Sparse Matrices. sparse many elements are zero dense few elements are zero

Size: px
Start display at page:

Download "Sparse Matrices. sparse many elements are zero dense few elements are zero"

Transcription

1 Sparse Matrices sparse many elements are zero dense few elements are zero

2 Special Matrices A square matrix has the same number of rows and columns. Some special forms of square matrices are Diagonal: M(i,j) = 0 for i j Tridiagonal: M(i,j) = 0 for i-j < 1 Lower triangular: M(i,j) = 0 for i < j Upper triangular: M(i,j) = 0 for i > j Symmetric M(i,j) = M(j,i) for all i and j See Figure 2

3 Special Matrices 3

4 Example Of Sparse Matrices Diagonal Tri-diagonal lower triangular (?) Two possible representations of sparse matrix: 1. array 2. linked list

5 For example consider a matrix having 100 row and 100 column that have only 2000 non zero elements. Space required by above matrix is 1000,000. So we can store all the non-zero elements of above matrix in a 1D matrix of size or Create a linked list of non-zero elements.

6 Array Representation of Sparse Matrix The nonzero entries may be mapped into a 1D array in row-major order To reconstruct the matrix structure, need to record the row and column each nonzero comes from 6

7 Linked Representation of Sparse Matrix A shortcoming of the 1-D array of a sparse matrix is that we need to know the number of nonzero terms in each of the sparse matrices when the array is created. A linked representation can overcome this shortcoming. 7

8 Unstructured Sparse Matrices Airline flight matrix. airports are numbered 1 through n flight(i,j) = list of nonstop flights from airport i to airport j n = 1000 (say) n x n array of list references => 4 million bytes total number of flights = 20,000 (say) need at most 20,000 list references => at most 80,000 bytes

9 Representation Of Unstructured Sparse Matrices Single linear list in row-major order. scan the nonzero elements of the sparse matrix in rowmajor order. each nonzero element is represented by a triple (row, column, value) the list of triples may be an array list or a linked list (chain)

10 Single Linear List Example list = row column value

11 Array Linear List Representation row list = column value element row column value

12 Node structure. Chain Representation row value col next

13 Single Chain row list = column value null firstnode

14 Multi-Linked Lists A multilinked list is a more general linked list with multiple links from nodes. In multi-linked list, each node can have any number of pointers to other nodes, and there may or may not be inverses for each pointer. Multi-lists are essentially the technique of embedding multiple lists into a single data structure. A multi-list has more than one next pointer, like a doubly linked list, but the pointers create separate lists

15 head Multi-lists

16 head Multi-lists

17 Linked Structures A doubly-linked list or multi-list is a data structure with multiple pointers in each node. In a doubly-linked list the two pointers create bidirectional links. In a multi-list the pointers used to make multiple link routes through the data.

18 Example : List of List Suppose you want to make list of all Customers in particular bank. Bank will have multiple branches. Each branch will have multiple customers.

19 Multi-list linked representation of Sparse Matrix

20 3-Tuple Representation Of Sparse Matrix sparse matrix 3-Tuple Representation Of Sparse Matrix Using Array: no of row no of col no of non zero value

21 Elements in the first row represents the number of rows, columns and non-zero values in sparse matrix. First Row rows 3 - columns 2 - non- zero values Elements in the other rows gives information about the location and value of non-zero elements ( Second Row) - represents value 1 at 0th Row, 0th column (Third Row) - represents value 4 at 2nd Row, 1st column

22

23 Multi-list Representation Both row and column lists. Node structure. row col value down next

24 Row Lists null n n n

25 Column Lists n n n

26 Muti linked Lists null n n n row[] n n n

27 * structure for col headnode */ struct cheadnode { int colno ; struct node *down ; struct cheadnode *next ; } ; /* structure for row headnode */ struct rheadnode { int rowno ; struct node * right ; struct rheadnode *next ; } ;

28 /* structure for node to store element */ struct node { int row ; int col ; int val ; struct node *right ; struct node *down ; } ; /* structure for special headnode */ struct spmat { struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ; int noofcols ; } ;

29 struct sparse { int *sp ; int row ; struct spmat *smat ; struct cheadnode *chead[max2] ; struct rheadnode *rhead[max1] ; struct node *nd ; } ;

