Multigrain Parallelism: Bridging Coarse- Grain Parallel Languages and Fine-Grain Event-Driven Multithreading

Size: px
Start display at page:

Download "Multigrain Parallelism: Bridging Coarse- Grain Parallel Languages and Fine-Grain Event-Driven Multithreading"

Transcription

1 Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory - CAPSL Multigrain Parallelism: Bridging Coarse- Grain Parallel Languages and Fine-Grain Event-Driven Multithreading CPEG Spring 2015 Advanced Topics in Computing Systems Jaime Arteaga Stephane Zuckerman Guang Gao November 17 th, 2015

2 Outline 1. Motivation. 2. Our Proposed Solution. 3. First Approach. 4. Second (current) Approach. 5. Implementation so far. 6. Current and future work.

3 Motivation Current architectures continue to integrate more processing units per chip every year. However, traditional programming models (such as OpenMP) continue to be the most popular. OpenMP has tried to keep up: Tasks in v Task dependencies and support for accelerators in v. 4.0.

4 Motivation Exascale computing requires new programming models (not adapting legacy ones). Codelet Model: Specifically designed to handle fine-grain parallelism. Suited for new architectures and Exascale machines. DARTS Delaware Adaptive Run-Time System: University of Delaware s Codelet model s implementation. Codelet = non-preemptive light-weight task. Unlike OpenMP, DARTS could be verbose. Using codelets for parallel programming requires training.

5 Fib in DARTS

6 Fib in DARTS

7 Fib in DARTS

8 Fib in DARTS

9 Fib in DARTS 120 lines of code

10 Fib in OpenMP 3.0

11 Fib in OpenMP 44 lines of code

12 Our Proposed Solution To design a source-source compiler that takes OpenMP (2.5, 3.1, 4.0) code and generates DARTS code, taking advantage of the programming interface and features found in the Codelet model. barrier C/C++ OpenMP 2 DARTS C++ OpenMP DARTS

13 Delaware RunTime System. DARTS Implementation of the Codelet model (others similar are ETI s SWARM, Rice s Habanero, OCR, etc.). Two level of parallelism: Threaded Procedures (TP) and Codelets, to group processing units according to the number of clusters in the system. An Implementation of the Codelet Model, Euro-Par 2013 Joshua Suettlerlein, Stephane Zuckerman, Guang R. Gao.

14 DARTS Better suited for many-core architectures. Event and dataflow driven (instead of control-flow driven). Fine-grain parallelism gives better control of resources (best for energy efficiency, resiliency, and fault-tolerance mechanisms). Matrix Multiplication BFS

15 First Approach: OMPi to DARTS Lightweight open-source OpenMP compiler from University of Ioannina (Greece). Implemented in and supporting C. Supports OpenMP 2.5, 3.1, and mostly 4.0. Advantages: Open source. Few files. Disadvantages: Not completely modular. A lot of constants and data structures across files. Not very well-known (IR and AST not standard).

16 Second Approach: Clang to DARTS Main front end for LLVM (part of LLVM since v 2.6). Parses C, C++, Objective-C, Objective-C++. Advantages: Better error and warning messages. Faster. Produces a standard IR (LLVM s). Better documentation. Implemented in C++ (more of a personal preference). "LLVM Logo" by Source. Licensed under Fair use via Wikipedia

17 Implementation so far

18 Implementation so far Each pragma construct is transformed into a TP

19 Implementation so far Each pragma construct is transformed into a TP Several copies of each TP are created

20 Implementation so far Each pragma construct is transformed into a TP Several copies of each TP are created and the total number of threads in the region (OMP_NUM_THREADS) is distributed among the TPs according to the hardware at hand (HWLOC).

21 Implementation so far A shared variable is created in the TP frame

22 Implementation so far A shared variable is created in the TP frame A private variable is created on each codelet

23 Implementation so far A shared variable is created in the TP frame A private variable is created on each codelet Special considerations for first and last private

24 Implementation so far class TPParallel class TPCompute class TPSingle class TPFor class TPFor

25 TP Function TP Task Branch TP Task Taskwait Return

26 Current and Future Work Fine-grain scheduling optimizations. Bug finding. Benchmarking with mini-apps and popular workloads. Implement full OpenMp 3.1 and 4.0 standard.

