 (Matrix Operations) SCHEDULE: This assignment is due in class on Monday, October 23, 2006. One submission per group is

More information

Maximum Contiguous Subsequence Sum. Check out from SVN: MCSSRaces

Maximum Contiguous Subsequence Sum. Check out from SVN: MCSSRaces Q0 Maximum Contiguous Subsequence Sum Check out from SVN: MCSSRaces Good comments: Javadoc comments for public fields and methods. Explanations of anything else that is not obvious. Good variable and method

More information

Parallel Computing: Parallel Algorithm Design Examples Jin, Hai

Parallel Computing: Parallel Algorithm Design Examples Jin, Hai Parallel Computing: Parallel Algorithm Design Examples Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology ! Given associative operator!! a 0! a 1! a 2!! a

More information

Declaring and ini,alizing 2D arrays

Declaring and ini,alizing 2D arrays Declaring and ini,alizing 2D arrays 4 2D Arrays (Savitch, Chapter 7.5) TOPICS Multidimensional Arrays 2D Array Allocation 2D Array Initialization TicTacToe Game // se2ng up a 2D array final int M=3, N=4;

More information

General Instructions. You can use QtSpim simulator to work on these assignments.

General Instructions. You can use QtSpim simulator to work on these assignments. General Instructions You can use QtSpim simulator to work on these assignments. Only one member of each group has to submit the assignment. Please Make sure that there is no duplicate submission from your

More information

1 Lab 2: C Programming II

1 Lab 2: C Programming II 1 Lab 2: C Programming II This laboratory requires the following equipment: C compiler Matlab The laboratory duration is approximately 3 hours. Although this laboratory is not graded, we encourage you

More information

Cache memories are small, fast SRAM based memories managed automatically in hardware.

Cache memories are small, fast SRAM based memories managed automatically in hardware. Cache Memories Cache memories are small, fast SRAM based memories managed automatically in hardware. Hold frequently accessed blocks of main memory CPU looks first for data in caches (e.g., L1, L2, and

More information

Blocks, Grids, and Shared Memory

Blocks, Grids, and Shared Memory Blocks, Grids, and Shared Memory GPU Course, Fall 2012 Last week: ax+b Homework Threads, Blocks, Grids CUDA threads are organized into blocks Threads operate in SIMD(ish) manner -- each executing same

More information

Homework # 2 Due: October 6. Programming Multiprocessors: Parallelism, Communication, and Synchronization

Homework # 2 Due: October 6. Programming Multiprocessors: Parallelism, Communication, and Synchronization ECE669: Parallel Computer Architecture Fall 2 Handout #2 Homework # 2 Due: October 6 Programming Multiprocessors: Parallelism, Communication, and Synchronization 1 Introduction When developing multiprocessor

More information

Spare Matrix Formats, and The Standard Template Library

Spare Matrix Formats, and The Standard Template Library Annotated slides CS319: Scientific Computing (with C++) Spare Matrix Formats, and The Standard Template Library Week 10: 9am and 4pm, 20 March 2019 1 Sparse Matrices 2 3 Compressed Column Storage 4 (Not)

More information

Lectures 12 and 13 Dynamic programming: weighted interval scheduling

Lectures 12 and 13 Dynamic programming: weighted interval scheduling Lectures 12 and 13 Dynamic programming: weighted interval scheduling COMP 523: Advanced Algorithmic Techniques Lecturer: Dariusz Kowalski Lectures 12-13: Dynamic Programming 1 Overview Last week: Graph

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

Graph Theory: Starting Out

Graph Theory: Starting Out Graph Theory: Starting Out Administrivia To read: Chapter 7, Sections 1-3 (Ensley/Crawley) Problem Set 5 sent out; due Monday 12/8 in class. There will be two review days next week (Wednesday and Friday)

More information

Optimization Problems. Optimization Problems

Optimization Problems. Optimization Problems Optimization Problems Optimization Problems We have been looking at problems such as selection and sorting. These problems don t really involve the notion of making a choice, or more specifically, the

More information

1 class Lecture5 { 2 3 "Arrays" 4. Zheng-Liang Lu Java Programming 136 / 174

1 class Lecture5 { 2 3 Arrays 4. Zheng-Liang Lu Java Programming 136 / 174 1 class Lecture5 { 2 3 "Arrays" 4 5 } Zheng-Liang Lu Java Programming 136 / 174 Arrays An array stores a large collection of data which is of the same type. 2 // assume the size variable exists above 3

