Guillimin HPC Users Meeting January 13, 2017

Size: px
Start display at page:

Download "Guillimin HPC Users Meeting January 13, 2017"

Transcription

1 Guillimin HPC Users Meeting January 13, 2017 McGill University / Calcul Québec / Compute Canada Montréal, QC Canada

2 Please be kind to your fellow user meeting attendees Limit to two slices of pizza per person to start please And please recycle your pop cans. Thank you! 2

3 Outline Compute Canada News System Status Software Updates Training News Special Topic Multithreaded C++ Programming with TBB 3

4 Compute Canada News 2017 Resource Allocation Competitions Scientific reviews undergoing Announcement of Awards: Early March 2017 Implementation of Awards: Mid April 2017 Compute Canada MSI 2.0 ( ): 69M$ For operation (not for hardware) ial-government-funding-announced-some-canadas-lea ding-national-research 4

5 Storage and Infiniband Status GPFS file system more stable since early December: We are closely monitoring the status of all Infiniband links and modules Reseated and replaced faulty network cables and modules Infiniband Leaf Module Reset, Tuesday Jan 17, 9h00: this is a faulty part of the HB core switch affecting 18 (now offline) nodes; the reset should be safe Made system more resilient: no more local DNS lookups via ethernet, fixed scripts, so that failures are localized and do not spread to the whole system Guillimin core elements nearly 6 years old 5

6 Storage Status Space Management /gs is full: 95% used, 184 TB free (as of Jan. 12) For better space management we continue to migrate cold data from disk to tape Metadata remains on disk Users can still access their files through usual methods, but with an increased latency Storage space is a precious resource - manage it wisely! Delete temporary files, compress large files not frequently accessed, tar many smaller files into collections, 6

7 New Software Installations Please use module spider modulename for load instructions. tbb/ (Intel Threading Building Blocks) PETSc/3.7.3-Python (PDE solvers) SuperLU/5.1.1 (direct sparse matrix equation solver) FIAT/ Python (finite elements) sympy/0.7.6-python (symbolic computation) GROMACS/5.1.1-cuda hybrid (molecular dynamics, with GPU support) GROMACS/5.1.1-hybrid (same without GPU) 7

8 Training News All upcoming events: calculquebec.eventbrite.ca Jan. 26 (TBC): Introduction to ARC (McGill) Feb. 7 - Analyse et visualisation de données en Python (U. Laval) Recently completed: --- All materials from previous workshops are available online: wiki.calculquebec.ca/w/formations/en All user meeting presentations online at 8

9 User Feedback and Discussion Questions? Comments? We value your feedback. Contact us at: Guillimin Operational News for Users Status Pages (all CQ systems) Follow us on Twitter 9

10 Multithreaded C++ Programming with TBB January 13, 2017 McGill University / Calcul Québec / Compute Canada Montréal, QC Canada

11 Outline What is TBB? Why using TBB? Problems in Multithreading Design Patterns and TBB Parallel For Parallel Reduce Split and Join - Dynamic Scheduling TBB Examples Mandelbrot Set Approximation of pi 11

12 What is TBB? Intel Threading Building Blocks (TBB) Is a C++ library for scalable data-parallel programming Task-based programming: The user specifies the workload (tasks) TBB manages threads efficiently and spreads the workload among threads It provides class, function and data type templates Much like the C++ Standard Template Library (STL) Highly concurrent container classes for parallel access Solutions to common problems (design patterns for parallel programming) are implemented and optimized by TBB: Reusable algorithms for user-specific types of data 12

13 Why Using TBB? Benefits: C++ library working with any compiler on a x86 computer (Intel or AMD processors) Portable (Linux, Windows, OS X) We can focus on parallel tasks instead of managing low-level threads and splitting the workload Collection of optimized algorithms solving multiple problems in Multithreading (see next page) Specific actions are defined in classes instead of procedural code: allows object-oriented code How about OpenMP and POSIX threads? Because TBB does not resolve all problems, it can work with other threading packages 13

