Programming Languages

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Programming Languages"

Transcription

1 CSE 130 : Winter 2009 Programming Languages News PA 2 out, and due Mon 1/26 5pm Lecture 5: Functions and Datatypes t UC San Diego Recap: Environments Phone book Variables = names Values = phone number Next: Functions Expressions Values 1. Evaluate: Find and use most recent value of variable Types 2. Extend: let x = e Add new binding at end of phone book Q: What s the value of a function?

2 Functions Values Functions Values Two questions about function values: Two questions about function values: What is the value: What is the value: 1. of a function? 1. of a function? 2. of a function application (call)? (e11 e2) 2. of a function application (call)? (e11 e2) Values of functions: Closures Free (vs. Bound) Variables Body expression not evaluated until application but type-checking takes place at compile time i.e. when function is defined Function value = <code + environment at definition> closure # let x = 2+2 val x : int = 4 # let f = fun y -> x + y val f : int -> int = fn # let x = x + x val x : int = 8 # f 0 val it : int = 4 Binding used to eval (f ) x 4 : int f fn <code, >: int->int x 8 : int Binding for subsequent x let a = 20 let f x = let y = 1 in let g z = y + z in a + (g x) f 0 Inside a function: A bound occurrence: 1. Formal variable 2. Variable bound in let-in x, y, z are bound inside f A free occurrence: Not bound occurrence a is free inside f Environment at definition, frozen inside closure, is used for values of free variables

3 Nested function bindings Nested function bindings let a = 20 let f x = let a = 1 in let g z = a + z in a + (g x) f 0; Inside a function: A bound occurrence: 1. Formal variable 2. Variable bound in let-in-end x, a, z are bound inside f A free occurrence: Not bound occurrence nothing is free inside f Environment at definition, frozen inside closure, is used for values of free variables let a = 20 let f x = let a = 1+1 in let g z = a + z in a + (g x) f 0; Q: Where do values of bound variables come from? Bound variable values determined when fun evaluated ( executed ) From arguments Local variable bindings Obtained by evaluation Static/Lexical Scoping Static/Lexical Scoping let a = 20 let f x = let y = 10 in let g z = y + z in a + (g x) f 0; For each var, unique place in prog. text where var is defined Static/Lexical Scope Determined by prog text Without executing prog Easy readability, debugging For each occurrence of a variable, there is a unique place in program text where the variable was defined Most recent binding in environment Static/Lexical: Determined from the program text Without executing the program Very useful for readability, debugging: Don t have to figure out where a variable got assigned Don t have to figure out where a variable got assigned Unique, statically known definition for each occurrence

4 Values of function application Application: fancy word for call (e1 e2) apply the argument e2 to the (function) e1 Application Value: 1. Evaluate e1 in current env to get (function) v1 v1 is code + env code is (formal x + body e), env is E 2. Evaluate e2 in current env to get (argument) v2 3. Evaluate body e in env E extended by binding x to v2 Example 1 let x = 1 let f y = x + y let x = 2 let y = 3 f (x + y) Example 1 let x = 1 let f y = x + y let x = 2 let y = 3 f (x + y) Example 2 let x = 1 let f y = let x = 2 in fun z -> x + y + z let x = 100 let g =(f 4) g let y = 100 (g 1)

5 Example 2 let x = 1 let f y = let x = 2 in fun z -> x + y + z let x = 100 let g =(f 4) let y = 100 (g 1) Example 3 let f g = let x = 0 in g 2 let x = 100 let h y = x + y f h Static/Lexical Scoping What about more complex data? For each occurrence of a variable, Unique place in program text where variable defined Most recent binding in environment Expressions Values Static/Lexical: Determined from the program text Without executing the programy Very useful for readability, debugging: Don t have to figure out where a variable got assigned Unique, statically known definition for each occurrence Types Many kinds of expressions: l 1. Simple 2. Variables 3. Functions

6 What about more complex data? We ve seen some base types and values: Integers, Floats, Bool, String etc. Some ways to build up types: Products (tuples), records, lists Functions Design Principle: Orthogonality Don t clutter core language with stuff Few, powerful orthogonal building techniques Put derived types, values, functions in libraries Next: Building datatypes Three key ways to build complex types/values 1. Each-of types Value of T contains value of T1 and a value of T2 2. One-of types Value of T contains value of T1 or a value of T2 3. Recursive Value of T contains (sub)-value of same type T Suppose I wanted a program that processed lists of attributes Name (string) Age (integer) DOB (int-int-int) Address (string) Height (float) Alive (boolean) Phone (int-int) (string) Many kinds of attributes: too many to put in a record can have multiple l names, addresses, phones, s etc. Want to store them in a list. Can I? t Constructing Datatypes type t = C1 of t1 C2 of t2 Cn of tn is a new datatype. A value of type t is either: Or Or Or a value of type t1 placed in a box labeled C1 a value of type t2 placed in a box labeled C2 a value of type tn placed in a box labeled Cn

