Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9

Size: px
Start display at page:

Download "Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9"

Transcription

1 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Critical numbers - Increasing and decreasing intervals - Relative Etrema Given f(), the derivatives f () and f () give important information about f(). f () will help find the critical numbers (C.N.). To find them, make the answer of f () equal to zero; finall solve for and these value(s) are called C.N. of f(). Use these C.N. for the first derivative test to find the intervals where f() is increasing or decreasing and the relative etrema. Eample 1: Given f() = , find: (a) the critical numbers of f() f () = =12( 1)( 3) f () =0 = 12( 1)( 3) = 0 the critical numbers are =0,=1 and =3 (b) the intervals where f() is increasing or decreasing. Use the first derivative test b locating C.N. on the number line and test f () for each interval. If f () > 0,f() is increasing; f () < 0,f() is decreasing. (c) the relative etrema of f() To find the etrema, eamine each C.N. in the first derivative test to decide: If before the C.N. f () > 0 and after the C.N. f () < 0, then this C.N. is a relative maimum and find the corresponding value. If before the C.N. f () < 0 and after the C.N. f () > 0, then this C.N. is a relative minimum and find the corresponding value. From the first derivative test, we get at = 0, a relative minimum and the value is f(0) = 9 at = 1, a relative maimum and f(1) = 4 and at = 3, a relative minimum with f(3) First Derivative Test Note: f() is a polnomial function without asmptotes. f() is increasing at 0 <<1or>3 f() is decreasing at <0or1<<3 Relative etrema are: relative minimum at (0, 9) and(3, 36) relative maimum at (1, 4)

2 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 2 of 9 Eample 2: Given f() = , find: (a) the critical numbers of f() f () = : numerator= 0 = +4=0 = = 4 ; denominator= 0 = 2 3 =0 = =0 the critical numbers are = 4 and =0 (b) the intervals where f() is increasing or decreasing. Use the first derivative test b locating C.N. on the number line and test f () for each interval. If f () > 0,f() is increasing; f () < 0,f() is decreasing. (c) the relative etrema of f() To find the etrema, eamine each C.N. in the first derivative test to decide: If before the C.N. f () > 0 and after the C.N. f () < 0, then this C.N. is a relative maimum and find the corresponding value. If before the C.N. f () < 0 and after the C.N. f () > 0, then this C.N. is a relative minimum and find the corresponding value. From the first derivative test, we get at = 0, no etrema since the value is undefined, a vertical asmptote at = 0;at = 4, a relative minimum and f( 4) = 1 16 = First Derivative Test Note: f() is a rational function with asmptotes. f() is increasing at 4 <<0 f() is decreasing at < 4 or>0 Relative etrema is: relative ( minimum ) at 4,

3 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 3 of 9 Concavit: Point(s) of inflection Given f(), the derivatives f () and f () give important information about f(). f () will help to find the possible point(s) of inflection (P.I.). To find them, make the answer of f () equal to zero; finall solve for and these value(s) are called possible values P.I. of f(). Use these possible P.I. for the second derivative test to find the intervals of concavit and P.I. Two tpes of concavit (curve shape): concave down concave up f () < 0 f () > 0 Eample 3: Given f() = 3 27, find: (a) the values for possible point(s) of inflection of f() f () = ; f () =6 f () =0 = 6 =0the value for possible P.I. is =0 (b) the intervals where f() is concave up or concave down. Use the second derivative test b locating value(s)of possible P.I. on the number line and test f () for each interval. If f () > 0,f() is concave up; f () < 0,f() is concave down. Second Derivative Test + 0 Note: f() is a polnomial function without asmptotes. (c) an point of inflection for f() To find the point(s) of inflection, eamine each possible P.I. in the second derivative test to decide: If before the possible P.I., f () > 0 and after the possible P.I., f () < 0, then this P.I. is a point of inflection and find the corresponding value. If before the possible P.I., f () < 0 and after the possible P.I., f () > 0, then this P.I. is a point of inflection and find the corresponding value. From the second derivative test, we get at = 0, a point of inflection and the value is f(0) = 0 Point of inflection at (0, 0)