30 One Linear List Per Row row1 = [(3, 3), (5,4)] row2 = [(3,5), (4,7)] row3 = [] row4 = [(2,2), (3,6)]

31 Node structure. Array Of Row Chains col next value

32 Array Of Row Chains null null null null row[]

33 Orthogonal List Representation Both row and column lists. Node structure. row down col next value

34 Row Lists null n n n

35 Column Lists n n n

36 Orthogonal Lists null n n n row[] n n n

37 Variations May use circular lists instead of chains.

38 Approximate Memory Requirements 500 x 500 matrix with 1994 nonzero elements 2D array 500 x 500 x 4 = 1million bytes Single Array List 3 x 1994 x 4 = 23,928 bytes One Chain Per Row x 4 = 25,928

39 Runtime Performance Matrix Transpose 500 x 500 matrix with 1994 nonzero elements 2D array Single Array List One Chain Per Row 210 ms 6 ms 12 ms

40 Performance Matrix Addition. 500 x 500 matrices with 1994 and 999 nonzero elements 2D array Single Array List One Chain Per Row 880 ms 18 ms 29 ms

Abstract Data Type array. 1D Array Representation In C++ Space Overhead. Data Structures and Programming 資料結構與程式設計. Topic 5 Arrays and Matrices

Abstract Data Type array. 1D Array Representation In C++ Space Overhead. Data Structures and Programming 資料結構與程式設計. Topic 5 Arrays and Matrices Data Structures and Programming 資料結構與程式設計 Topic 5 Arrays and Matrices 課程編號 :901 31900 EE 3011 科目名稱 : 資料結構與程式設計授課教師 : 黃鼎偉時間地點 : 一 678 電機二館 229 Abstract Data Type array Abstract Data Type (ADT) AbstractDataType

More information

An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type.

An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Data Structures Introduction An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Representation of a large number of homogeneous

More information

UNIT 2 ARRAYS 2.0 INTRODUCTION. Structure. Page Nos.

UNIT 2 ARRAYS 2.0 INTRODUCTION. Structure. Page Nos. UNIT 2 ARRAYS Arrays Structure Page Nos. 2.0 Introduction 23 2.1 Objectives 24 2.2 Arrays and Pointers 24 2.3 Sparse Matrices 25 2.4 Polynomials 28 2.5 Representation of Arrays 30 2.5.1 Row Major Representation

More information

How to declare an array in C?

How to declare an array in C? Introduction An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Representation of a large number of homogeneous values.

More information

2.1.5 Miscellaneous Topics

2.1.5 Miscellaneous Topics 2.1.5 Miscellaneous Topics struct definition of a data type union not specify whether a given member has public, private, protected no way to know what the data type is until runtime static class data

More information

Applications of Linked Lists

Applications of Linked Lists Applications of Linked Lists Linked List concept can be used to deal with many practical problems. Problem 1: Suppose you need to program an application that has a pre-defined number of categories, but

More information

Spare Matrix Formats, and The Standard Template Library

Spare Matrix Formats, and The Standard Template Library Annotated slides CS319: Scientific Computing (with C++) Spare Matrix Formats, and The Standard Template Library Week 10: 9am and 4pm, 20 March 2019 1 Sparse Matrices 2 3 Compressed Column Storage 4 (Not)

More information

Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics

Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics Outline Introduction Sherman-Morrison formula Woodbury formula Indexed storage of sparse matrices Types

More information

Data Structures and Algorithms(12)

Data Structures and Algorithms(12) Ming Zhang "Data s and Algorithms" Data s and Algorithms(12) Instructor: Ming Zhang Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (the "Eleventh Five-Year"

More information

Fall, 2015 Prof. Jungkeun Park

Fall, 2015 Prof. Jungkeun Park Data Structures t and Algorithms Circular lists / Doubly linked lists Fall, 2015 Prof. Jungkeun Park Copyright Notice: This material is modified version of the lecture slides by Prof. Rada Mihalcea in

More information

Chapter Introduction

Chapter Introduction Chapter 4.1 Introduction After reading this chapter, you should be able to 1. define what a matrix is. 2. identify special types of matrices, and 3. identify when two matrices are equal. What does a matrix

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

Data Structures Through C. Student Workbook

Data Structures Through C. Student Workbook Data Structures Through C Student Workbook Contents Lecture 1: C Revision I 01 Importance of data structures Data types in C Instructions and its types The decision control instruction Working of logical

More information

Data Structures for sparse matrices

Data Structures for sparse matrices Data Structures for sparse matrices The use of a proper data structures is critical to achieving good performance. Generate a symmetric sparse matrix A in matlab and time the operations of accessing (only)

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

Monday, October 24, 2016

Monday, October 24, 2016 Monday, October 24, 2016 Topics for today Arrays and Indexed Addressing Arrays as parameters of functions Multi-dimensional arrays Option A: Space-minimal solution Option B: Iliffe vectors Array bound