More information

COSC 6385 Computer Architecture - Exercises

COSC 6385 Computer Architecture - Exercises COSC 6385 Computer Architecture - Exercises Edgar Gabriel Spring 2014 For the 1st Date: February 18 2014, 1.00pm-2.30pm Topics: discussed on the next pages You can have 3 sheets of handwritten notes you

More information

More Complicated Recursion CMPSC 122

More Complicated Recursion CMPSC 122 More Complicated Recursion CMPSC 122 Now that we've gotten a taste of recursion, we'll look at several more examples of recursion that are special in their own way. I. Example with More Involved Arithmetic

More information

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015

15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 15-451/651: Design & Analysis of Algorithms January 26, 2015 Dynamic Programming I last changed: January 28, 2015 Dynamic Programming is a powerful technique that allows one to solve many different types

More information

Mathematics 4330/5344 #1 Matlab and Numerical Approximation

Mathematics 4330/5344 #1 Matlab and Numerical Approximation David S. Gilliam Department of Mathematics Texas Tech University Lubbock, TX 79409 806 742-2566 gilliam@texas.math.ttu.edu http://texas.math.ttu.edu/~gilliam Mathematics 4330/5344 #1 Matlab and Numerical

More information

Slightly revised version of Scilab and Matrices by David Arnold, College of the Redwoods, August 17, 1998.

Slightly revised version of Scilab and Matrices by David Arnold, College of the Redwoods, August 17, 1998. Scilab and Matrices Slightly revised version of Scilab and Matrices by David Arnold, College of the Redwoods, August 7, 998. In this exercise you will learn how to enter and edit matrices in Scilab. You

More information

Submission instructions (read carefully): SS17 / Assignment 4 Instructor: Markus Püschel. ETH Zurich

Submission instructions (read carefully): SS17 / Assignment 4 Instructor: Markus Püschel. ETH Zurich 263-2300-00: How To Write Fast Numerical Code Assignment 4: 120 points Due Date: Th, April 13th, 17:00 http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-eth-spring17/course.html Questions: fastcode@lists.inf.ethz.ch

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

Lecture 6: Parallel Matrix Algorithms (part 3)

Lecture 6: Parallel Matrix Algorithms (part 3) Lecture 6: Parallel Matrix Algorithms (part 3) 1 A Simple Parallel Dense Matrix-Matrix Multiplication Let A = [a ij ] n n and B = [b ij ] n n be n n matrices. Compute C = AB Computational complexity of

More information

Communicators and Topologies: Matrix Multiplication Example

Communicators and Topologies: Matrix Multiplication Example Communicators and Topologies: Matrix Multiplication Example Ned Nedialkov McMaster University Canada CS/SE 4F03 March 2016 Outline Fox s algorithm Example Implementation outline c 2013 16 Ned Nedialkov

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Dynamic Programming Shabsi Walfish NYU - Fundamental Algorithms Summer 2006

Dynamic Programming Shabsi Walfish NYU - Fundamental Algorithms Summer 2006 Dynamic Programming What is Dynamic Programming? Technique for avoiding redundant work in recursive algorithms Works best with optimization problems that have a nice underlying structure Can often be used

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego CSE 22 Divide-and-conquer algorithms Fan Chung Graham UC San Diego Announcements Homework due today before the class. About homework, write your own homework, allowing oral discussion with one fixed partner.

More information

Learning objec-ves. Declaring and ini-alizing 2D arrays. Prin-ng 2D arrays. Using 2D arrays Decomposi-on of a solu-on into objects and methods

Learning objec-ves. Declaring and ini-alizing 2D arrays. Prin-ng 2D arrays. Using 2D arrays Decomposi-on of a solu-on into objects and methods Learning objec-ves 2D Arrays (Savitch, Chapter 7.5) TOPICS Using 2D arrays Decomposi-on of a solu-on into objects and methods Multidimensional Arrays 2D Array Allocation 2D Array Initialization TicTacToe

More information

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories Agenda Chapter 6 Cache Memories Cache memory organization and operation Performance impact of caches The memory mountain Rearranging loops to improve spatial locality Using blocking to improve temporal

More information

Object Oriented Programming 2013/14. Final Exam June 20, 2014

Object Oriented Programming 2013/14. Final Exam June 20, 2014 Object Oriented Programming 2013/14 Final Exam June 20, 2014 Directions (read carefully): CLEARLY print your name and ID on every page. The exam contains 8 pages divided into 4 parts. Make sure you have

More information

ECE 545 Fall 2013 Final Exam

ECE 545 Fall 2013 Final Exam ECE 545 Fall 2013 Final Exam Problem 1 Develop an ASM chart for the circuit EXAM from your Midterm Exam, described below using its A. pseudocode B. table of input/output ports C. block diagram D. interface

More information