4 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 4 of 9 f() is concave up at >0 f() is concave down at <0 Point of inflection is: (0, 0) 0 Eample 4: Given f() = 32 ( +2) 2, find: (a) the values for possible point(s) of inflection of f() f () = 12 ( +2) 3 ; f 24( 1) () = ( +2) 4 from f () : numerator= 0 = 24( 1) = 0 = = 1 ; denominator= 0 = ( +2) 4 =0 = = 2 the values for possible P.I. are = 2 and =1 (b) the intervals where f() is concave up or concave down. Use the second derivative test b locating value(s)of possible P.I. on the number line and test f () for each interval. If f () > 0,f() is concave up; f () < 0,f() is concave down. (c) an point of inflection for f() To find the point(s) of inflection, eamine each possible P.I. in the second derivative test to decide: If before the possible P.I., f () > 0 and after the possible P.I., f () < 0, then this P.I. is a point of inflection and find the corresponding value. If before the possible P.I., f () < 0 and after the possible P.I., f () > 0, then this P.I. is a point of inflection and find the corresponding value. From the second derivative test, we get at = 2, no point of inflection since the value is undefined, a vertical asmptote at = 2; at = 1, a point of inflection and the value is f(1) = 1 3 Point of inflection at ( ) 1, 1 3 Second Derivative Test Note: f() is a rational function with asmptotes. f() is concave up at < 2 or 2 <<1 f() is concave down at >1 Point of inflection is: ( ) 1,

5 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 5 of 9 Relative Etrema and the second derivative test Given f(), we saw that the first derivative test finds the relative etrema and the second derivatives f () will do the same. We need f () to find the critical numbers (C.N. ). Replace these C.N. in the answer of f (). If f (C.N.) > 0, then C.N. is a relative minimum and find the corresponding value. If f (C.N.) < 0, then C.N. is a relative maimum and find the corresponding value. If f (C.N.) = 0 or undefined, then C.N. is not a relative etremum. Eample 5: Given f() = , find: the relative etrema using the second derivative test. f () = =12( 1)( 3) f () =0 = 12( 1)( 3) = 0 the critical numbers are =0,=1 and =3 f () = replace =0 = f (0) = 36 > 0, relative minimum at (0, 9) replace =1 = f (1) = 24 < 0, relative maimum at (1, 4) replace =3 = f (3) = 72 > 0, relative minimum at (0, 36) Note : These results are the same as in Eample 1 and the graph of Eample 1. Eample 6: Given f() = , find: the relative etrema using the second derivative test. f () = : numerator= 0 = +4=0 = = 4 ; denominator= 0 = 2 3 =0 = =0 the critical numbers are = 4 and =0 f () = +6 4 replace = 4 = f ( 4) = > 0, relative minimum at ( 4, 1 16 replace =0 = f (0) = undefined, no etrema since the value is undefined, a vertical asmptote at = 0 Note : These results are the same as in Eample 2 and the graph of Eample 2. )

6 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 6 of 9 Absolute Etrema Given f() over a closed interval [a, b], find the highest value in that interval called the absolute maimum and the lowest value in that interval called the absolute minimum. First we locate an C.N. in that interval using the first derivative f (), then we build a table of values including the boundaries of the interval and an C.N. in that interval. The table has the values and the corresponding values. The highest will be the absolute maimum and the lowest will be the absolute minimum. Eample 7: Given f() = 3 27 over [0, 5] f () = = 3( 3)( +3) the critical numbers are = 3 ; =3;onl = 3 is between =0 and =5 = f() 0 f(0) = 0 = absolute maimum 3 f(3) = 54 = absolute minimum 5 f(5) = 10 Eample 8: Given f() = 2 on [ 2, 6] ( +1) 2 f () = 5 ( +1) 3 numerator= 0 = 5 =0 = = 5 ; denominator= 0 = ( +1) 3 =0 = = 1 the critical numbers are = 1 ; = 0 ; both values are between = 2 and =6 = f() 2 f( 2) = 4 1 f( 1) = 5 6 f(5) = f(6) = absolute maimum is at = 5 ; no absolute minimum.