More information

Computers in Engineering. Linear Algebra Michael A. Hawker

Computers in Engineering. Linear Algebra Michael A. Hawker Computers in Engineering COMP 208 Linear Algebra Michael A. Hawker Representing Vectors A vector is a sequence of numbers (the components of the vector) If there are n numbers, the vector is said to be

More information

Computers in Engineering COMP 208. Representing Vectors. Vector Operations 11/29/2007. Scaling. Adding and Subtracting

Computers in Engineering COMP 208. Representing Vectors. Vector Operations 11/29/2007. Scaling. Adding and Subtracting Computers in Engineering COMP 208 Linear Algebra Michael A. Hawker Representing Vectors A vector is a sequence of numbers (the components of the vector) If there are n numbers, the vector is said to be

More information

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2 Uppsala University Department of Information technology Hands-on : Ill-conditioning Exercise (Ill-conditioned linear systems) Definition A system of linear equations is said to be ill-conditioned when

More information

0_PreCNotes17 18.notebook May 16, Chapter 12

0_PreCNotes17 18.notebook May 16, Chapter 12 Chapter 12 Notes BASIC MATRIX OPERATIONS Matrix (plural: Matrices) an n x m array of elements element a ij Example 1 a 21 = a 13 = Multiply Matrix by a Scalar Distribute scalar to all elements Addition

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Wednesday, March 14, 2018

Wednesday, March 14, 2018 Wednesday, March 14, 2018 Topics for today Arrays and Indexed Addressing Arrays as parameters of functions Multi-dimensional arrays Option A: Space-minimal solution Option B: Iliffe vectors Array bound

More information

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer:

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: Understand the relationships between statements that are equivalent to the invertibility of a square matrix (Theorem 1.5.3). Use the inversion algorithm to find the inverse of an invertible matrix. Express

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2013 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

PetShop (BYU Students, SIGGRAPH 2006)

PetShop (BYU Students, SIGGRAPH 2006) Now Playing: PetShop (BYU Students, SIGGRAPH 2006) My Mathematical Mind Spoon From Gimme Fiction Released May 10, 2005 Geometric Objects in Computer Graphics Rick Skarbez, Instructor COMP 575 August 30,

More information

Arrays, Vectors, Matrices

Arrays, Vectors, Matrices Arrays, Vectors, Matrices Goal: o Scientific Eng. o Numerical computations o Array are very efficient way of organizing data since accessing array elements requires O(1). Characteristics of an array: o

More information

Optimizing the operations with sparse matrices on Intel architecture

Optimizing the operations with sparse matrices on Intel architecture Optimizing the operations with sparse matrices on Intel architecture Gladkikh V. S. victor.s.gladkikh@intel.com Intel Xeon, Intel Itanium are trademarks of Intel Corporation in the U.S. and other countries.

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2018 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Ashish Gupta, Data JUET, Guna

Ashish Gupta, Data JUET, Guna Categories of data structures Data structures are categories in two classes 1. Linear data structure: - organized into sequential fashion - elements are attached one after another - easy to implement because

More information

abstract classes & types

abstract classes & types abstract classes & types learning objectives algorithms your software system software hardware learn how to define and use abstract classes learn how to define types without implementation learn about

More information

Adjacency Matrix Undirected Graph. » Matrix [ p, q ] is 1 (True) if < p, q > is an edge in the graph. Graphs Representation & Paths

Adjacency Matrix Undirected Graph. » Matrix [ p, q ] is 1 (True) if < p, q > is an edge in the graph. Graphs Representation & Paths djacency Matrix Undirected Graph Row and column indices are vertex numbers Graphs Representation & Paths Mixture of Chapters 9 & 0» Matrix [ p, q ] is (True) if < p, q > is an edge in the graph if < p,

More information

Review of Elementary Data. Manoj Kumar DTU, Delhi

Review of Elementary Data. Manoj Kumar DTU, Delhi Review of Elementary Data Manoj Kumar DTU, Delhi Structures (Part 2) Linked List: Problem Find the address/data of first common node. Use only constant amount of additional space. Your algorithm should

More information

Module 6: Array in C

Module 6: Array in C 1 Table of Content 1. Introduction 2. Basics of array 3. Types of Array 4. Declaring Arrays 5. Initializing an array 6. Processing an array 7. Summary Learning objectives 1. To understand the concept of

More information

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview Aim Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk What should a 2-hour PhD lecture on structure

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

MODULE 3: LINKED LIST

MODULE 3: LINKED LIST MODULE 3: LINKED LIST DEFINITION A linked list, or one-way list, is a linear collection of data elements, called nodes, where the linear order is given by means of pointers. That is, each node is divided