7 Suppose I wanted Attributes: type attrib = Name(string) Name of string Age (integer) Age of int DOB (int-int-int) DOB of int*int*int Address (string) Address of string Height (real) Height of float Alive (boolean) Alive of bool Phone (int-int) Phone of int*int (string) of string Creating Values How to create values of type attrib? # let a1 = Name Ranjit val x : attrib = Name Ranjit type attrib = # let a2 = Height 5.83 Name of string val a2 : attrib = Height 5.83 # let year = 1977 Age of int val year : int = 1977 DOB of int*int*int # let a3 = DOB (9,8,year) Address of string val a3 : attrib = DOB (9,8,1977) Height of float # let a_l = [a1;a2;a3] Alive of bool val a3 : attrib list = Phone of int*int t of string One-of types We ve defined a one-of type named attrib Elements are one of: string, int, int*int*int, float, bool Can create uniform attrib lists Suppose I want a function to print attribs datatype attrib = Name of string Age of int DOB of int*int*int Address of string Height of real Alive of bool Phone of int*int of string; How to tell whats in the box? type attrib = match e with Name of string Name s -> e1 Age of int Age i -> e2 DOB of int*int*int DOB (m,d,y) -> e3 Address of string Address addr -> e4 Height of float Height h -> e5 Alive of bool Phone of int*int Alive b -> e6 of string Phone (a,n) -> e7 e -> e8 Pattern-match expression: check if e is of the form On match: value in box bound to pattern variable thi lt i i l t d matching result expression is evaluated Simultaneously test and extract contents of box

8 match-with is an Expression match e with Name s -> e1 Age i -> e2 DOB (m,d,y) -> e3 Address addr -> e4 Height h -> e5 Alive b -> e6 Phone (a,n) -> e7 e -> e8 match-with is an Expression match e with C1 x1 -> e1 C2 x2 -> e2 Cn xn -> en Type rules? e1, e2,,enen must have same type Which is type of whole expression Benefits of match-with match e with type t = C1 x1 -> e1 C1 of t1 C2 x2 -> e2 C2 of t2 Cn xn -> en Cn of tn What about Recursive types? type int_list = Nil Cons of int * int_list 1. Simultaneous test-extract-bind 2. Compile-time checks for: missed cases: ML warns if you miss a t value redundant cases: ML warns if a case never matches Think about this! What are values of int_list? Cons(1,Cons(2,Cons(3,Nil))) Cons(2,Cons(3,Nil)) Cons(3,Nil) Nil Cons Cons Cons 1, 2, 3, Nil

9 Lists aren t built-in in! datatype int_list = Nil Cons of int * int_list Some functions on Lists : Length Base pattern let rec len l = match l with Base Expression Ind pattern Nil -> 0 Cons(h,t) -> 1 + (len t) Inductive Expression Lists are a derived type: built using elegant core! 1. Each-of 2. One-of 3. Recursive :: is just a pretty way to say Cons [] is just a pretty way to say Nil let rec len l = match l with Nil -> 0 Cons(_,t) -> 1 + (len t) Matches everything, no binding let rec len l = match l with Cons(_,t) -> 1 + (len t) _ -> 0 Pattern-matching in order - Must match with Nil Some functions on Lists : Append let rec append (l1,l2) = Base pattern Base Expression Ind pattern Find the right induction strategy Base case: pattern + expression Induction case: pattern + expression Inductive Expression Well designed datatype gives strategy null, hd, tl are all functions Bad ML style: More than aesthetics! Pattern-matching better than test-extract: ML checks all cases covered ML checks no redundant cases at compile-time: fewer errors (crashes) during execution get the bugs out ASAP!

10 Another Example: Calculator We want an arithmetic calculator to evaluate expressions like: = = ( ) * ( ) = Q: Whats a ML datatype for such expressions? Another Example: Calculator We want an arithmetic calculator to evaluate expressions like: = = ( ) * ( ) = Whats a ML function for evaluating such expressions? Random Art from Expressions PA #2 Build more funky expressions, evaluate them, to produce:

News. Programming Languages. Recap. Recap: Environments. Functions. of functions: Closures. CSE 130 : Fall Lecture 5: Functions and Datatypes

News. Programming Languages. Recap. Recap: Environments. Functions. of functions: Closures. CSE 130 : Fall Lecture 5: Functions and Datatypes CSE 130 : Fall 2007 Programming Languages News PA deadlines shifted PA #2 now due 10/24 (next Wed) Lecture 5: Functions and Datatypes Ranjit Jhala UC San Diego Recap: Environments Phone book Variables

More information

Recap from last time. Programming Languages. CSE 130 : Fall Lecture 3: Data Types. Put it together: a filter function

Recap from last time. Programming Languages. CSE 130 : Fall Lecture 3: Data Types. Put it together: a filter function CSE 130 : Fall 2011 Recap from last time Programming Languages Lecture 3: Data Types Ranjit Jhala UC San Diego 1 2 A shorthand for function binding Put it together: a filter function # let neg = fun f

More information

Recap. Recap. If-then-else expressions. If-then-else expressions. If-then-else expressions. If-then-else expressions

Recap. Recap. If-then-else expressions. If-then-else expressions. If-then-else expressions. If-then-else expressions Recap Epressions (Synta) Compile-time Static Eec-time Dynamic Types (Semantics) Recap Integers: +,-,* floats: +,-,* Booleans: =,

More information

Programming Languages

Programming Languages What about more complex data? CSE 130 : Fall 2012 Programming Languages Expressions Values Lecture 3: Datatypes Ranjit Jhala UC San Diego Types Many kinds of expressions: 1. Simple 2. Variables 3. Functions

More information

Programming Languages. Datatypes

Programming Languages. Datatypes Programming Languages Datatypes Review so far Expressions Values Types Many kinds of expressions: 1. Simple 2. Variables 3. Functions Review so far We ve seen some base types and values: Integers, Floats,