7 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 7 of 9 Curve Sketching To sketch the curve of f() using the derivative method implies following these steps: (1) f() gives intercepts, an asmptotes if f() is a rational function. (2) f () gives relative etrema, intervals of increasing & decreasing with the first derivative test. (3) f () gives point(s) of inflection, intervals of concavit with the second derivative test. (4) a table including all results from steps (1) to (3). (5) Sketch the curve of f() showing all points found in steps (1) to (3). Eample 9: Given f() = 2 ; list (if an) all and intercepts, vertical and horizontal asmptotes, relative +2 etrema, points of inflection, intervals where f() is increasing, decreasing, concave up, concave down and then sketch the graph of f(). from f() = intercept: (0, 0) asmptotes: vertical asmptote: denominator= 0 = + 2 = 0 = = 2 2 horizontal asmptote: lim =D.N.E. ; no horizontal asmptote +2 from f ( +4) () = : the critical point at: =0,=0 ( +2) 2 from f 8 () = : no point of inflection ( +2) 3 values: f () + + f () + + values: 8 und 0 shape: inc.down dec.down dec.up inc.up Ma VA Min

8 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 8 of 9 Eample 10: Given f() = ; list (if an) all and intercepts, vertical and horizontal asmptotes, relative etrema, points of inflection, intervals where f() is increasing, decreasing, concave up, concave down and then sketch the graph of f(). from f() =2 2 (9 ) = intercept: (0, 0) ; (9, 0) no asmptotes since f() is a polnomial. from f () = =6(6 ) : the critical points at: (0, 0) ; (6, 216) from f () =36 12 : possible point of inflection at (3, 108) values: f () + + f () + + values: shape: dec.up inc.up inc.down dec.down Min P.I. Ma

9 Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 9 of 9 Eample 11: Sketch f() with the following conditions: points at ( 1, 1), (0, 0), (1, 1) ; horizontal asmptote: lim f() =0 < 1 = f () < 0,f () > 0 1 <<0 = f () < 0,f () > 0 0 <<1 = f () < 0,f () < 0 >1 = f () > 0,f () < 0 intervals signs of signs of shape of f() values f () f () and values ], 1[ + decreasing, concave up 1 ( 1, 1) ] 1, 0[ decreasing, concave down 0 point of inflection at (0, 0) ]0, 1[ decreasing, concave down 1 relative minimum at (1, 1) ]1, + [ + increasing, concave down + horizontal asmptote at =

Section 4.4 Concavity and Points of Inflection

Section 4.4 Concavity and Points of Inflection Section 4.4 Concavit and Points of Inflection In Chapter 3, ou saw that the second derivative of a function has applications in problems involving velocit and acceleration or in general rates-of-change

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

4.4. Concavity and Curve Sketching. Concavity

4.4. Concavity and Curve Sketching. Concavity 4.4 Concavit and Curve Sketching 267 4.4 Concavit and Curve Sketching f' decreases CONCAVE DOWN 3 f' increases 0 CONCAVE UP FIGURE 4.25 The graph of ƒsd = 3 is concave down on s - q, 0d and concave up

More information

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities Lesson. Graph Sketching Review: ) Interval Notation Set Notation Interval Notation Set Notation Interval Notation a) { R / < < 5} b) I (, 3) ( 3, ) c){ R} d) I (, ] (0, ) e){ R / > 5} f) I [ 3,5) ) Solving

More information

3.5 - Concavity 1. Concave up and concave down

3.5 - Concavity 1. Concave up and concave down . - Concavit. Concave up and concave down Eample: The graph of f is given below. Determine graphicall the interval on which f is For a function f that is differentiable on an interval I, the graph of f

More information

4 Using The Derivative

4 Using The Derivative 4 Using The Derivative 4.1 Local Maima and Minima * Local Maima and Minima Suppose p is a point in the domain of f : f has a local minimum at p if f (p) is less than or equal to the values of f for points

More information

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant.

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant. CURVE SKETCHING This is a handout that will help you systematically sketch functions on a coordinate plane. This handout also contains definitions of relevant terms needed for curve sketching. ASYMPTOTES:

More information

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval.

2.1. Definition: If a < b, then f(a) < f(b) for every a and b in that interval. If a < b, then f(a) > f(b) for every a and b in that interval. 1.1 Concepts: 1. f() is INCREASING on an interval: Definition: If a < b, then f(a) < f(b) for every a and b in that interval. A positive slope for the secant line. A positive slope for the tangent line.