14 Problems in Multithreading Parallelizing Simple Loops Parallelizing Complex Loops While-loops, pipelines Parallelizing Data Flow and Dependence Graphs Exceptions and Cancellation for threads Containers for parallel computing Mutual Exclusion and Atomic Operations Benchmarking, measuring the performance Memory Allocation, avoiding false sharing Scheduling tasks to threads Other Design Patterns (see next page) 14

15 Design Patterns and TBB TBB documentation shows how to implement: Agglomeration: how to split the data area/volume Elementwise: independent computation on each item Odd-Even Communication: alternate between 2 partitions Wavefront: using results from previous iterations Reduction: associative reduction operation Divide and Conquer: subtasks, example: quicksort GUI Thread: waiting for results Non-Preemptive Priorities: choose next task Local Serializer: parallel threads of serial tasks Fenced Data Transfer: synchronization Lazy Initialization: initialize when needed Reference Counting: deleting an object no longer used Compare and Swap Loop: Atomic compare+swap 15

16 Parallel For Used for independent data and results: parallel_for(range, workerobject); The workerobject gets duplicated by TBB (by using the copy constructor) and is automatically assigned to a thread. Typically, for the workerobject: The constructor gets constant parameters for the loop The task is done by the class operator(): void Worker::operator()(range) const 16

17 Parallel For class Worker { private: int *buffer; public: Worker(int *buff) : buffer(buff) {} }; void operator()(const blocked_range<size_t>& r) const { for (size_t i = r.begin(); i < r.end(); i++) buffer[i] = i; } parallel_for( blocked_range<size_t>(0, N), Worker(some_buffer) ); 17

18 Parallel Reduce Used when reduction operations can be applied to two consecutive subtasks or subranges (associative op.): parallel_reduce(range, workerobject); The workerobject is split by TBB by using a special split constructor: Worker(Worker &w, split): buf(w.buf), sum(0) {} The work is still done in Worker::operator() A child workerobject joins back its parent with: void join(worker &child) { sum += child.sum; } The final result is in the initial workerobject: const double getsum() const { return sum; } 18

19 Split and Join - Dynamic Scheduling Global range of [0, ), construction of thread > 1.1 : will be responsible of range [500000, ) > : will be responsible of range [750000, )... 1 < : [0, ) <-- [375000, ) < : [679442, ) <-- [679564, ) < : [679198, ) <-- [679442, ) < : [678710, ) <-- [679198, ) < : [675781, ) <-- [678710, ) 1.1 < : [500000, ) <-- [675781, ) 1.1 < : [500000, ) <-- [679687, ) 1.1 < : [500000, ) <-- [687500, ) 1.1 < : [500000, ) <-- [750000, ) 1 < : [0, ) <-- [500000, ) 19

20 TBB Examples Demo files in: /software/workshop/tbb-demo Mandelbrot set - a fractal Image of 1920*1080 pixels where each pixel s coordinates are converted to a x+iy complex number c = x+iy, z 0 = 0, z n+1 = z n 2 + c If abs(z n ) remains less than 2.0 after 1024 iterations, c is part of the Mandelbrot set Using parallel_for(blocked_range2d<t>,) Approximation of Pi Taylor development of 4*arctan(1): 4 * sum(i=0..n)((-1)^i / (2 * i + 1)) Using parallel_reduce(blocked_range<t>,) 20

21 TBB Official Documentation Intel Website: Introduction to TBB: Developer Guide: to learn by topics and case studies Developer Reference: all the details about TBB tools TBB Website: Classes with Doxygen: dex.html 21

Guillimin HPC Users Meeting October 20, 2016

Guillimin HPC Users Meeting October 20, 2016 Guillimin HPC Users Meeting October 20, 2016 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Please be kind to your fellow user meeting attendees Limit

More information

Guillimin HPC Users Meeting March 16, 2017

Guillimin HPC Users Meeting March 16, 2017 Guillimin HPC Users Meeting March 16, 2017 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Please be kind to your fellow user meeting attendees Limit to

More information

Guillimin HPC Users Meeting February 11, McGill University / Calcul Québec / Compute Canada Montréal, QC Canada