More information

CSE 130 Programming Languages. Lecture 3: Datatypes. Ranjit Jhala UC San Diego

CSE 130 Programming Languages. Lecture 3: Datatypes. Ranjit Jhala UC San Diego CSE 130 Programming Languages Lecture 3: Datatypes Ranjit Jhala UC San Diego News? PA #2 (coming tonight) Ocaml-top issues? Pleas post questions to Piazza Recap: ML s Holy Trinity Expressions (Syntax)

More information

Recap: ML s Holy Trinity

Recap: ML s Holy Trinity Recap: ML s Holy Trinity Expressions (Syntax) Exec-time Dynamic Values (Semantics) Compile-time Static Types 1. Programmer enters expression 2. ML checks if expression is well-typed Using a precise set

More information

Programming Languages

Programming Languages CSE 130 : Spring 2011 Programming Languages Lecture 3: Crash Course Ctd, Expressions and Types Ranjit Jhala UC San Diego A shorthand for function binding # let neg = fun f -> fun x -> not (f x); # let

More information

Begin at the beginning

Begin at the beginning Begin at the beginning Expressions (Syntax) Exec-time Dynamic Values (Semantics) Compile-time Static Types 1. Programmer enters expression 2. ML checks if expression is well-typed Using a precise set of

More information

Variables and Bindings

Variables and Bindings Net: Variables Variables and Bindings Q: How to use variables in ML? Q: How to assign to a variable? # let = 2+2;; val : int = 4 let = e;; Bind the value of epression e to the variable Variables and Bindings

More information

Side note: Tail Recursion. Begin at the beginning. Side note: Tail Recursion. Base Types. Base Type: int. Base Type: int

Side note: Tail Recursion. Begin at the beginning. Side note: Tail Recursion. Base Types. Base Type: int. Base Type: int Begin at the beginning Epressions (Synta) Compile-time Static Eec-time Dynamic Types Values (Semantics) 1. Programmer enters epression 2. ML checks if epression is well-typed Using a precise set of rules,

More information

Tail Recursion: Factorial. Begin at the beginning. How does it execute? Tail recursion. Tail recursive factorial. Tail recursive factorial

Tail Recursion: Factorial. Begin at the beginning. How does it execute? Tail recursion. Tail recursive factorial. Tail recursive factorial Begin at the beginning Epressions (Synta) Compile-time Static Eec-time Dynamic Types Values (Semantics) 1. Programmer enters epression 2. ML checks if epression is well-typed Using a precise set of rules,

More information

CSE 130: Programming Languages. Polymorphism. Ranjit Jhala UC San Diego

CSE 130: Programming Languages. Polymorphism. Ranjit Jhala UC San Diego CSE 130: Programming Languages Polymorphism Ranjit Jhala UC San Diego Q: What is the value of res? let f g = let x = 0 in g 2 let x = 100 let h y = x + y let res = f h (a) 0 (b) 2 (c) 100 (d) 102 (e) 12

More information

Project 2: Scheme Interpreter

Project 2: Scheme Interpreter Project 2: Scheme Interpreter CSC 4101, Fall 2017 Due: 12 November 2017 For this project, you will implement a simple Scheme interpreter in C++ or Java. Your interpreter should be able to handle the same

More information

So what does studying PL buy me?

So what does studying PL buy me? So what does studying PL buy me? Enables you to better choose the right language but isn t that decided by libraries, standards, and my boss? Yes. Chicken-and-egg. My goal: educate tomorrow s tech leaders

More information

Any questions. Say hello to OCaml. Say hello to OCaml. Why readability matters. History, Variants. Plan (next 4 weeks)

Any questions. Say hello to OCaml. Say hello to OCaml. Why readability matters. History, Variants. Plan (next 4 weeks) Any questions Say hello to OCaml? void sort(int arr[], int beg, int end){ if (end > beg + 1){ int piv = arr[beg]; int l = beg + 1; int r = end; while (l!= r-1){ if(arr[l]

More information

sum: tree -> int sum_leaf: tree -> int sum_leaf: tree -> int Representing Trees Next: Lets get cosy with Recursion Sum up the leaf values. E.g.

sum: tree -> int sum_leaf: tree -> int sum_leaf: tree -> int Representing Trees Next: Lets get cosy with Recursion Sum up the leaf values. E.g. Representing Trees Node Next: Lets get cosy with Recursion 1 2 3 1 Node 2 3 Node(Node( 1, 2), 3) sum: tree -> int Next: Lets get cosy with Recursion Sum up the leaf values. E.g. # let t0 = sum Node(Node(

More information

CS Lecture 5: Pattern Matching. Prof. Clarkson Fall Today s music: Puff, the Magic Dragon by Peter, Paul & Mary

CS Lecture 5: Pattern Matching. Prof. Clarkson Fall Today s music: Puff, the Magic Dragon by Peter, Paul & Mary CS 3110 Lecture 5: Pattern Matching Prof. Clarkson Fall 2014 Today s music: Puff, the Magic Dragon by Peter, Paul & Mary Review Features so far: variables, operators, let expressions, if expressions, functions

More information

CSC324- TUTORIAL 5. Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides

CSC324- TUTORIAL 5. Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides CSC324- TUTORIAL 5 ML Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides Assignment 1 2 More questions were added Questions regarding the assignment? Starting ML Who am I? Shems Saleh

More information

Scope and Introduction to Functional Languages. Review and Finish Scoping. Announcements. Assignment 3 due Thu at 11:55pm. Website has SML resources