More information

Math 1525 Excel Lab 9 Fall 2000 This lab is designed to help you discover how to use Excel to identify relative extrema for a given function.

Math 1525 Excel Lab 9 Fall 2000 This lab is designed to help you discover how to use Excel to identify relative extrema for a given function. Math 1525 Excel Lab 9 Fall 2 This lab is designed to help ou discover how to use Excel to identif relative extrema for a given function. Example #1. Stud the data table and graph below for the function

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

2.3 Graph Sketching: Asymptotes and Rational Functions Math 125

2.3 Graph Sketching: Asymptotes and Rational Functions Math 125 .3 Graph Sketching: Asymptotes and Rational Functions Math 15.3 GRAPH SKETCHING: ASYMPTOTES AND RATIONAL FUNCTIONS All the functions from the previous section were continuous. In this section we will concern

More information

Further Differentiation

Further Differentiation Worksheet 39 Further Differentiation Section Discriminant Recall that the epression a + b + c is called a quadratic, or a polnomial of degree The graph of a quadratic is called a parabola, and looks like

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions.

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions. YOU WILL NEED graph paper coloured pencils or pens graphing calculator or graphing software Eploring Quotients of Polnomial Functions EXPLORE the Math Each row shows the graphs of two polnomial functions.

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

Math Stuart Jones. 4.3 Curve Sketching

Math Stuart Jones. 4.3 Curve Sketching 4.3 Curve Sketching In this section, we combine much of what we have talked about with derivatives thus far to draw the graphs of functions. This is useful in many situations to visualize properties of

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

Math 111 Lecture Notes Section 3.3: Graphing Rational Functions

Math 111 Lecture Notes Section 3.3: Graphing Rational Functions Math 111 Lecture Notes Section 3.3: Graphing Rational Functions A rational function is of the form R() = p() q() where p and q are polnomial functions. The zeros of a rational function occur where p()

More information

MA 131 Lecture Notes Chapter 4 Calculus by Stewart

MA 131 Lecture Notes Chapter 4 Calculus by Stewart MA 131 Lecture Notes Chapter 4 Calculus by Stewart 4.1) Maimum and Minimum Values 4.3) How Derivatives Affect the Shape of a Graph A function is increasing if its graph moves up as moves to the right and

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

Lesson 2.4 Exercises, pages

Lesson 2.4 Exercises, pages Lesson. Eercises, pages 13 10 A 3. Sketch the graph of each function. ( - )( + 1) a) = b) = + 1 ( )( 1) 1 (- + )( - ) - ( )( ) 0 0 The function is undefined when: 1 There is a hole at 1. The function can

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A rational function is of the form R() = p() q() where p and q are polnomial functions. A rational function is undefined where the denominator equals zero, as this would cause division b zero. The zeros

More information

Sections 4.3, 4.5 & 4.6: Graphing

Sections 4.3, 4.5 & 4.6: Graphing Sections 4.3, 4.5 & 4.6: Graphing In this section, we shall see how facts about f () and f () can be used to supply useful information about the graph of f(). Since there are three sections devoted to

More information

Module 3 Graphing and Optimization

Module 3 Graphing and Optimization Module 3 Graphing and Optimization One of the most important applications of calculus to real-world problems is in the area of optimization. We will utilize the knowledge gained in the previous chapter,

More information

Date Lesson Text TOPIC Homework. Simplifying Rational Expressions Pg. 246 # 2-5, 7

Date Lesson Text TOPIC Homework. Simplifying Rational Expressions Pg. 246 # 2-5, 7 UNIT RATIONAL FUNCTIONS EQUATIONS and INEQUALITIES Date Lesson Tet TOPIC Homework Oct. 7.0 (9).0 Simplifing Rational Epressions Pg. 6 # -, 7 Oct. 9. (0). Graphs of Reciprocal Functions Pg. #,,, doso, 6,

More information

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity MA123, Chapter 6: Etreme values, Mean Value Theorem, Curve sketching, and Concavit Chapter Goals: Appl the Etreme Value Theorem to find the global etrema for continuous function on closed and bounded interval.