Guillimin HPC Users Meeting February 11, McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Guillimin HPC Users Meeting February 11, 2016 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Compute Canada News Scheduler Updates Software Updates Training

More information

Guillimin HPC Users Meeting November 16, 2017

Guillimin HPC Users Meeting November 16, 2017 Guillimin HPC Users Meeting November 16, 2017 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Please be kind to your fellow user meeting attendees Limit

More information

Guillimin HPC Users Meeting April 13, 2017

Guillimin HPC Users Meeting April 13, 2017 Guillimin HPC Users Meeting April 13, 2017 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Please be kind to your fellow user meeting attendees Limit to

More information

Guillimin HPC Users Meeting December 14, 2017

Guillimin HPC Users Meeting December 14, 2017 Guillimin HPC Users Meeting December 14, 2017 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Please be kind to your fellow user meeting attendees Limit

More information

Guillimin HPC Users Meeting June 16, 2016

Guillimin HPC Users Meeting June 16, 2016 Guillimin HPC Users Meeting June 16, 2016 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Compute Canada News System Status Software Updates Training News

More information

Guillimin HPC Users Meeting July 14, 2016

Guillimin HPC Users Meeting July 14, 2016 Guillimin HPC Users Meeting July 14, 2016 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News System Status Software Updates Training

More information

Parallel Programming Principle and Practice. Lecture 7 Threads programming with TBB. Jin, Hai

Parallel Programming Principle and Practice. Lecture 7 Threads programming with TBB. Jin, Hai Parallel Programming Principle and Practice Lecture 7 Threads programming with TBB Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Outline Intel Threading

More information

Table of Contents. Cilk

Table of Contents. Cilk Table of Contents 212 Introduction to Parallelism Introduction to Programming Models Shared Memory Programming Message Passing Programming Shared Memory Models Cilk TBB HPF Chapel Fortress Stapl PGAS Languages

More information

Guillimin HPC Users Meeting. Bart Oldeman

Guillimin HPC Users Meeting. Bart Oldeman June 19, 2014 Bart Oldeman bart.oldeman@mcgill.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News Upcoming Maintenance Downtime in August Storage System

More information

Guillimin HPC Users Meeting March 17, 2016

Guillimin HPC Users Meeting March 17, 2016 Guillimin HPC Users Meeting March 17, 2016 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News System Status Software Updates Training

More information

Guillimin HPC Users Meeting. Bryan Caron

Guillimin HPC Users Meeting. Bryan Caron July 17, 2014 Bryan Caron bryan.caron@mcgill.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News Upcoming Maintenance Downtime in August Storage System

More information

Outline. March 5, 2012 CIRMMT - McGill University 2

Outline. March 5, 2012 CIRMMT - McGill University 2 Outline CLUMEQ, Calcul Quebec and Compute Canada Research Support Objectives and Focal Points CLUMEQ Site at McGill ETS Key Specifications and Status CLUMEQ HPC Support Staff at McGill Getting Started

More information

Tasks and Threads. What? When? Tasks and Threads. Use OpenMP Threading Building Blocks (TBB) Intel Math Kernel Library (MKL)

Tasks and Threads. What? When? Tasks and Threads. Use OpenMP Threading Building Blocks (TBB) Intel Math Kernel Library (MKL) CGT 581I - Parallel Graphics and Simulation Knights Landing Tasks and Threads Bedrich Benes, Ph.D. Professor Department of Computer Graphics Purdue University Tasks and Threads Use OpenMP Threading Building

More information

Intel Thread Building Blocks

Intel Thread Building Blocks Intel Thread Building Blocks SPD course 2017-18 Massimo Coppola 23/03/2018 1 Thread Building Blocks : History A library to simplify writing thread-parallel programs and debugging them Originated circa

More information

Marco Danelutto. May 2011, Pisa

Marco Danelutto. May 2011, Pisa Marco Danelutto Dept. of Computer Science, University of Pisa, Italy May 2011, Pisa Contents 1 2 3 4 5 6 7 Parallel computing The problem Solve a problem using n w processing resources Obtaining a (close