Scope and Introduction to Functional Languages. Review and Finish Scoping. Announcements. Assignment 3 due Thu at 11:55pm. Website has SML resources Scope and Introduction to Functional Languages Prof. Evan Chang Meeting 7, CSCI 3155, Fall 2009 Announcements Assignment 3 due Thu at 11:55pm Submit in pairs Website has SML resources Text: Harper, Programming

More information

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, "hi", 3.2), c 4, a 1, b 5} 9/10/2017 4

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, hi, 3.2), c 4, a 1, b 5} 9/10/2017 4 Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Sasa Misailovic 4110 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421a # true;; - : bool = true # false;; - : bool

More information

Data Types The ML Type System

Data Types The ML Type System 7 Data Types 7.2.4 The ML Type System The following is an ML version of the tail-recursive Fibonacci function introduced Fibonacci function in ML in Section 6.6.1: EXAMPLE 7.96 1. fun fib (n) = 2. let

More information

CSci 4223 Lecture 12 March 4, 2013 Topics: Lexical scope, dynamic scope, closures

CSci 4223 Lecture 12 March 4, 2013 Topics: Lexical scope, dynamic scope, closures CSci 4223 Lecture 12 March 4, 2013 Topics: Lexical scope, dynamic scope, closures 1 Lexical Scope SML, and nearly all modern languages, follow the Rule of Lexical Scope: the body of a function is evaluated

More information

Programming Languages

Programming Languages CSE 130 : Spring 2011 Programming Languages Lecture 13: What s in a Name? Ranjit Jhala UC San Diego Next: What s in a name? More precisely: How should programmer think of data What does a variable x really

More information

Next: What s in a name? Programming Languages. Data model in functional PL. What s in a name? CSE 130 : Fall Lecture 13: What s in a Name?

Next: What s in a name? Programming Languages. Data model in functional PL. What s in a name? CSE 130 : Fall Lecture 13: What s in a Name? Next: What s in a name? CSE 13 : Fall 211 Programming Languages Lecture 13: What s in a Name? More precisely: How should programmer think of data What does a variable x really mean? Ranjit Jhala UC San

More information

Intro. Scheme Basics. scm> 5 5. scm>

Intro. Scheme Basics. scm> 5 5. scm> Intro Let s take some time to talk about LISP. It stands for LISt Processing a way of coding using only lists! It sounds pretty radical, and it is. There are lots of cool things to know about LISP; if

More information

CSE 341: Programming Languages

CSE 341: Programming Languages CSE 341: Programming Languages Dan Grossman Spring 2008 Lecture 6 Nested pattern-matching; course motivation Dan Grossman CSE341 Spring 2008, Lecture 6 1 Patterns What we know: case-expresssions do pattern-matching

More information

Type Checking and Type Inference

Type Checking and Type Inference Type Checking and Type Inference Principles of Programming Languages CSE 307 1 Types in Programming Languages 2 Static Type Checking 3 Polymorphic Type Inference Version: 1.8 17:20:56 2014/08/25 Compiled

More information

Lists. Michael P. Fourman. February 2, 2010

Lists. Michael P. Fourman. February 2, 2010 Lists Michael P. Fourman February 2, 2010 1 Introduction The list is a fundamental datatype in most functional languages. ML is no exception; list is a built-in ML type constructor. However, to introduce

More information

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = "Hello";

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = Hello; Lecture #23: Conversion and Type Inference Administrivia. Due date for Project #2 moved to midnight tonight. Midterm mean 20, median 21 (my expectation: 17.5). In Java, this is legal: Object x = "Hello";

More information

Lecture 3: Recursion; Structural Induction

Lecture 3: Recursion; Structural Induction 15-150 Lecture 3: Recursion; Structural Induction Lecture by Dan Licata January 24, 2012 Today, we are going to talk about one of the most important ideas in functional programming, structural recursion

More information

A Programming Language. A different language g is a different vision of life. CSE 130 : Spring Two variables. L1: x++; y--; (y=0)?

A Programming Language. A different language g is a different vision of life. CSE 130 : Spring Two variables. L1: x++; y--; (y=0)? CSE 130 : Spring 2010 Programming Languages Lecture 1: Hello, world. Ranjit Jhala UC San Diego A Programming Language Two variables x,y Three operations x++ x-- (x=0)? L1:L2; L1: x++; y--; (y=0)?l2:l1

More information

Tuples. CMSC 330: Organization of Programming Languages. Examples With Tuples. Another Example

Tuples. CMSC 330: Organization of Programming Languages. Examples With Tuples. Another Example CMSC 330: Organization of Programming Languages OCaml 2 Higher Order Functions Tuples Constructed using (e1,..., en) Deconstructed using pattern matching Patterns involve parens and commas, e.g., (p1,p2,

More information

Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Booleans and Short-Circuit Evaluation. Tuples as Values.

Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Booleans and Short-Circuit Evaluation. Tuples as Values. Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Elsa L Gunter 2112 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421d # true;; - : bool = true # false;; - : bool =

More information

Operational Semantics. One-Slide Summary. Lecture Outline

Operational Semantics. One-Slide Summary. Lecture Outline Operational Semantics #1 One-Slide Summary Operational semantics are a precise way of specifying how to evaluate a program. A formal semantics tells you what each expression means. Meaning depends on context:

More information

CS109A ML Notes for the Week of 1/16/96. Using ML. ML can be used as an interactive language. We. shall use a version running under UNIX, called

CS109A ML Notes for the Week of 1/16/96. Using ML. ML can be used as an interactive language. We. shall use a version running under UNIX, called CS109A ML Notes for the Week of 1/16/96 Using ML ML can be used as an interactive language. We shall use a version running under UNIX, called SML/NJ or \Standard ML of New Jersey." You can get SML/NJ by

More information

CMSC330. Objects, Functional Programming, and lambda calculus

CMSC330. Objects, Functional Programming, and lambda calculus CMSC330 Objects, Functional Programming, and lambda calculus 1 OOP vs. FP Object-oriented programming (OOP) Computation as interactions between objects Objects encapsulate mutable data (state) Accessed

More information

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015

SCHEME 7. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. October 29, 2015 SCHEME 7 COMPUTER SCIENCE 61A October 29, 2015 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

More information

A LISP Interpreter in ML

A LISP Interpreter in ML UNIVERSITY OF OSLO Department of Informatics A LISP Interpreter in ML Mandatory Assignment 1 INF3110 September 21, 2009 Contents 1 1 Introduction The purpose of this assignment is to write an interpreter,

More information

Inductive Data Types

Inductive Data Types Inductive Data Types Lars-Henrik Eriksson Functional Programming 1 Original slides by Tjark Weber Lars-Henrik Eriksson (UU) Inductive Data Types 1 / 42 Inductive Data Types Today Today New names for old

More information

(Provisional) Lecture 22: Rackette Overview, Binary Tree Analysis 10:00 AM, Oct 27, 2017

(Provisional) Lecture 22: Rackette Overview, Binary Tree Analysis 10:00 AM, Oct 27, 2017 Integrated Introduction to Computer Science Hughes (Provisional) Lecture 22: Rackette Overview, Binary Tree Analysis 10:00 Contents 1 Announcements 1 2 An OCaml Debugging Tip 1 3 Introduction to Rackette

More information

CSE 130 [Winter 2014] Programming Languages

CSE 130 [Winter 2014] Programming Languages CSE 130 [Winter 2014] Programming Languages Higher-Order Functions! Ravi Chugh! Jan 23 Today s Plan A little more practice with recursion Base Pattern Base Expression Induction Pattern Induction Expression

More information

Types, Type Inference and Unification

Types, Type Inference and Unification Types, Type Inference and Unification Mooly Sagiv Slides by Kathleen Fisher and John Mitchell Cornell CS 6110 Summary (Functional Programming) Lambda Calculus Basic ML Advanced ML: Modules, References,

More information

Which of the following expressions has the type int list?

Which of the following expressions has the type int list? Which of the following expressions has the type int list? 1) [3; true] 2) [1;2;3]::[1;2] 3) []::[1;2]::[] 4) (1::2)::(3::4)::[] 5) [1;2;3;4] Answer: 5 Which of the following expressions has the type (int

More information

A Tour of the Cool Support Code

A Tour of the Cool Support Code A Tour of the Cool Support Code 1 Introduction The Cool compiler project provides a number of basic data types to make the task of writing a Cool compiler tractable in the timespan of the course. This

More information

Dialects of ML. CMSC 330: Organization of Programming Languages. Dialects of ML (cont.) Features of ML. Functional Languages. Features of ML (cont.

Dialects of ML. CMSC 330: Organization of Programming Languages. Dialects of ML (cont.) Features of ML. Functional Languages. Features of ML (cont. CMSC 330: Organization of Programming Languages OCaml 1 Functional Programming Dialects of ML ML (Meta Language) Univ. of Edinburgh,1973 Part of a theorem proving system LCF The Logic of Computable Functions

More information

Functional Languages and Higher-Order Functions

Functional Languages and Higher-Order Functions Functional Languages and Higher-Order Functions Leonidas Fegaras CSE 5317/4305 L12: Higher-Order Functions 1 First-Class Functions Values of some type are first-class if They can be assigned to local variables

More information

15 212: Principles of Programming. Some Notes on Continuations

15 212: Principles of Programming. Some Notes on Continuations 15 212: Principles of Programming Some Notes on Continuations Michael Erdmann Spring 2011 These notes provide a brief introduction to continuations as a programming technique. Continuations have a rich

More information

Functional programming Primer I

Functional programming Primer I Functional programming Primer I COS 320 Compiling Techniques Princeton University Spring 2016 Lennart Beringer 1 Characteristics of functional programming Primary notions: functions and expressions (not

More information

Announcement. Overview. LISP: A Quick Overview. Outline of Writing and Running Lisp.

Announcement. Overview. LISP: A Quick Overview. Outline of Writing and Running Lisp. Overview Announcement Announcement Lisp Basics CMUCL to be available on sun.cs. You may use GNU Common List (GCL http://www.gnu.org/software/gcl/ which is available on most Linux platforms. There is also

More information

Racket. CSE341: Programming Languages Lecture 14 Introduction to Racket. Getting started. Racket vs. Scheme. Example.