27 References 1. An Implementation of the Codelet Model, Joshua Suettlerlein, Stephane Zuckerman, Guang R. Gao, Euro-Par Position Paper: Using a Codelet Program Execution Model for Exascale Machines, Stephane Zuckerman, Joshua Suetterlein, Rob Knauerhase and Guang R. Gao, PLDI OpenMP, 4. OMPi,

University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory

University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory Locality-Driven Scheduling of Tasks for Data-Dependent Multithreading Jaime

More information

Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory - CAPSL. Introduction

Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory - CAPSL. Introduction Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory - CAPSL Introduction CPEG 852 - Spring 2014 Advanced Topics in Computing Systems Guang R. Gao ACM

More information

Topic C Memory Models

Topic C Memory Models Memory Memory Non- Topic C Memory CPEG852 Spring 2014 Guang R. Gao CPEG 852 Memory Advance 1 / 29 Memory 1 Memory Memory Non- 2 Non- CPEG 852 Memory Advance 2 / 29 Memory Memory Memory Non- Introduction:

More information

For extreme parallelism, your OS is sooooolast-millennium

For extreme parallelism, your OS is sooooolast-millennium For extreme parallelism, your OS is sooooolast-millennium Rob Knauerhase, Romain Cledat, Justin Teller Government Purpose Rights Purchase Order Number: N/A Agreement No.: HR001 10 3 0007 Contractor Name:

More information

Towards a codelet-based runtime for exascale computing. Chris Lauderdale ET International, Inc.

Towards a codelet-based runtime for exascale computing. Chris Lauderdale ET International, Inc. Towards a codelet-based runtime for exascale computing Chris Lauderdale ET International, Inc. What will be covered Slide 2 of 24 Problems & motivation Codelet runtime overview Codelets & complexes Dealing

More information

Building an Open Community Runtime (OCR) framework for Exascale Systems

Building an Open Community Runtime (OCR) framework for Exascale Systems Building an Open Community Runtime (OCR) framework for Exascale Systems Birds of a Feather Session, SC12, Salt Lake City November 14, 2012 Organizers: Vivek Sarkar, Barbara Chapman, William Gropp, Rob

More information

Piecewise Holistic Autotuning of Compiler and Runtime Parameters

Piecewise Holistic Autotuning of Compiler and Runtime Parameters Piecewise Holistic Autotuning of Compiler and Runtime Parameters Mihail Popov, Chadi Akel, William Jalby, Pablo de Oliveira Castro University of Versailles Exascale Computing Research August 2016 C E R

More information

A Lightweight OpenMP Runtime

A Lightweight OpenMP Runtime Alexandre Eichenberger - Kevin O Brien 6/26/ A Lightweight OpenMP Runtime -- OpenMP for Exascale Architectures -- T.J. Watson, IBM Research Goals Thread-rich computing environments are becoming more prevalent

More information

University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory

University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory Massively Multi-Core Systems and Virtual Memory Guang R. Gao and Jack B. Dennis

More information

Core Fusion: Accommodating Software Diversity in Chip Multiprocessors

Core Fusion: Accommodating Software Diversity in Chip Multiprocessors Core Fusion: Accommodating Software Diversity in Chip Multiprocessors Authors: Engin Ipek, Meyrem Kırman, Nevin Kırman, and Jose F. Martinez Navreet Virk Dept of Computer & Information Sciences University

More information

Toward A Codelet Based Execution Model and Its Memory Semantics

Toward A Codelet Based Execution Model and Its Memory Semantics Toward A Codelet Based Execution Model and Its Memory Semantics -- For Future Extreme-Scale Computing Systems HPC Worshop Centraro, Italy June 20, 2012 Guang R. Gao ACM Fellow and IEEE Fellow Distinguished

More information

Parallel Program Execution and Architecture Models with Dataflow Origin The EARTH Experience

Parallel Program Execution and Architecture Models with Dataflow Origin The EARTH Experience Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory - CAPSL Parallel Program Execution and Architecture Models with Dataflow Origin The EARTH Experience

More information

OVERVIEW OF MPC JUNE 24 TH LLNL Meeting June 15th, 2015 PAGE 1

OVERVIEW OF MPC JUNE 24 TH LLNL Meeting June 15th, 2015 PAGE 1 OVERVIEW OF MPC Forum Teratec Patrick CARRIBA ULT, Julien JAEGER, Marc PERACHE CEA, DAM, DIF, F-91297 Arpajon, France www.cea.fr www.cea.fr JUNE 24 TH 2015 LLNL Meeting June 15th, 2015 PAGE 1 Context Starting

More information

for Exascale Architectures

for Exascale Architectures Toward a Selfaware System for Exascale Architectures Aaron Landwehr, Stéphane Zuckerman, Guang R. Gao University of Delaware 1 Organization Introduction Position, Motivation, Problem Statement Background

More information

An Introduction to OpenMP

An Introduction to OpenMP An Introduction to OpenMP U N C L A S S I F I E D Slide 1 What Is OpenMP? OpenMP Is: An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism

More information

OpenMP Device Offloading to FPGA Accelerators. Lukas Sommer, Jens Korinth, Andreas Koch

OpenMP Device Offloading to FPGA Accelerators. Lukas Sommer, Jens Korinth, Andreas Koch OpenMP Device Offloading to FPGA Accelerators Lukas Sommer, Jens Korinth, Andreas Koch Motivation Increasing use of heterogeneous systems to overcome CPU power limitations 2017-07-12 OpenMP FPGA Device

More information

OmpCloud: Bridging the Gap between OpenMP and Cloud Computing

OmpCloud: Bridging the Gap between OpenMP and Cloud Computing OmpCloud: Bridging the Gap between OpenMP and Cloud Computing Hervé Yviquel, Marcio Pereira and Guido Araújo University of Campinas (UNICAMP), Brazil A bit of background qguido Araujo, PhD Princeton University

More information

Evolving HPCToolkit John Mellor-Crummey Department of Computer Science Rice University Scalable Tools Workshop 7 August 2017

Evolving HPCToolkit John Mellor-Crummey Department of Computer Science Rice University   Scalable Tools Workshop 7 August 2017 Evolving HPCToolkit John Mellor-Crummey Department of Computer Science Rice University http://hpctoolkit.org Scalable Tools Workshop 7 August 2017 HPCToolkit 1 HPCToolkit Workflow source code compile &

More information

Compiling and running OpenMP programs. C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp. Programming with OpenMP*

Compiling and running OpenMP programs. C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp. Programming with OpenMP* Advanced OpenMP Compiling and running OpenMP programs C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp 2 1 Running Standard environment variable determines the number of threads: tcsh

More information

Architecture and Programming Model for High Performance Interactive Computation

Architecture and Programming Model for High Performance Interactive Computation Architecture and Programming Model for High Performance Interactive Computation Based on Title of TM127, CAPSL TM-127 By Jack B. Dennis, Arvind, Guang R. Gao, Xiaoming Li and Lian-Ping Wang April 3rd,

More information

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today Graduate Students and Super Undergraduates... CS 553: Algorithmic Language Compilers (PLDI) look for other sources of information make decisions, because all research problems are under-specified evaluate

More information

Task-based Execution of Nested OpenMP Loops

Task-based Execution of Nested OpenMP Loops Task-based Execution of Nested OpenMP Loops Spiros N. Agathos Panagiotis E. Hadjidoukas Vassilios V. Dimakopoulos Department of Computer Science UNIVERSITY OF IOANNINA Ioannina, Greece Presentation Layout

More information

ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING

ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING Keynote, ADVCOMP 2017 November, 2017, Barcelona, Spain Prepared by: Ahmad Qawasmeh Assistant Professor The Hashemite University,

More information

ThinLTO. A Fine-Grained Demand-Driven Infrastructure. Teresa Johnson, Xinliang David Li

ThinLTO. A Fine-Grained Demand-Driven Infrastructure. Teresa Johnson, Xinliang David Li ThinLTO A Fine-Grained Demand-Driven Infrastructure Teresa Johnson, Xinliang David Li tejohnson,davidxl@google.com Outline CMO Background ThinLTO Motivation and Overview ThinLTO Details Build System Integration

More information

PCERE: Fine-grained Parallel Benchmark Decomposition for Scalability Prediction

PCERE: Fine-grained Parallel Benchmark Decomposition for Scalability Prediction PCERE: Fine-grained Parallel Benchmark Decomposition for Scalability Prediction Mihail Popov, Chadi kel, Florent Conti, William Jalby, Pablo de Oliveira Castro UVSQ - PRiSM - ECR Mai 28, 2015 Introduction

More information

MIGRATION OF LEGACY APPLICATIONS TO HETEROGENEOUS ARCHITECTURES Francois Bodin, CTO, CAPS Entreprise. June 2011

MIGRATION OF LEGACY APPLICATIONS TO HETEROGENEOUS ARCHITECTURES Francois Bodin, CTO, CAPS Entreprise. June 2011 MIGRATION OF LEGACY APPLICATIONS TO HETEROGENEOUS ARCHITECTURES Francois Bodin, CTO, CAPS Entreprise June 2011 FREE LUNCH IS OVER, CODES HAVE TO MIGRATE! Many existing legacy codes needs to migrate to

More information

Polytasks: A Compressed Task Representation for HPC Runtimes

Polytasks: A Compressed Task Representation for HPC Runtimes Polytasks: A Compressed Task Representation for HPC Runtimes Daniel Orozco 1,2, Elkin Garcia 1, Robert Pavel 1, Rishi Khan 2 and Guang Gao 1 orozco@udel.edu, egarcia@udel.edu, rspavel@udel.edu, rishi@etinternational.com,