More information

Sparse Multifrontal Performance Gains via NVIDIA GPU January 16, 2009

Sparse Multifrontal Performance Gains via NVIDIA GPU January 16, 2009 Sparse Multifrontal Performance Gains via NVIDIA GPU January 16, 2009 Dan l Pierce, PhD, MBA, CEO & President AAI Joint with: Yukai Hung, Chia-Chi Liu, Yao-Hung Tsai, Weichung Wang, and David Yu Access

More information

Linked Lists in C and C++

Linked Lists in C and C++ Linked Lists in C and C++ Professor Hugh C. Lauer CS-2303, System Programming Concepts (Slides include materials from The C Programming Language, 2 nd edition, by Kernighan and Ritchie, Absolute C++, by

More information

CSE 230 Intermediate Programming in C and C++ Arrays and Pointers

CSE 230 Intermediate Programming in C and C++ Arrays and Pointers CSE 230 Intermediate Programming in C and C++ Arrays and Pointers Fall 2017 Stony Brook University Instructor: Shebuti Rayana http://www3.cs.stonybrook.edu/~cse230/ Definition: Arrays A collection of elements

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

PENLIB/SDP User s Guide

PENLIB/SDP User s Guide PENLIB/SDP User s Guide Michal Kočvara Michael Stingl In this guide we give a description of parameters of function sdp, solving linear semidefinite programming problems with linear constraints. This function

More information

Sparse matrices: Basics

Sparse matrices: Basics Outline : Basics Bora Uçar RO:MA, LIP, ENS Lyon, France CR-08: Combinatorial scientific computing, September 201 http://perso.ens-lyon.fr/bora.ucar/cr08/ 1/28 CR09 Outline Outline 1 Course presentation

More information

Digraphs and Matlab. 1 Digraphs. David Arnold. August 31, 1996

Digraphs and Matlab. 1 Digraphs. David Arnold. August 31, 1996 Digraphs and Matlab David Arnold August 3, 996 Abstract Digraphs are introduced along with their adjacency matrix. An algorithm is proposed for counting paths of length n. Prerequisites. Matrix multiplication.

More information

Haar Wavelet Image Compression

Haar Wavelet Image Compression Math 57 Haar Wavelet Image Compression. Preliminaries Haar wavelet compression is an efficient way to perform both lossless and lossy image compression. It relies on averaging and differencing the values

More information

CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs

CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs 5 3 2 4 1 0 2 Graphs A graph G = (V, E) Where V is a set of vertices E is a set of edges connecting vertex pairs Example: V = {0, 1, 2, 3, 4, 5} E = {(0, 1),

More information

Chapter 18 Indexing Structures for Files

Chapter 18 Indexing Structures for Files Chapter 18 Indexing Structures for Files Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Disk I/O for Read/ Write Unit for Disk I/O for Read/ Write: Chapter 18 One Buffer for

More information

Teaching Manual Math 2131

Teaching Manual Math 2131 Math 2131 Linear Algebra Labs with MATLAB Math 2131 Linear algebra with Matlab Teaching Manual Math 2131 Contents Week 1 3 1 MATLAB Course Introduction 5 1.1 The MATLAB user interface...........................

More information

Chapter 13: Indexing. Chapter 13. ? value. Topics. Indexing & Hashing. value. Conventional indexes B-trees Hashing schemes (self-study) record

Chapter 13: Indexing. Chapter 13. ? value. Topics. Indexing & Hashing. value. Conventional indexes B-trees Hashing schemes (self-study) record Chapter 13: Indexing (Slides by Hector Garcia-Molina, http://wwwdb.stanford.edu/~hector/cs245/notes.htm) Chapter 13 1 Chapter 13 Indexing & Hashing value record? value Chapter 13 2 Topics Conventional

More information

Previous Year Nagarro Questions

Previous Year Nagarro Questions TECHNICAL QUESTIONS: Q1. Write a function to give demonstrate the functionality of 3D matrix in 1D matirx. Function prototye: void set (int value, int index X, int index Y, int index Z, int [] 1dArray);

More information

Matrices 4: use of MATLAB

Matrices 4: use of MATLAB Matrices 4: use of MATLAB Anthony Rossiter http://controleducation.group.shef.ac.uk/indexwebbook.html http://www.shef.ac.uk/acse Department of Automatic Control and Systems Engineering Introduction The

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

PENBMI User s Guide. We solve the SDP problem with linear and bilinear matrix inequality constraints:

PENBMI User s Guide. We solve the SDP problem with linear and bilinear matrix inequality constraints: PENBMI User s Guide Michal Kočvara Michael Stingl In this guide we give a description of parameters of function bmi, solving linear semidefinite programming problems with bilinear matrix inequality constraints.