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

f (x ) ax b cx d Solving Rational Equations Pg. 285 # 1, 3, 4, (5 7)sodo, 11, 12, 13

f (x ) ax b cx d Solving Rational Equations Pg. 285 # 1, 3, 4, (5 7)sodo, 11, 12, 13 UNIT RATIONAL FUNCTIONS EQUATIONS and INEQUALITIES Date Lesson Tet TOPIC Homework Oct. 7.0 (9).0 Simplifing Rational Epressions Pg. 6 # -, 7 Oct. 8. (0). Graphs of Reciprocal Functions Pg. #,,, doso, 6,

More information

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS We read graphs as we read sentences: left to right. Plainly speaking, as we scan the function from left to right, the function is said to

More information

1. A only. 2. B only. 3. both of them correct

1. A only. 2. B only. 3. both of them correct Version PREVIEW HW 10 hoffman (575) 1 This print-out should have 10 questions. Multiple-choice questions ma continue on the net column or page find all choices before answering. CalCe01b 001 10.0 points

More information

MAC 2311 Chapter 3 Review Materials (Part 1) Topics Include Max and Min values, Concavity, Curve Sketching (first and second derivative analysis)

MAC 2311 Chapter 3 Review Materials (Part 1) Topics Include Max and Min values, Concavity, Curve Sketching (first and second derivative analysis) MAC Chapter Review Materials (Part ) Topics Include Ma and Min values, Concavit, Curve Sketching (first and second derivative analsis) MULTIPLE CHOICE. Choose the one alternative that best completes the

More information

3 Limits Involving Infinity: Asymptotes LIMITS INVOLVING INFINITY. 226 Chapter 3 Additional Applications of the Derivative

3 Limits Involving Infinity: Asymptotes LIMITS INVOLVING INFINITY. 226 Chapter 3 Additional Applications of the Derivative 226 Chapter 3 Additional Applications of the Derivative 52. Given the function f() 2 3 3 2 2 7, complete the following steps: (a) Graph using [, ] b [, ] and [, ] b [ 2, 2]2. (b) Fill in the following

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

4.4 Absolute Value Equations. What is the absolute value of a number? Example 1 Simplify a) 6 b) 4 c) 7 3. Example 2 Solve x = 2

4.4 Absolute Value Equations. What is the absolute value of a number? Example 1 Simplify a) 6 b) 4 c) 7 3. Example 2 Solve x = 2 4.4 Absolute Value Equations What is the absolute value of a number? Eample Simplif a) 6 b) 4 c) 7 3 Eample Solve = Steps for solving an absolute value equation: ) Get the absolute value b itself on one

More information

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e CALCULUS: by Rogawski 8) 1 y x 1-1 x Chapter 4.2: Extreme Values What you'll Learn About Critical Points/Extreme Values 12) f(x) 4x - x 1 1 P a g e Determine the extreme values of each function 2 21) f(x)

More information

What is the reasonable domain of this volume function? (c) Can there exist a volume of 0? (d) Estimate a maximum volume for the open box.

What is the reasonable domain of this volume function? (c) Can there exist a volume of 0? (d) Estimate a maximum volume for the open box. MA 15800 Lesson 11 Summer 016 E 1: From a rectangular piece of cardboard having dimensions 0 inches by 0 inches, an open bo is to be made by cutting out identical squares of area from each corner and,

More information

COLLEGE ALGEBRA REVIEW FOR TEST 3

COLLEGE ALGEBRA REVIEW FOR TEST 3 COLLEGE ALGEBRA REVIEW FOR TEST If the following is a polnomial function, then state its degree and leading coefficient. If it is not, then state this fact. ) a) f() = + 9 + + 9 + b) f() = + 9 Provide

More information

Use Derivatives to Sketch the Graph of a Polynomial Function.