More information

Toward A Dynamic, Asynchronous and Adaptive Execution Model A Path to Runnemede Codelet Model and Beyond

Toward A Dynamic, Asynchronous and Adaptive Execution Model A Path to Runnemede Codelet Model and Beyond Toward A Dynamic, Asynchronous and Adaptive Execution Model A Path to Runnemede Codelet Model and Beyond Purchase Order Number: N/A Agreement No.: HR001 10 3 0007 Contractor Name: Intel Corporation Contractor

More information

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines Introduction to OpenMP Introduction OpenMP basics OpenMP directives, clauses, and library routines What is OpenMP? What does OpenMP stands for? What does OpenMP stands for? Open specifications for Multi

More information

A brief introduction to OpenMP

A brief introduction to OpenMP A brief introduction to OpenMP Alejandro Duran Barcelona Supercomputing Center Outline 1 Introduction 2 Writing OpenMP programs 3 Data-sharing attributes 4 Synchronization 5 Worksharings 6 Task parallelism

More information

Parallel Program Execution and Architecture Models With Dataflow Origin -- The EARTH Experience

Parallel Program Execution and Architecture Models With Dataflow Origin -- The EARTH Experience Parallel Program Execution and Architecture Models With Dataflow Origin -- The EARTH Experience Guang R. Gao ACM Fellow and IEEE Fellow Endowed Distinguished Professor Electrical & Computer Engineering

More information

COMP 635: Seminar on Heterogeneous Processors. Lecture 5: Introduction to GPGPUs (contd.) Mary Fletcher Vivek Sarkar

COMP 635: Seminar on Heterogeneous Processors. Lecture 5: Introduction to GPGPUs (contd.)   Mary Fletcher Vivek Sarkar COMP 635: Seminar on Heterogeneous Processors Lecture 5: Introduction to GPGPUs (contd.) www.cs.rice.edu/~vsarkar/comp635 Mary Fletcher Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu

More information

SWARM Tutorial. Chen Chen 4/12/2012

SWARM Tutorial. Chen Chen 4/12/2012 SWARM Tutorial Chen Chen 4/12/2012 1 Outline Introduction to SWARM Programming in SWARM Atomic Operations in SWARM Parallel For Loop in SWARM 2 Outline Introduction to SWARM Programming in SWARM Atomic

More information

Parallel Computing Why & How?

Parallel Computing Why & How? Parallel Computing Why & How? Xing Cai Simula Research Laboratory Dept. of Informatics, University of Oslo Winter School on Parallel Computing Geilo January 20 25, 2008 Outline 1 Motivation 2 Parallel

More information

OpenMP Algoritmi e Calcolo Parallelo. Daniele Loiacono

OpenMP Algoritmi e Calcolo Parallelo. Daniele Loiacono OpenMP Algoritmi e Calcolo Parallelo References Useful references Using OpenMP: Portable Shared Memory Parallel Programming, Barbara Chapman, Gabriele Jost and Ruud van der Pas OpenMP.org http://openmp.org/

More information

Polyhedral Optimizations of Explicitly Parallel Programs

Polyhedral Optimizations of Explicitly Parallel Programs Habanero Extreme Scale Software Research Group Department of Computer Science Rice University The 24th International Conference on Parallel Architectures and Compilation Techniques (PACT) October 19, 2015

More information

University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory

University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory University of Delaware Department of Electrical and Computer Engineering Computer Architecture and Parallel Systems Laboratory Polytasks: A Compressed Task Representation for HPC Runtimes Daniel Orozco

More information

D-TEC DSL Technology for Exascale Computing

D-TEC DSL Technology for Exascale Computing D-TEC DSL Technology for Exascale Computing Progress Report: March 2013 DOE Office of Science Program: Office of Advanced Scientific Computing Research ASCR Program Manager: Dr. Sonia Sachs 1 Introduction

More information

OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel

OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel Clang * : An Excellent C++ Compiler LLVM * : Collection of modular and reusable compiler and toolchain technologies Created by Chris Lattner

More information

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing Programming Models for Multi- Threading Brian Marshall, Advanced Research Computing Why Do Parallel Computing? Limits of single CPU computing performance available memory I/O rates Parallel computing allows

More information

Lecture: SMT, Cache Hierarchies. Topics: SMT processors, cache access basics and innovations (Sections B.1-B.3, 2.1)

Lecture: SMT, Cache Hierarchies. Topics: SMT processors, cache access basics and innovations (Sections B.1-B.3, 2.1) Lecture: SMT, Cache Hierarchies Topics: SMT processors, cache access basics and innovations (Sections B.1-B.3, 2.1) 1 Thread-Level Parallelism Motivation: a single thread leaves a processor under-utilized