More information

Intel Thread Building Blocks

Intel Thread Building Blocks Intel Thread Building Blocks SPD course 2015-16 Massimo Coppola 08/04/2015 1 Thread Building Blocks : History A library to simplify writing thread-parallel programs and debugging them Originated circa

More information

Habanero Operating Committee. January

Habanero Operating Committee. January Habanero Operating Committee January 25 2017 Habanero Overview 1. Execute Nodes 2. Head Nodes 3. Storage 4. Network Execute Nodes Type Quantity Standard 176 High Memory 32 GPU* 14 Total 222 Execute Nodes

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Synchronization 3 Automatic Parallelization and OpenMP 4 GPGPU 5 Q& A 2 Multithreaded

More information

Guillimin HPC Users Meeting

Guillimin HPC Users Meeting Guillimin HPC Users Meeting July 16, 2015 guillimin@calculquebec.ca McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News Storage Updates Software Updates Training

More information

Intel Thread Building Blocks, Part II

Intel Thread Building Blocks, Part II Intel Thread Building Blocks, Part II SPD course 2013-14 Massimo Coppola 25/03, 16/05/2014 1 TBB Recap Portable environment Based on C++11 standard compilers Extensive use of templates No vectorization

More information

Threaded Programming. Lecture 9: Alternatives to OpenMP

Threaded Programming. Lecture 9: Alternatives to OpenMP Threaded Programming Lecture 9: Alternatives to OpenMP What s wrong with OpenMP? OpenMP is designed for programs where you want a fixed number of threads, and you always want the threads to be consuming

More information

CS CS9535: An Overview of Parallel Computing

CS CS9535: An Overview of Parallel Computing CS4403 - CS9535: An Overview of Parallel Computing Marc Moreno Maza University of Western Ontario, London, Ontario (Canada) January 10, 2017 Plan 1 Hardware 2 Types of Parallelism 3 Concurrency Platforms:

More information

Processes and Threads

Processes and Threads TDDI04 Concurrent Programming, Operating Systems, and Real-time Operating Systems Processes and Threads [SGG7] Chapters 3 and 4 Copyright Notice: The lecture notes are mainly based on Silberschatz s, Galvin

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11 Preface xvii Acknowledgments xix CHAPTER 1 Introduction to Parallel Computing 1 1.1 Motivating Parallelism 2 1.1.1 The Computational Power Argument from Transistors to FLOPS 2 1.1.2 The Memory/Disk Speed

More information

Out-of-Order Parallel Simulation of SystemC Models. G. Liu, T. Schmidt, R. Dömer (CECS) A. Dingankar, D. Kirkpatrick (Intel Corp.)

Out-of-Order Parallel Simulation of SystemC Models. G. Liu, T. Schmidt, R. Dömer (CECS) A. Dingankar, D. Kirkpatrick (Intel Corp.) Out-of-Order Simulation of s using Intel MIC Architecture G. Liu, T. Schmidt, R. Dömer (CECS) A. Dingankar, D. Kirkpatrick (Intel Corp.) Speaker: Rainer Dömer doemer@uci.edu Center for Embedded Computer

More information

CHAPTER 2: PROCESS MANAGEMENT

CHAPTER 2: PROCESS MANAGEMENT 1 CHAPTER 2: PROCESS MANAGEMENT Slides by: Ms. Shree Jaswal TOPICS TO BE COVERED Process description: Process, Process States, Process Control Block (PCB), Threads, Thread management. Process Scheduling:

More information

Application Programming

Application Programming Multicore Application Programming For Windows, Linux, and Oracle Solaris Darryl Gove AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris

More information

MATRIX:DJLSYS EXPLORING RESOURCE ALLOCATION TECHNIQUES FOR DISTRIBUTED JOB LAUNCH UNDER HIGH SYSTEM UTILIZATION

MATRIX:DJLSYS EXPLORING RESOURCE ALLOCATION TECHNIQUES FOR DISTRIBUTED JOB LAUNCH UNDER HIGH SYSTEM UTILIZATION MATRIX:DJLSYS EXPLORING RESOURCE ALLOCATION TECHNIQUES FOR DISTRIBUTED JOB LAUNCH UNDER HIGH SYSTEM UTILIZATION XIAOBING ZHOU(xzhou40@hawk.iit.edu) HAO CHEN (hchen71@hawk.iit.edu) Contents Introduction

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

Concurrency, Thread. Dongkun Shin, SKKU

Concurrency, Thread. Dongkun Shin, SKKU Concurrency, Thread 1 Thread Classic view a single point of execution within a program a single PC where instructions are being fetched from and executed), Multi-threaded program Has more than one point

More information

Intel(R) Threading Building Blocks

Intel(R) Threading Building Blocks Getting Started Guide Intel Threading Building Blocks is a runtime-based parallel programming model for C++ code that uses threads. It consists of a template-based runtime library to help you harness the

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

ECE 574 Cluster Computing Lecture 8

ECE 574 Cluster Computing Lecture 8 ECE 574 Cluster Computing Lecture 8 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 16 February 2017 Announcements Too many snow days Posted a video with HW#4 Review HW#5 will

More information

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017 INTRODUCTION TO OPENACC Analyzing and Parallelizing with OpenACC, Feb 22, 2017 Objective: Enable you to to accelerate your applications with OpenACC. 2 Today s Objectives Understand what OpenACC is and

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

Joe Hummel, PhD. Microsoft MVP Visual C++ Technical Staff: Pluralsight, LLC Professor: U. of Illinois, Chicago.

Joe Hummel, PhD. Microsoft MVP Visual C++ Technical Staff: Pluralsight, LLC Professor: U. of Illinois, Chicago. Joe Hummel, PhD Microsoft MVP Visual C++ Technical Staff: Pluralsight, LLC Professor: U. of Illinois, Chicago email: joe@joehummel.net stuff: http://www.joehummel.net/downloads.html Async programming:

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

Overview of research activities Toward portability of performance

Overview of research activities Toward portability of performance Overview of research activities Toward portability of performance Do dynamically what can t be done statically Understand evolution of architectures Enable new programming models Put intelligence into

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Automatic Parallelization and OpenMP 3 GPGPU 2 Multithreaded Programming

More information

Parallelization on Multi-Core CPUs

Parallelization on Multi-Core CPUs 1 / 30 Amdahl s Law suppose we parallelize an algorithm using n cores and p is the proportion of the task that can be parallelized (1 p cannot be parallelized) the speedup of the algorithm is assuming

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

Fractal: A Software Toolchain for Mapping Applications to Diverse, Heterogeneous Architecures

Fractal: A Software Toolchain for Mapping Applications to Diverse, Heterogeneous Architecures Fractal: A Software Toolchain for Mapping Applications to Diverse, Heterogeneous Architecures University of Virginia Dept. of Computer Science Technical Report #CS-2011-09 Jeremy W. Sheaffer and Kevin

More information

MetaFork: A Compilation Framework for Concurrency Platforms Targeting Multicores

MetaFork: A Compilation Framework for Concurrency Platforms Targeting Multicores MetaFork: A Compilation Framework for Concurrency Platforms Targeting Multicores Presented by Xiaohui Chen Joint work with Marc Moreno Maza, Sushek Shekar & Priya Unnikrishnan University of Western Ontario,

More information

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Philippas Tsigas Chalmers University of Technology Computer Science and Engineering Department Philippas Tsigas

More information

First Experiences with Intel Cluster OpenMP

First Experiences with Intel Cluster OpenMP First Experiences with Intel Christian Terboven, Dieter an Mey, Dirk Schmidl, Marcus Wagner surname@rz.rwth aachen.de Center for Computing and Communication RWTH Aachen University, Germany IWOMP 2008 May