Racket. CSE341: Programming Languages Lecture 14 Introduction to Racket. Getting started. Racket vs. Scheme. Example. Racket Next 2+ weeks will use the Racket language (not ML) and the DrRacket programming environment (not emacs) Installation / basic usage instructions on course website CSE34: Programming Languages Lecture

More information

Programming Languages. So why study PL? A Programming Language. A different language is a different vision of life. CSE 130 : Fall 2012

Programming Languages. So why study PL? A Programming Language. A different language is a different vision of life. CSE 130 : Fall 2012 CSE 130 : Fall 2012 Programming Languages Lecture 1: Hello, world. Ranjit Jhala UC San Diego 1 2 A Programming Language So why study PL? Two variables x, y Three operations x++ x-- (x=0)? L1:L2; L1: x++;

More information

Overloading, Type Classes, and Algebraic Datatypes

Overloading, Type Classes, and Algebraic Datatypes Overloading, Type Classes, and Algebraic Datatypes Delivered by Michael Pellauer Arvind Computer Science and Artificial Intelligence Laboratory M.I.T. September 28, 2006 September 28, 2006 http://www.csg.csail.mit.edu/6.827

More information

Lecture Outline. COOL operational semantics. Operational Semantics of Cool. Motivation. Lecture 13. Notation. The rules. Evaluation Rules So Far

Lecture Outline. COOL operational semantics. Operational Semantics of Cool. Motivation. Lecture 13. Notation. The rules. Evaluation Rules So Far Lecture Outline Operational Semantics of Cool Lecture 13 COOL operational semantics Motivation Notation The rules Prof. Aiken CS 143 Lecture 13 1 Prof. Aiken CS 143 Lecture 13 2 Motivation We must specify

More information

;;; Determines if e is a primitive by looking it up in the primitive environment. ;;; Define indentation and output routines for the output for

;;; Determines if e is a primitive by looking it up in the primitive environment. ;;; Define indentation and output routines for the output for Page 1/11 (require (lib "trace")) Allow tracing to be turned on and off (define tracing #f) Define a string to hold the error messages created during syntax checking (define error msg ""); Used for fancy

More information

Scope. Chapter Ten Modern Programming Languages 1

Scope. Chapter Ten Modern Programming Languages 1 Scope Chapter Ten Modern Programming Languages 1 Reusing Names Scope is trivial if you have a unique name for everything: fun square a = a * a; fun double b = b + b; But in modern languages, we often use

More information

Introduction to Functional Programming in Haskell 1 / 56

Introduction to Functional Programming in Haskell 1 / 56 Introduction to Functional Programming in Haskell 1 / 56 Outline Why learn functional programming? The essence of functional programming What is a function? Equational reasoning First-order vs. higher-order

More information

CMSC 330: Organization of Programming Languages. Rust Basics

CMSC 330: Organization of Programming Languages. Rust Basics CMSC 330: Organization of Programming Languages Rust Basics CMSC330 Spring 2018 1 Organization It turns out that a lot of Rust has direct analogues in OCaml So we will introduce its elements with comparisons

More information

Introduction Primitive Data Types Character String Types User-Defined Ordinal Types Array Types. Record Types. Pointer and Reference Types

Introduction Primitive Data Types Character String Types User-Defined Ordinal Types Array Types. Record Types. Pointer and Reference Types Chapter 6 Topics WEEK E FOUR Data Types Introduction Primitive Data Types Character String Types User-Defined Ordinal Types Array Types Associative Arrays Record Types Union Types Pointer and Reference

More information

Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP)

Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP) Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP) Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology

More information

Functional Programming. Pure Functional Languages

Functional Programming. Pure Functional Languages Functional Programming Pure functional PLs S-expressions cons, car, cdr Defining functions read-eval-print loop of Lisp interpreter Examples of recursive functions Shallow, deep Equality testing 1 Pure

More information

Functional abstraction. What is abstraction? Eating apples. Readings: HtDP, sections Language level: Intermediate Student With Lambda

Functional abstraction. What is abstraction? Eating apples. Readings: HtDP, sections Language level: Intermediate Student With Lambda Functional abstraction Readings: HtDP, sections 19-24. Language level: Intermediate Student With Lambda different order used in lecture section 24 material introduced much earlier sections 22, 23 not covered

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages 1 / 63 CSE 307: Principles of Programming Languages Syntax R. Sekar Topics 1. Introduction 2. Basics 3. Functions 4. Data Structures 5. Overview 6. OCAML Performance 2 / 63 3 / 63 Section 1 Introduction

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages CSE 307: Principles of Programming Languages Syntax R. Sekar 1 / 63 Topics 1. Introduction 2. Basics 3. Functions 4. Data Structures 5. Overview 6. OCAML Performance 2 / 63 Section 1 Introduction 3 / 63

More information

Programming with Math and Logic

Programming with Math and Logic .. Programming with Math and Logic an invitation to functional programming Ed Morehouse Wesleyan University The Plan why fp? terms types interfaces The What and Why of Functional Programming Computing

More information

ML Type Inference and Unification. Arlen Cox

ML Type Inference and Unification. Arlen Cox ML Type Inference and Unification Arlen Cox Research Goals Easy to use, high performance parallel programming Primary contributions in backend and runtime Need a front end to target backend ML offers ease

More information

CS6202: Advanced Topics in Programming Languages and Systems Lecture 0 : Overview

CS6202: Advanced Topics in Programming Languages and Systems Lecture 0 : Overview CS6202: Advanced Topics in Programming Languages and Systems Lecture 0 : Overview Advanced Language Features and Foundations Lecturer : Chin Wei Ngan Email : chinwn@comp.nus.edu.sg Office : S15 06-01 CS6202