More information

CPEG 852 Advanced Topics in Computing Systems The Dataflow Model of Computation

CPEG 852 Advanced Topics in Computing Systems The Dataflow Model of Computation CPEG 852 Advanced Topics in Computing Systems The Dataflow Model of Computation Dynamic Dataflow Stéphane Zuckerman Computer Architecture & Parallel Systems Laboratory Electrical & Computer Engineering

More information

Implementation of Parallelization

Implementation of Parallelization Implementation of Parallelization OpenMP, PThreads and MPI Jascha Schewtschenko Institute of Cosmology and Gravitation, University of Portsmouth May 9, 2018 JAS (ICG, Portsmouth) Implementation of Parallelization

More information

TiNy Threads on BlueGene/P: Exploring Many-Core Parallelisms Beyond The Traditional

TiNy Threads on BlueGene/P: Exploring Many-Core Parallelisms Beyond The Traditional TiNy Threads on BlueGene/P: Exploring Many-Core Parallelisms Beyond The Traditional Handong Ye, Robert Pavel, Aaron Landwehr, Guang R. Gao Department of Electrical & OS Computer Engineering University

More information

c 2015 by Adam R. Smith. All rights reserved.

c 2015 by Adam R. Smith. All rights reserved. c 2015 by Adam R. Smith. All rights reserved. THE PARALLEL INTERMEDIATE LANGUAGE BY ADAM RANDALL SMITH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

CPEG 421/621 - Spring 2008

CPEG 421/621 - Spring 2008 CPEG 421/621 - Spring 2008 Compiler Design: The Software and Hardware Tradeoffs 2008/2/21 \course\cpeg421-08s\topic-1.ppt 1 Admin. Information Instructor: Office: Prof. Guang R. Gao 312 DuPont Hall Phone:

More information

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc.

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc. HPC Runtime Software Rishi Khan SC 11 Current Programming Models Shared Memory Multiprocessing OpenMP fork/join model Pthreads Arbitrary SMP parallelism (but hard to program/ debug) Cilk Work Stealing

More information

Static Data Race Detection for SPMD Programs via an Extended Polyhedral Representation

Static Data Race Detection for SPMD Programs via an Extended Polyhedral Representation via an Extended Polyhedral Representation Habanero Extreme Scale Software Research Group Department of Computer Science Rice University 6th International Workshop on Polyhedral Compilation Techniques (IMPACT

More information

Chap. 6 Part 3. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1

Chap. 6 Part 3. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1 Chap. 6 Part 3 CIS*3090 Fall 2016 Fall 2016 CIS*3090 Parallel Programming 1 OpenMP popular for decade Compiler-based technique Start with plain old C, C++, or Fortran Insert #pragmas into source file You

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

BEAMJIT: An LLVM based just-in-time compiler for Erlang. Frej Drejhammar

BEAMJIT: An LLVM based just-in-time compiler for Erlang. Frej Drejhammar BEAMJIT: An LLVM based just-in-time compiler for Erlang Frej Drejhammar 140407 Who am I? Senior researcher at the Swedish Institute of Computer Science (SICS) working on programming languages,

More information

Towards an Adaptive Task Pool Implementation

Towards an Adaptive Task Pool Implementation Towards an Adaptive Task Pool Implementation M. Hofmann and G. Rünger Department of Computer Science Chemnitz University of Technology, Germany E-mail: {mhofma,ruenger}@informatik.tu-chemnitz.de Abstract

More information

LLVM for the future of Supercomputing

LLVM for the future of Supercomputing LLVM for the future of Supercomputing Hal Finkel hfinkel@anl.gov 2017-03-27 2017 European LLVM Developers' Meeting What is Supercomputing? Computing for large, tightly-coupled problems. Lots of computational

More information

OpenMP 4.0 implementation in GCC. Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat

OpenMP 4.0 implementation in GCC. Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat OpenMP 4.0 implementation in GCC Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat OpenMP 4.0 implementation in GCC Work started in April 2013, C/C++ support with host fallback only

More information

Session 4: Parallel Programming with OpenMP

Session 4: Parallel Programming with OpenMP Session 4: Parallel Programming with OpenMP Xavier Martorell Barcelona Supercomputing Center Agenda Agenda 10:00-11:00 OpenMP fundamentals, parallel regions 11:00-11:30 Worksharing constructs 11:30-12:00

More information

Compiling for GPUs. Adarsh Yoga Madhav Ramesh

Compiling for GPUs. Adarsh Yoga Madhav Ramesh Compiling for GPUs Adarsh Yoga Madhav Ramesh Agenda Introduction to GPUs Compute Unified Device Architecture (CUDA) Control Structure Optimization Technique for GPGPU Compiler Framework for Automatic Translation