More information

OPENSHMEM AND OFI: BETTER TOGETHER

OPENSHMEM AND OFI: BETTER TOGETHER 4th ANNUAL WORKSHOP 208 OPENSHMEM AND OFI: BETTER TOGETHER James Dinan, David Ozog, and Kayla Seager Intel Corporation [ April, 208 ] NOTICES AND DISCLAIMERS Intel technologies features and benefits depend

More information

CSci 4061 Introduction to Operating Systems. (Thread-Basics)

CSci 4061 Introduction to Operating Systems. (Thread-Basics) CSci 4061 Introduction to Operating Systems (Thread-Basics) Threads Abstraction: for an executing instruction stream Threads exist within a process and share its resources (i.e. memory) But, thread has

More information

Shared memory parallel computing. Intel Threading Building Blocks

Shared memory parallel computing. Intel Threading Building Blocks Shared memory parallel computing Intel Threading Building Blocks Introduction & history Threading Building Blocks (TBB) cross platform C++ template lib for task-based shared memory parallel programming

More information

What else is available besides OpenMP?

What else is available besides OpenMP? What else is available besides OpenMP? Christian Terboven terboven@rz.rwth aachen.de Center for Computing and Communication RWTH Aachen University Parallel Programming June 6, RWTH Aachen University Other

More information

CSCI-GA Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore

CSCI-GA Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore CSCI-GA.3033-012 Multicore Processors: Architecture & Programming Lecture 10: Heterogeneous Multicore Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Status Quo Previously, CPU vendors

More information

Lecture 2 Process Management

Lecture 2 Process Management Lecture 2 Process Management Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks The terms job and process may be interchangeable

More information

Writing Parallel Programs COMP360

Writing Parallel Programs COMP360 Writing Parallel Programs COMP360 We stand at the threshold of a many core world. The hardware community is ready to cross this threshold. The parallel software community is not. Tim Mattson principal

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve OPENMP Standard multicore API for scientific computing Based on fork-join model: fork many threads, join and resume sequential thread Uses pragma:#pragma omp parallel Shared/private

More information

Multi-threaded processors. Hung-Wei Tseng x Dean Tullsen

Multi-threaded processors. Hung-Wei Tseng x Dean Tullsen Multi-threaded processors Hung-Wei Tseng x Dean Tullsen OoO SuperScalar Processor Fetch instructions in the instruction window Register renaming to eliminate false dependencies edule an instruction to

More information

C++ Programming Lecture 13 Software Engineering Group

C++ Programming Lecture 13 Software Engineering Group C++ Programming Lecture 13 Software Engineering Group Philipp D. Schubert Contents 1. Introduction to the project 1. Reading files 2. Smith-Waterman algorithm 3. Comparing the sequences / parallelization

More information

System Model. Types of resources Reusable Resources Consumable Resources

System Model. Types of resources Reusable Resources Consumable Resources Deadlocks The Deadlock Problem System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock System Model Types

More information

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne Chapter 4: Threads Silberschatz, Galvin and Gagne Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Linux Threads 4.2 Silberschatz, Galvin and

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2019 Manos Kapritsos Thanks to Harsha Madhyastha and Peter Chen for the slides and notes What does an OS do? Creates abstractions to make hardware easier

More information

Efficiently Introduce Threading using Intel TBB

Efficiently Introduce Threading using Intel TBB Introduction This guide will illustrate how to efficiently introduce threading using Intel Threading Building Blocks (Intel TBB), part of Intel Parallel Studio XE. It is a widely used, award-winning C++

More information

Workloads Programmierung Paralleler und Verteilter Systeme (PPV)

Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Workloads 2 Hardware / software execution environment

More information

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn Download lectures ftp://public.sjtu.edu.cn User:

More information

Intel C++ Compiler Professional Edition 11.0 for Linux* In-Depth

Intel C++ Compiler Professional Edition 11.0 for Linux* In-Depth Intel C++ Compiler Professional Edition 11.0 for Linux* In-Depth Contents Intel C++ Compiler Professional Edition for Linux*...3 Intel C++ Compiler Professional Edition Components:...3 Features...3 New