More information

CSC324 Functional Programming Typing, Exceptions in ML

CSC324 Functional Programming Typing, Exceptions in ML CSC324 Functional Programming Typing, Exceptions in ML Afsaneh Fazly 1 Winter 2013 1 with many thanks to Anya Tafliovich, Gerald Penn, Sheila McIlraith, Wael Aboelsaddat, Tony Bonner, Eric Joanis, Suzanne

More information

6. Pointers, Structs, and Arrays. 1. Juli 2011

6. Pointers, Structs, and Arrays. 1. Juli 2011 1. Juli 2011 Einführung in die Programmierung Introduction to C/C++, Tobias Weinzierl page 1 of 50 Outline Recapitulation Pointers Dynamic Memory Allocation Structs Arrays Bubble Sort Strings Einführung

More information

A quick introduction to SML

A quick introduction to SML A quick introduction to SML CMSC 15300 April 9, 2004 1 Introduction Standard ML (SML) is a functional language (or higherorder language) and we will use it in this course to illustrate some of the important

More information

Semantic Analysis. Outline. The role of semantic analysis in a compiler. Scope. Types. Where we are. The Compiler Front-End

Semantic Analysis. Outline. The role of semantic analysis in a compiler. Scope. Types. Where we are. The Compiler Front-End Outline Semantic Analysis The role of semantic analysis in a compiler A laundry list of tasks Scope Static vs. Dynamic scoping Implementation: symbol tables Types Static analyses that detect type errors

More information

An introduction to C++ template programming

An introduction to C++ template programming An introduction to C++ template programming Hayo Thielecke University of Birmingham http://www.cs.bham.ac.uk/~hxt March 2015 Templates and parametric polymorphism Template parameters Member functions of

More information

Review. CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Let bindings (CBV) Adding Stuff. Booleans and Conditionals

Review. CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Let bindings (CBV) Adding Stuff. Booleans and Conditionals Review CS152: Programming Languages Lecture 11 STLC Extensions and Related Topics e ::= λx. e x ee c v ::= λx. e c (λx. e) v e[v/x] e 1 e 2 e 1 e 2 τ ::= int τ τ Γ ::= Γ,x : τ e 2 e 2 ve 2 ve 2 e[e /x]:

More information

6. Pointers, Structs, and Arrays. March 14 & 15, 2011

6. Pointers, Structs, and Arrays. March 14 & 15, 2011 March 14 & 15, 2011 Einführung in die Programmierung Introduction to C/C++, Tobias Weinzierl page 1 of 47 Outline Recapitulation Pointers Dynamic Memory Allocation Structs Arrays Bubble Sort Strings Einführung

More information

Lecture 6: Sequential Sorting

Lecture 6: Sequential Sorting 15-150 Lecture 6: Sequential Sorting Lecture by Dan Licata February 2, 2012 Today s lecture is about sorting. Along the way, we ll learn about divide and conquer algorithms, the tree method, and complete

More information

CS321 Languages and Compiler Design I Winter 2012 Lecture 13

CS321 Languages and Compiler Design I Winter 2012 Lecture 13 STATIC SEMANTICS Static Semantics are those aspects of a program s meaning that can be studied at at compile time (i.e., without running the program). Contrasts with Dynamic Semantics, which describe how

More information

Symbolic Programming. Dr. Zoran Duric () Symbolic Programming 1/ 89 August 28, / 89

Symbolic Programming. Dr. Zoran Duric () Symbolic Programming 1/ 89 August 28, / 89 Symbolic Programming Symbols: +, -, 1, 2 etc. Symbolic expressions: (+ 1 2), (+ (* 3 4) 2) Symbolic programs are programs that manipulate symbolic expressions. Symbolic manipulation: you do it all the

More information

cs242 Kathleen Fisher Reading: Concepts in Programming Languages, Chapter 6 Thanks to John Mitchell for some of these slides.

cs242 Kathleen Fisher Reading: Concepts in Programming Languages, Chapter 6 Thanks to John Mitchell for some of these slides. cs242 Kathleen Fisher Reading: Concepts in Programming Languages, Chapter 6 Thanks to John Mitchell for some of these slides. We are looking for homework graders. If you are interested, send mail to cs242cs.stanford.edu

More information

Lab 7: OCaml 12:00 PM, Oct 22, 2017

Lab 7: OCaml 12:00 PM, Oct 22, 2017 CS17 Integrated Introduction to Computer Science Hughes Lab 7: OCaml 12:00 PM, Oct 22, 2017 Contents 1 Getting Started in OCaml 1 2 Pervasives Library 2 3 OCaml Basics 3 3.1 OCaml Types........................................

More information

CS 480. Lisp J. Kosecka George Mason University. Lisp Slides

CS 480. Lisp J. Kosecka George Mason University. Lisp Slides CS 480 Lisp J. Kosecka George Mason University Lisp Slides Symbolic Programming Symbols: +, -, 1, 2 etc. Symbolic expressions: (+ 1 2), (+ (* 3 4) 2) Symbolic programs are programs that manipulate symbolic

More information

Overview. Elements of Programming Languages. Another example. Consider the humble identity function

Overview. Elements of Programming Languages. Another example. Consider the humble identity function Overview Elements of Programming Languages Lecture 8: Polymorphism and type inference James Cheney University of Edinburgh October 21, 2016 This week and next week, we will cover di erent forms of abstraction

More information

Control Structures. Lecture 4 COP 3014 Fall September 18, 2017

Control Structures. Lecture 4 COP 3014 Fall September 18, 2017 Control Structures Lecture 4 COP 3014 Fall 2017 September 18, 2017 Control Flow Control flow refers to the specification of the order in which the individual statements, instructions or function calls