More information

Parallel Programming: OpenMP

Parallel Programming: OpenMP Parallel Programming: OpenMP Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. November 10, 2016. An Overview of OpenMP OpenMP: Open Multi-Processing An

More information

HPMMAP: Lightweight Memory Management for Commodity Operating Systems. University of Pittsburgh

HPMMAP: Lightweight Memory Management for Commodity Operating Systems. University of Pittsburgh HPMMAP: Lightweight Memory Management for Commodity Operating Systems Brian Kocoloski Jack Lange University of Pittsburgh Lightweight Experience in a Consolidated Environment HPC applications need lightweight

More information

Parallel Programming with OpenMP

Parallel Programming with OpenMP Parallel Programming with OpenMP Parallel programming for the shared memory model Christopher Schollar Andrew Potgieter 3 July 2013 DEPARTMENT OF COMPUTER SCIENCE Roadmap for this course Introduction OpenMP

More information

Topic 4c: A hybrid Dataflow-Von Neumann PXM: The EARTH Experience

Topic 4c: A hybrid Dataflow-Von Neumann PXM: The EARTH Experience Topic 4c: A hybrid Dataflow-Von Neumann PXM: The EARTH Experience CPEG421/621: Compiler Design Material mostly taken from Professor Guang R. Gao s previous courses, with additional material from J.Suetterlein.

More information

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele Advanced C Programming Winter Term 2008/09 Guest Lecture by Markus Thiele Lecture 14: Parallel Programming with OpenMP Motivation: Why parallelize? The free lunch is over. Herb

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III/VI Section : CSE-1 & CSE-2 Subject Code : CS2354 Subject Name : Advanced Computer Architecture Degree & Branch : B.E C.S.E. UNIT-1 1.

More information

Static and Dynamic Frequency Scaling on Multicore CPUs

Static and Dynamic Frequency Scaling on Multicore CPUs Static and Dynamic Frequency Scaling on Multicore CPUs Wenlei Bao 1 Changwan Hong 1 Sudheer Chunduri 2 Sriram Krishnamoorthy 3 Louis-Noël Pouchet 4 Fabrice Rastello 5 P. Sadayappan 1 1 The Ohio State University

More information

gpucc: An Open-Source GPGPU Compiler

gpucc: An Open-Source GPGPU Compiler gpucc: An Open-Source GPGPU Compiler Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt One-Slide Overview Motivation

More information

gpucc: An Open-Source GPGPU Compiler

gpucc: An Open-Source GPGPU Compiler gpucc: An Open-Source GPGPU Compiler Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt One-Slide Overview Motivation

More information

Improving the Practicality of Transactional Memory

Improving the Practicality of Transactional Memory Improving the Practicality of Transactional Memory Woongki Baek Electrical Engineering Stanford University Programming Multiprocessors Multiprocessor systems are now everywhere From embedded to datacenter

More information

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008 Parallel Computing Using OpenMP/MPI Presented by - Jyotsna 29/01/2008 Serial Computing Serially solving a problem Parallel Computing Parallelly solving a problem Parallel Computer Memory Architecture Shared

More information

Computer Architecture: Multithreading (I) Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Multithreading (I) Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Multithreading (I) Prof. Onur Mutlu Carnegie Mellon University A Note on This Lecture These slides are partly from 18-742 Fall 2012, Parallel Computer Architecture, Lecture 9: Multithreading

More information

Performance of Multithreaded Chip Multiprocessors and Implications for Operating System Design

Performance of Multithreaded Chip Multiprocessors and Implications for Operating System Design Performance of Multithreaded Chip Multiprocessors and Implications for Operating System Design Based on papers by: A.Fedorova, M.Seltzer, C.Small, and D.Nussbaum Pisa November 6, 2006 Multithreaded Chip

More information

Designing Parallel Programs. This review was developed from Introduction to Parallel Computing

Designing Parallel Programs. This review was developed from Introduction to Parallel Computing Designing Parallel Programs This review was developed from Introduction to Parallel Computing Author: Blaise Barney, Lawrence Livermore National Laboratory references: https://computing.llnl.gov/tutorials/parallel_comp/#whatis

More information

Review. 35a.cpp. 36a.cpp. Lecture 13 5/29/2012. Compiler Directives. Library Functions Environment Variables

Review. 35a.cpp. 36a.cpp. Lecture 13 5/29/2012. Compiler Directives. Library Functions Environment Variables Review Lecture 3 Compiler Directives Conditional compilation Parallel construct Work-sharing constructs for, section, single Work-tasking Synchronization Library Functions Environment Variables 2 35a.cpp