Use Derivatives to Sketch the Graph of a Polynomial Function. Applications of Derivatives Curve Sketching (using derivatives): A) Polynomial Functions B) Rational Functions Lesson 5.2 Use Derivatives to Sketch the Graph of a Polynomial Function. Idea: 1) Identify

More information

Rational Functions with Removable Discontinuities

Rational Functions with Removable Discontinuities Rational Functions with Removable Discontinuities 1. a) Simplif the rational epression and state an values of where the epression is b) Using the simplified epression in part (a), predict the shape for

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

Section 4.3: How Derivatives Affect the Shape of the Graph

Section 4.3: How Derivatives Affect the Shape of the Graph Section 4.3: How Derivatives Affect the Shape of the Graph What does the first derivative of a function tell you about the function? Where on the graph below is f x > 0? Where on the graph below is f x

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions Math 3200 Unit I Ch 3 - Polnomial Functions 1 Unit I - Chapter 3 Polnomial Functions 3.1 Characteristics of Polnomial Functions Goal: To Understand some Basic Features of Polnomial functions: Continuous

More information

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text)

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text) MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of tet) The property of the graph of a function curving upward or downward is defined as the concavity of the graph of a function. Concavity if how

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

AH Properties of Functions.notebook April 19, 2018

AH Properties of Functions.notebook April 19, 2018 Functions Rational functions are of the form where p(x) and q(x) are polynomials. If you can sketch a function without lifting the pencil off the paper, it is continuous. E.g. y = x 2 If there is a break

More information

Functions Project Core Precalculus Extra Credit Project

Functions Project Core Precalculus Extra Credit Project Name: Period: Date Due: 10/10/1 (for A das) and 10/11/1(for B das) Date Turned In: Functions Project Core Precalculus Etra Credit Project Instructions and Definitions: This project ma be used during the

More information

Graphing. I ll put this information together with some other techniques into a step-by-step graphing procedure. Here it is:

Graphing. I ll put this information together with some other techniques into a step-by-step graphing procedure. Here it is: Graphing 1010005 Calculus provides information which is useful in graphing curves. The first derivative y tells where a curve is increasing and where a curve is decreasing. The second derivative y tells

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

Sec.4.1 Increasing and Decreasing Functions

Sec.4.1 Increasing and Decreasing Functions U4L1: Sec.4.1 Increasing and Decreasing Functions A function is increasing on a particular interval if for any, then. Ie: As x increases,. A function is decreasing on a particular interval if for any,

More information

Curve Sketching. Calculus U Y2]0x1[5e OK`uJtAaR OSVoufRtIwnaRrre] ]LMLLCr.^ J TAulJlu BrXitgqhItTsq LrfeJsdeKrnv\eydE. Name ID: 1

Curve Sketching. Calculus U Y2]0x1[5e OK`uJtAaR OSVoufRtIwnaRrre] ]LMLLCr.^ J TAulJlu BrXitgqhItTsq LrfeJsdeKrnv\eydE. Name ID: 1 Calculus U Y]01[5e OK`uJtAaR OSVoufRtIwnaRrre] ]LMLLCr.^ J TAulJlu BrXitgqhItTsq LrfeJsdeKrnv\edE. Curve Sketching Name ID: 1 Date Period For each problem, find the: and intercepts, asmptotes, -coordinates

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190 Section 3.(part), 3.3-3.4 Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 9 9 rel max f (a) = ; slope tangent line = 8 7. slope of tangent line: neg f (a)

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

EXPLORING RATIONAL FUNCTIONS GRAPHICALLY

EXPLORING RATIONAL FUNCTIONS GRAPHICALLY EXPLORING RATIONAL FUNCTIONS GRAPHICALLY Precalculus Project Objectives: To find patterns in the graphs of rational functions. To construct a rational function using its properties. Required Information:

More information

Graphing Rational Functions

Graphing Rational Functions 5 LESSON Graphing Rational Functions Points of Discontinuit and Vertical Asmptotes UNDERSTAND The standard form of a rational function is f () 5 P(), where P () and Q () Q() are polnomial epressions. Remember

More information

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x Section 6.3 Etrema and Models 593 6.3 Eercises In Eercises 1-8, perform each of the following tasks for the given polnomial. i. Without the aid of a calculator, use an algebraic technique to identif the

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A function f is even if for ever in the domain of f it holds that f( ) = f(). Visuall, an even function is smmetric about the -ais. A function f is odd if for ever in the domain of f it holds that f( )