More information

OpenMP and more Deadlock 2/16/18

OpenMP and more Deadlock 2/16/18 OpenMP and more Deadlock 2/16/18 Administrivia HW due Tuesday Cache simulator (direct-mapped and FIFO) Steps to using threads for parallelism Move code for thread into a function Create a struct to hold

More information

Parallel Programming Languages COMP360

Parallel Programming Languages COMP360 Parallel Programming Languages COMP360 The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight,

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

Threads. Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows. 2/13/11 CSE325 - Threads 1

Threads. Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows. 2/13/11 CSE325 - Threads 1 Threads Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows 2/13/11 CSE325 - Threads 1 Threads The process concept incorporates two abstractions: a virtual

More information

Parallel Programming. Exploring local computational resources OpenMP Parallel programming for multiprocessors for loops

Parallel Programming. Exploring local computational resources OpenMP Parallel programming for multiprocessors for loops Parallel Programming Exploring local computational resources OpenMP Parallel programming for multiprocessors for loops Single computers nowadays Several CPUs (cores) 4 to 8 cores on a single chip Hyper-threading

More information

Progress on OpenMP Specifications

Progress on OpenMP Specifications Progress on OpenMP Specifications Wednesday, November 13, 2012 Bronis R. de Supinski Chair, OpenMP Language Committee This work has been authored by Lawrence Livermore National Security, LLC under contract

More information

Parallelism paradigms

Parallelism paradigms Parallelism paradigms Intro part of course in Parallel Image Analysis Elias Rudberg elias.rudberg@it.uu.se March 23, 2011 Outline 1 Parallelization strategies 2 Shared memory 3 Distributed memory 4 Parallelization

More information

An Extension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters

An Extension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters An Extension of XcalableMP PGAS Lanaguage for Multi-node Clusters Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku and Mitsuhisa Sato University of Tsukuba 1 Presentation Overview l Introduction

More information

Parallel Programming Libraries and implementations

Parallel Programming Libraries and implementations Parallel Programming Libraries and implementations Partners Funding Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License.

More information

Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) Intel Threading Building Blocks (TBB) SDSC Summer Institute 2012 Pietro Cicotti Computational Scientist Gordon Applications Team Performance Modeling and Characterization Lab Parallelism and Decomposition

More information

trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell 05/12/2015 IWOCL 2015 SYCL Tutorial Khronos OpenCL SYCL committee

trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell 05/12/2015 IWOCL 2015 SYCL Tutorial Khronos OpenCL SYCL committee trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell Khronos OpenCL SYCL committee 05/12/2015 IWOCL 2015 SYCL Tutorial OpenCL SYCL committee work... Weekly telephone meeting Define

More information

Integrating Productivity-Oriented Programming Languages with High-Performance Data Structures

Integrating Productivity-Oriented Programming Languages with High-Performance Data Structures Integrating Productivity-Oriented Programming Languages with High-Performance Data Structures James Fairbanks Rohit Varkey Thankachan, Eric Hein, Brian Swenson Georgia Tech Research Institute September

More information

Recap: Thread. What is it? What does it need (thread private)? What for? How to implement? Independent flow of control. Stack

Recap: Thread. What is it? What does it need (thread private)? What for? How to implement? Independent flow of control. Stack What is it? Recap: Thread Independent flow of control What does it need (thread private)? Stack What for? Lightweight programming construct for concurrent activities How to implement? Kernel thread vs.

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS.

About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS. About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS. Phoenix FD core SIMULATION & RENDERING. SIMULATION CORE - GRID-BASED

More information

CS2506 Quick Revision

CS2506 Quick Revision CS2506 Quick Revision OS Structure / Layer Kernel Structure Enter Kernel / Trap Instruction Classification of OS Process Definition Process Context Operations Process Management Child Process Thread Process

More information

Alexei Katranov. IWOCL '16, April 21, 2016, Vienna, Austria

Alexei Katranov. IWOCL '16, April 21, 2016, Vienna, Austria Alexei Katranov IWOCL '16, April 21, 2016, Vienna, Austria Hardware: customization, integration, heterogeneity Intel Processor Graphics CPU CPU CPU CPU Multicore CPU + integrated units for graphics, media