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #12 2/21/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Last class Outline

More information

POWER-AWARE SOFTWARE ON ARM. Paul Fox

POWER-AWARE SOFTWARE ON ARM. Paul Fox POWER-AWARE SOFTWARE ON ARM Paul Fox OUTLINE MOTIVATION LINUX POWER MANAGEMENT INTERFACES A UNIFIED POWER MANAGEMENT SYSTEM EXPERIMENTAL RESULTS AND FUTURE WORK 2 MOTIVATION MOTIVATION» ARM SoCs designed

More information

Shared-memory Parallel Programming with Cilk Plus

Shared-memory Parallel Programming with Cilk Plus Shared-memory Parallel Programming with Cilk Plus John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 4 30 August 2018 Outline for Today Threaded programming

More information

Advanced Compiler Construction

Advanced Compiler Construction CS 526 Advanced Compiler Construction http://misailo.cs.illinois.edu/courses/cs526 Goals of the Course Develop a fundamental understanding of the major approaches to program analysis and optimization Understand

More information

Evaluating the Error Resilience of Parallel Programs

Evaluating the Error Resilience of Parallel Programs Evaluating the Error Resilience of Parallel Programs Bo Fang, Karthik Pattabiraman, Matei Ripeanu, The University of British Columbia Sudhanva Gurumurthi AMD Research 1 Reliability trends The soft error

More information

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program Amdahl's Law About Data What is Data Race? Overview to OpenMP Components of OpenMP OpenMP Programming Model OpenMP Directives

More information

A Uniform Programming Model for Petascale Computing

A Uniform Programming Model for Petascale Computing A Uniform Programming Model for Petascale Computing Barbara Chapman University of Houston WPSE 2009, Tsukuba March 25, 2009 High Performance Computing and Tools Group http://www.cs.uh.edu/~hpctools Agenda

More information

Lecture: SMT, Cache Hierarchies. Topics: memory dependence wrap-up, SMT processors, cache access basics (Sections B.1-B.3, 2.1)

Lecture: SMT, Cache Hierarchies. Topics: memory dependence wrap-up, SMT processors, cache access basics (Sections B.1-B.3, 2.1) Lecture: SMT, Cache Hierarchies Topics: memory dependence wrap-up, SMT processors, cache access basics (Sections B.1-B.3, 2.1) 1 Problem 3 Consider the following LSQ and when operands are available. Estimate

More information

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008 1 of 6 Lecture 7: March 4 CISC 879 Software Support for Multicore Architectures Spring 2008 Lecture 7: March 4, 2008 Lecturer: Lori Pollock Scribe: Navreet Virk Open MP Programming Topics covered 1. Introduction

More information

Shared Memory Parallelism - OpenMP

Shared Memory Parallelism - OpenMP Shared Memory Parallelism - OpenMP Sathish Vadhiyar Credits/Sources: OpenMP C/C++ standard (openmp.org) OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openmp/#introduction) OpenMP sc99 tutorial

More information

The SGI Pro64 Compiler Infrastructure - A Tutorial

The SGI Pro64 Compiler Infrastructure - A Tutorial The SGI Pro64 Compiler Infrastructure - A Tutorial Guang R. Gao (U of Delaware) J. Dehnert (SGI) J. N. Amaral (U of Alberta) R. Towle (SGI) Acknowledgement The SGI Compiler Development Teams The MIPSpro/Pro64

More information

Short Answer: [3] What is the primary difference between Tomasulo s algorithm and Scoreboarding?

Short Answer: [3] What is the primary difference between Tomasulo s algorithm and Scoreboarding? Short Answer: [] What is the primary difference between Tomasulo s algorithm and Scoreboarding? [] Which data hazard occurs when instructions are allowed to complete out of order? Which one occurs when

More information

An Introduction to Balder An OpenMP Run-time Library for Clusters of SMPs

An Introduction to Balder An OpenMP Run-time Library for Clusters of SMPs An Introduction to Balder An Run-time Library for Clusters of SMPs Sven Karlsson Department of Microelectronics and Information Technology, KTH, Sweden Institute of Computer Science (ICS), Foundation for

More information

ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests

ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests Mingxing Tan 1 2, Gai Liu 1, Ritchie Zhao 1, Steve Dai 1, Zhiru Zhang 1 1 Computer Systems Laboratory, Electrical and Computer

More information

FADA : Fuzzy Array Dataflow Analysis

FADA : Fuzzy Array Dataflow Analysis FADA : Fuzzy Array Dataflow Analysis M. Belaoucha, D. Barthou, S. Touati 27/06/2008 Abstract This document explains the basis of fuzzy data dependence analysis (FADA) and its applications on code fragment