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

3.2 Extrema & Function Analysis Name: 1

3.2 Extrema & Function Analysis Name: 1 Precalculus Write our questions and thoughts here! 3.2 Etrema & Function Analsis Name: 1 Absolute ma/min absolutel the. Relative ma/min a point on the function that is. Finding a ma/min means finding the

More information

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition Calculus & Its Applications Larr J. Goldstein David La Nakhle I. Asmar David I. Schneider Thirteenth Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM20 2JE England and Associated Companies

More information

To find the intervals on which a given polynomial function is increasing/decreasing using GGB:

To find the intervals on which a given polynomial function is increasing/decreasing using GGB: To find the intervals on which a given polynomial function is increasing/decreasing using GGB: 1. Use GGB to graph the derivative of the function. = ; 2. Find any critical numbers. (Recall that the critical

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote.

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote. Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, 16 is a rational function.

More information

Section 4.4 Rational Functions and Their Graphs

Section 4.4 Rational Functions and Their Graphs Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.

More information

Section 3.6 Rational Functions

Section 3.6 Rational Functions Section 3.6 Rational Functions DEFINITION: A rational function is a function of the form r() = P() Q() where P() and Q() are polynomials with Q() 0. EXAMPLE: f() = 1, g() = 7 4+3, h() = 2 +5+11 2 4 + 3

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Math 121. Graphing Rational Functions Fall 2016

Math 121. Graphing Rational Functions Fall 2016 Math 121. Graphing Rational Functions Fall 2016 1. Let x2 85 x 2 70. (a) State the domain of f, and simplify f if possible. (b) Find equations for the vertical asymptotes for the graph of f. (c) For each

More information

1.) ( ) Step 1: Factor the numerator and the denominator. Find the domain. is in lowest terms.

1.) ( ) Step 1: Factor the numerator and the denominator. Find the domain. is in lowest terms. GP3-HW11 College Algebra Sketch the graph of each rational function. 1.) Step 1: Factor the numerator and the denominator. Find the domain. { } Step 2: Rewrite in lowest terms. The rational function is

More information

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions?

1.2. Characteristics of Polynomial Functions. What are the key features of the graphs of polynomial functions? 1.2 Characteristics of Polnomial Functions In Section 1.1, ou eplored the features of power functions, which are single-term polnomial functions. Man polnomial functions that arise from real-world applications

More information

Math 1314 Lesson 13 Analyzing Other Types of Functions

Math 1314 Lesson 13 Analyzing Other Types of Functions Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x =

More information

CK-12 PreCalculus Concepts 1

CK-12 PreCalculus Concepts 1 Chapter Functions and Graphs Answer Ke. Functions Families. - - - - - - - -. - - - - - - - - CK- PreCalculus Concepts Chapter Functions and Graphs Answer Ke. - - - - - - - -. - - - - - - - - 5. - - - -

More information

Re - do all handouts and do the review from the book. Remember to SHOW ALL STEPS. You must be able to solve analytically and then verify with a graph.

Re - do all handouts and do the review from the book. Remember to SHOW ALL STEPS. You must be able to solve analytically and then verify with a graph. Math 180 - Review Chapter 3 Name Re - do all handouts and do the review from the book. Remember to SHOW ALL STEPS. You must be able to solve analticall and then verif with a graph. Find the rational zeros

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form QUADRATIC FUNCTIONS Investigating Quadratic Functions in Verte Form The two forms of a quadratic function that have been eplored previousl are: Factored form: f ( ) a( r)( s) Standard form: f ( ) a b c

More information

UNIT 1 Intro Skills. SKILLZ 1. Fill in the missing representation of the given function. VERBALLY ALGEBRAICALLY NUMERICALLY GRAPHICALLY.

UNIT 1 Intro Skills. SKILLZ 1. Fill in the missing representation of the given function. VERBALLY ALGEBRAICALLY NUMERICALLY GRAPHICALLY. UNIT 1 Intro Skills REVIEW NAME: DATE: SKILLZ 1. Fill in the missing representation of the given function. VERBALLY ALGEBRAICALLY NUMERICALLY GRAPHICALLY = 1 3 + 6 Time (hours) 6-3 Sodas (# cans) 0. Use

More information

Rational Functions. Definition A rational function can be written in the form. where N(x) and D(x) are

Rational Functions. Definition A rational function can be written in the form. where N(x) and D(x) are Rational Functions Deinition A rational unction can be written in the orm () N() where N() and D() are D() polynomials and D() is not the zero polynomial. *To ind the domain o a rational unction we must

More information

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2 MCS 8 Quiz Fall 6. (5pts) Solve the following equations for. 7 = 4 + 3. (5pts) Solve the following equations for. 3 5 = 3. (5pts) Factor 3 + 35 as much as possible. 4. (5pts) Simplify +. 5. (5pts) Solve

More information

We can determine this with derivatives: the graph rises where its slope is positive.