More information

Jukka Julku Multicore programming: Low-level libraries. Outline. Processes and threads TBB MPI UPC. Examples

Jukka Julku Multicore programming: Low-level libraries. Outline. Processes and threads TBB MPI UPC. Examples Multicore Jukka Julku 19.2.2009 1 2 3 4 5 6 Disclaimer There are several low-level, languages and directive based approaches But no silver bullets This presentation only covers some examples of them is

More information

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1 Thread Disclaimer: some slides are adopted from the book authors slides with permission 1 IPC Shared memory Recap share a memory region between processes read or write to the shared memory region fast

More information

Portability and Scalability of Sparse Tensor Decompositions on CPU/MIC/GPU Architectures

Portability and Scalability of Sparse Tensor Decompositions on CPU/MIC/GPU Architectures Photos placed in horizontal position with even amount of white space between photos and header Portability and Scalability of Sparse Tensor Decompositions on CPU/MIC/GPU Architectures Christopher Forster,

More information

SuperGlue and DuctTEiP: Using data versioning for dependency-aware task-based parallelization

SuperGlue and DuctTEiP: Using data versioning for dependency-aware task-based parallelization SuperGlue and DuctTEiP: Using data versioning for dependency-aware task-based parallelization Elisabeth Larsson Martin Tillenius Afshin Zafari UPMARC Workshop on Task-Based Parallel Programming September

More information

Performance of deal.ii on a node

Performance of deal.ii on a node Performance of deal.ii on a node Bruno Turcksin Texas A&M University, Dept. of Mathematics Bruno Turcksin Deal.II on a node 1/37 Outline 1 Introduction 2 Architecture 3 Paralution 4 Other Libraries 5 Conclusions

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

Open Multi-Processing: Basic Course

Open Multi-Processing: Basic Course HPC2N, UmeåUniversity, 901 87, Sweden. May 26, 2015 Table of contents Overview of Paralellism 1 Overview of Paralellism Parallelism Importance Partitioning Data Distributed Memory Working on Abisko 2 Pragmas/Sentinels

More information

Threads. Threads (continued)

Threads. Threads (continued) Threads A thread is an alternative model of program execution A process creates a thread through a system call Thread operates within process context Use of threads effectively splits the process state

More information

PGAS: Partitioned Global Address Space

PGAS: Partitioned Global Address Space .... PGAS: Partitioned Global Address Space presenter: Qingpeng Niu January 26, 2012 presenter: Qingpeng Niu : PGAS: Partitioned Global Address Space 1 Outline presenter: Qingpeng Niu : PGAS: Partitioned

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

AN 831: Intel FPGA SDK for OpenCL

AN 831: Intel FPGA SDK for OpenCL AN 831: Intel FPGA SDK for OpenCL Host Pipelined Multithread Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents 1 Intel FPGA SDK for OpenCL Host Pipelined Multithread...3 1.1

More information

Intel(R) Threading Building Blocks

Intel(R) Threading Building Blocks Getting Started Guide Intel Threading Building Blocks is a runtime-based parallel programming model for C++ code that uses threads. It consists of a template-based runtime library to help you harness the

More information

Chapter 4: Multi-Threaded Programming

Chapter 4: Multi-Threaded Programming Chapter 4: Multi-Threaded Programming Chapter 4: Threads 4.1 Overview 4.2 Multicore Programming 4.3 Multithreading Models 4.4 Thread Libraries Pthreads Win32 Threads Java Threads 4.5 Implicit Threading

More information

NAMD GPU Performance Benchmark. March 2011

NAMD GPU Performance Benchmark. March 2011 NAMD GPU Performance Benchmark March 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Dell, Intel, Mellanox Compute resource - HPC Advisory

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012 Eike Ritter 1 Modified: October 16, 2012 Lecture 8: Operating Systems with C/C++ School of Computer Science, University of Birmingham, UK 1 Based on material by Matt Smart and Nick Blundell Outline 1 Concurrent

More information