More information

Simultaneous Multithreading on Pentium 4

Simultaneous Multithreading on Pentium 4 Hyper-Threading: Simultaneous Multithreading on Pentium 4 Presented by: Thomas Repantis trep@cs.ucr.edu CS203B-Advanced Computer Architecture, Spring 2004 p.1/32 Overview Multiple threads executing on

More information

A Status Update of BEAMJIT, the Just-in-Time Compiling Abstract Machine. Frej Drejhammar and Lars Rasmusson

A Status Update of BEAMJIT, the Just-in-Time Compiling Abstract Machine. Frej Drejhammar and Lars Rasmusson A Status Update of BEAMJIT, the Just-in-Time Compiling Abstract Machine Frej Drejhammar and Lars Rasmusson 140609 Who am I? Senior researcher at the Swedish Institute of Computer Science

More information

TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT

TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT TOOLS FOR IMPROVING CROSS-PLATFORM SOFTWARE DEVELOPMENT Eric Kelmelis 28 March 2018 OVERVIEW BACKGROUND Evolution of processing hardware CROSS-PLATFORM KERNEL DEVELOPMENT Write once, target multiple hardware

More information

CMSC Computer Architecture Lecture 12: Multi-Core. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 12: Multi-Core. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 12: Multi-Core Prof. Yanjing Li University of Chicago Administrative Stuff! Lab 4 " Due: 11:49pm, Saturday " Two late days with penalty! Exam I " Grades out on

More information

Leveraging OpenMP Infrastructure for Language Level Parallelism Darryl Gove. 15 April

Leveraging OpenMP Infrastructure for Language Level Parallelism Darryl Gove. 15 April 1 Leveraging OpenMP Infrastructure for Language Level Parallelism Darryl Gove Senior Principal Software Engineer Outline Proposal and Motivation Overview of

More information

LLVM and Clang on the Most Powerful Supercomputer in the World

LLVM and Clang on the Most Powerful Supercomputer in the World LLVM and Clang on the Most Powerful Supercomputer in the World Hal Finkel November 7, 2012 The 2012 LLVM Developers Meeting Hal Finkel (Argonne National Laboratory) LLVM and Clang on the BG/Q November

More information

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance

Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance Scalable Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance Jonathan Lifflander*, Esteban Meneses, Harshitha Menon*, Phil Miller*, Sriram Krishnamoorthy, Laxmikant V. Kale* jliffl2@illinois.edu,

More information

Java Byte Code Scheduling Based on the Most-Often-Used-Paths in Programs with Branches

Java Byte Code Scheduling Based on the Most-Often-Used-Paths in Programs with Branches Java Byte Code Scheduling Based on the Most-Often-Used-Paths in Programs with Branches Eryk Laskowski 1, Marek Tudruj 1, Richard Olejnik 2, Bernard Toursel 2 1 Institute of Computer Science PAS, Warsaw,

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Overview: The OpenMP Programming Model

Overview: The OpenMP Programming Model Overview: The OpenMP Programming Model motivation and overview the parallel directive: clauses, equivalent pthread code, examples the for directive and scheduling of loop iterations Pi example in OpenMP

More information

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo OpenMP Amasis Brauch German University in Cairo May 4, 2010 Simple Algorithm 1 void i n c r e m e n t e r ( short a r r a y ) 2 { 3 long i ; 4 5 for ( i = 0 ; i < 1000000; i ++) 6 { 7 a r r a y [ i ]++;

More information

Optimize HPC - Application Efficiency on Many Core Systems

Optimize HPC - Application Efficiency on Many Core Systems Meet the experts Optimize HPC - Application Efficiency on Many Core Systems 2018 Arm Limited Florent Lebeau 27 March 2018 2 2018 Arm Limited Speedup Multithreading and scalability I wrote my program to

More information

Trends and Challenges in Multicore Programming

Trends and Challenges in Multicore Programming Trends and Challenges in Multicore Programming Eva Burrows Bergen Language Design Laboratory (BLDL) Department of Informatics, University of Bergen Bergen, March 17, 2010 Outline The Roadmap of Multicores

More information

Annual Progress Report Year 2, Statement of the unexpended funds at the end of the budget period, FA-TC Continuation Application

Annual Progress Report Year 2, Statement of the unexpended funds at the end of the budget period, FA-TC Continuation Application Annual Progress Report Year 2, Statement of the unexpended funds at the end of the budget period, FA-TC-0018.2 Continuation Application Project Title: TRALEIKA GLACIER X-STACK PI: Shekhar Borkar Cooperative

More information