We can determine this with derivatives: the graph rises where its slope is positive. Math 1 Derivatives and Graphs Stewart. Increasing and decreasing functions. We will see how to determine the important features of a graph y = f(x) from the derivatives f (x) and f (x), summarizing our

More information

Math 1314 Lesson 13 Analyzing Other Types of Functions

Math 1314 Lesson 13 Analyzing Other Types of Functions Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x a

More information

Math Sections 4.4 and 4.5 Rational Functions. 1) A rational function is a quotient of polynomial functions:

Math Sections 4.4 and 4.5 Rational Functions. 1) A rational function is a quotient of polynomial functions: 1) A rational function is a quotient of polynomial functions: 2) Explain how you find the domain of a rational function: a) Write a rational function with domain x 3 b) Write a rational function with domain

More information

What is a Function? How to find the domain of a function (algebraically) Domain hiccups happen in 2 major cases (rational functions and radicals)

What is a Function? How to find the domain of a function (algebraically) Domain hiccups happen in 2 major cases (rational functions and radicals) What is a Function? Proving a Function Vertical Line Test Mapping Provide definition for function Provide sketch/rule for vertical line test Provide sketch/rule for mapping (notes #-3) How to find the

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

Checkpoint: Assess Your Understanding, pages

Checkpoint: Assess Your Understanding, pages Checkpoint: Assess Your Understanding, pages 1 18.1 1. Multiple Choice Given the graph of the function f(), which graph below right represents = f()? f() D C A B Chapter : Radical and Rational Functions

More information

Relating Graphs of f and f

Relating Graphs of f and f Relating Graphs of f and f Do Now: Answer each of the following questions. 1. When the function, f, is increasing, what does that mean about the derivative, f? 2. When the function, f, is decreasing, what

More information

Section 4.1 Max and Min Values

Section 4.1 Max and Min Values Page 1 of 5 Section 4.1 Ma and Min Values Horizontal Tangents: We have looked at graphs and identified horizontal tangents, or places where the slope of the tangent line is zero. Q: For which values does

More information

5.2 Properties of Rational functions

5.2 Properties of Rational functions 5. Properties o Rational unctions A rational unction is a unction o the orm n n1 polynomial p an an 1 a1 a0 k k1 polynomial q bk bk 1 b1 b0 Eample 3 5 1 The domain o a rational unction is the set o all

More information

Example 1: Use the graph of the function f given below to find the following. a. Find the domain of f and list your answer in interval notation

Example 1: Use the graph of the function f given below to find the following. a. Find the domain of f and list your answer in interval notation When working with the graph of a function, the inputs (the elements of the domain) are always the values on the horizontal ais (-ais) and the outputs (the elements of the range) are always the values on

More information

CONCAVITY AND INFLECTION POINTS

CONCAVITY AND INFLECTION POINTS CONCAVITY AND INFLECTION POINTS Find the Second Derivative of the function, f. Set the Second Derivative equal to zero and solve. Determine whether the Second Derivative is undefined for any x-values.

More information

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam Sections.1,.2,.3, 8.1,8.6 & 8.7 Practice for the Eam MAC 1 -- Sulivan 8th Ed Name: Date: Class/Section: State whether the function is a polnomial function or not. If it is, give its degree. If it is not,

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x

9. p(x) = x 3 8x 2 5x p(x) = x 3 + 3x 2 33x p(x) = x x p(x) = x 3 + 5x x p(x) = x 4 50x Section 6.3 Etrema and Models 593 6.3 Eercises In Eercises 1-8, perform each of the following tasks for the given polnomial. i. Without the aid of a calculator, use an algebraic technique to identif the

More information