More information

Scope and Parameter Passing 1 / 19

Scope and Parameter Passing 1 / 19 Scope and Parameter Passing 1 / 19 Outline Overview Naming and scope Function/procedure calls Static vs. dynamic scope Parameter passing schemes 2 / 19 Review of naming Most languages provide a way to

More information

Type Conversion. and. Statements

Type Conversion. and. Statements and Statements Type conversion changing a value from one type to another Void Integral Floating Point Derived Boolean Character Integer Real Imaginary Complex no fractional part fractional part 2 tj Suppose

More information

Debugging in LISP. trace causes a trace to be printed for a function when it is called

Debugging in LISP. trace causes a trace to be printed for a function when it is called trace causes a trace to be printed for a function when it is called ;;; a function that works like reverse (defun rev (list) (cons (first (last list)) (rev (butlast list)))) USER: (trace rev) ; note trace

More information

Fall 2017 Discussion 7: October 25, 2017 Solutions. 1 Introduction. 2 Primitives

Fall 2017 Discussion 7: October 25, 2017 Solutions. 1 Introduction. 2 Primitives CS 6A Scheme Fall 207 Discussion 7: October 25, 207 Solutions Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write

More information

JAVA An overview for C++ programmers

JAVA An overview for C++ programmers JAVA An overview for C++ programmers Wagner Truppel wagner@cs.ucr.edu edu March 1st, 2004 The early history James Gosling, Sun Microsystems Not the usual start for a prog.. language Consumer electronics,

More information

Lecture 19: Signatures, Structures, and Type Abstraction

Lecture 19: Signatures, Structures, and Type Abstraction 15-150 Lecture 19: Signatures, Structures, and Type Abstraction Lecture by Dan Licata March 27, 2012 In these lectures, we will discuss the use of the ML module system for structuring large programs. Key

More information

Programming Languages and Compilers (CS 421)

Programming Languages and Compilers (CS 421) Programming Languages and Compilers (CS 421) Elsa L Gunter 2112 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421d Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul

More information

CS 161 Computer Security

CS 161 Computer Security Wagner Spring 2014 CS 161 Computer Security 1/27 Reasoning About Code Often functions make certain assumptions about their arguments, and it is the caller s responsibility to make sure those assumptions

More information

CIS4/681 { Articial Intelligence 2 > (insert-sort '( )) ( ) 2 More Complicated Recursion So far everything we have dened requires

CIS4/681 { Articial Intelligence 2 > (insert-sort '( )) ( ) 2 More Complicated Recursion So far everything we have dened requires 1 A couple of Functions 1 Let's take another example of a simple lisp function { one that does insertion sort. Let us assume that this sort function takes as input a list of numbers and sorts them in ascending

More information

Scope, Functions, and Storage Management

Scope, Functions, and Storage Management Scope, Functions, and Storage Management Implementing Functions and Blocks cs3723 1 Simplified Machine Model (Compare To List Abstract Machine) Registers Code Data Program Counter (current instruction)

More information

Parametric types. aka: what s up with those a???

Parametric types. aka: what s up with those a??? Parametric types aka: what s up with those a??? 1 What is the deal with a? These meta-functions have strange types: map: ( a b) a list b list filter: ( a bool) a list a list Why? 2 Polymorphism Poly =

More information

Programming Languages and Techniques (CIS120)

Programming Languages and Techniques (CIS120) Programming Languages and Techniques () Lecture 5 January 22, 2018 Datatypes and Trees Announcements Homework 1 due tomorrow at 11:59pm! Homework 2 available soon due Tuesday, January 30 th Read Chapters

More information

QUIZ. What are 3 differences between C and C++ const variables?

QUIZ. What are 3 differences between C and C++ const variables? QUIZ What are 3 differences between C and C++ const variables? Solution QUIZ Source: http://stackoverflow.com/questions/17349387/scope-of-macros-in-c Solution The C/C++ preprocessor substitutes mechanically,

More information

FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each):

FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): 1. If a function has default arguments, they can be located anywhere

More information

General Computer Science (CH ) Fall 2016 SML Tutorial: Practice Problems

General Computer Science (CH ) Fall 2016 SML Tutorial: Practice Problems General Computer Science (CH08-320101) Fall 2016 SML Tutorial: Practice Problems November 30, 2016 Abstract This document accompanies the traditional SML tutorial in GenCS. It contains a sequence of simple

More information

Monad Transformers Step by Step

Monad Transformers Step by Step Monad Transformers Step by Step Martin Grabmüller Oct 6 2006 (Draft) Abstract In this tutorial, we describe how to use monad transformers in order to incrementally add functionality to Haskell programs.

More information

DO NOT OPEN UNTIL INSTRUCTED

DO NOT OPEN UNTIL INSTRUCTED CS 345 - Programming Languages Fall 2010 MIDTERM #1 October 5, 2010 DO NOT OPEN UNTIL INSTRUCTED YOUR NAME: Collaboration policy No collaboration is permitted on this midterm. Any cheating (e.g., submitting

More information

Lecture 4: Higher Order Functions

Lecture 4: Higher Order Functions Lecture 4: Higher Order Functions Søren Haagerup Department of Mathematics and Computer Science University of Southern Denmark, Odense September 26, 2017 HIGHER ORDER FUNCTIONS The order of a function

More information