More information

STRUCTURED DATA TYPE ARRAYS IN C++ ONE-DIMENSIONAL ARRAY TWO-DIMENSIONAL ARRAY

STRUCTURED DATA TYPE ARRAYS IN C++ ONE-DIMENSIONAL ARRAY TWO-DIMENSIONAL ARRAY STRUCTURED DATA TYPE ARRAYS IN C++ ONE-DIMENSIONAL ARRAY TWO-DIMENSIONAL ARRAY Objectives Declaration of 1-D and 2-D Arrays Initialization of arrays Inputting array elements Accessing array elements Manipulation

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems

ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems ECEN 615 Methods of Electric Power Systems Analysis Lecture 11: Sparse Systems Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu Announcements Homework

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur

Lecture 5: Matrices. Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur Lecture 5: Matrices Dheeraj Kumar Singh 07CS1004 Teacher: Prof. Niloy Ganguly Department of Computer Science and Engineering IIT Kharagpur 29 th July, 2008 Types of Matrices Matrix Addition and Multiplication

More information

Matrix algebra. Basics

Matrix algebra. Basics Matrix.1 Matrix algebra Matrix algebra is very prevalently used in Statistics because it provides representations of models and computations in a much simpler manner than without its use. The purpose of

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Pattern: Sparse Matrices CSE 599 I Accelerated Computing - Programming GPUS Parallel Pattern: Sparse Matrices Objective Learn about various sparse matrix representations Consider how input data affects run-time performance of

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

CHAPTER 4 LINKED LISTS

CHAPTER 4 LINKED LISTS CHAPTER 4 LINKED LISTS Iris Hui-Ru Jiang Fall 2008 2 Contents Array vs. list Singly linked lists Doubly linked lists Applications Readings Chapter 4 C++ STL list iterators iterator, const_iterator reverse_iterator,

More information

Lecture 10. Graphs Vertices, edges, paths, cycles Sparse and dense graphs Representations: adjacency matrices and adjacency lists Implementation notes

Lecture 10. Graphs Vertices, edges, paths, cycles Sparse and dense graphs Representations: adjacency matrices and adjacency lists Implementation notes Lecture 10 Graphs Vertices, edges, paths, cycles Sparse and dense graphs Representations: adjacency matrices and adjacency lists Implementation notes Reading: Weiss, Chapter 9 Page 1 of 24 Midterm exam

More information

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011 Rice University, Summer 20 Math 355: Linear Algebra: Midterm Colin Carroll June 25, 20 I have adhered to the Rice honor code in completing this test. Signature: Name: Date: Time: Please read the following

More information

Lists (Section 5) Lists, linked lists Implementation of lists in C Other list structures List implementation of stacks, queues, priority queues

Lists (Section 5) Lists, linked lists Implementation of lists in C Other list structures List implementation of stacks, queues, priority queues (Section 5) Lists, linked lists Implementation of lists in C Other list structures List implementation of stacks, queues, priority queues By: Pramod Parajuli, Department of Computer Science, St. Xavier

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #16 Loops: Matrix Using Nested for Loop

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #16 Loops: Matrix Using Nested for Loop Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #16 Loops: Matrix Using Nested for Loop In this section, we will use the, for loop to code of the matrix problem.

More information

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems

Solving Sparse Linear Systems. Forward and backward substitution for solving lower or upper triangular systems AMSC 6 /CMSC 76 Advanced Linear Numerical Analysis Fall 7 Direct Solution of Sparse Linear Systems and Eigenproblems Dianne P. O Leary c 7 Solving Sparse Linear Systems Assumed background: Gauss elimination

More information

Matrix Multiplication in MapReduce. Overview. Matrix Multiplication. .. CSC 369 Distributed Computing Alexander Dekhtyar.. Matrix Multiplication:

Matrix Multiplication in MapReduce. Overview. Matrix Multiplication. .. CSC 369 Distributed Computing Alexander Dekhtyar.. Matrix Multiplication: .. CSC 369 Distributed Computing Alexander Dekhtyar.. Overview Matrix Multiplication: Matrix Multiplication in MapReduce is extremely important in computing. It is critical to a large number of tasks from

More information

UNIT-1. Chapter 1(Introduction and overview) 1. Asymptotic Notations 2. One Dimensional array 3. Multi Dimensional array 4. Pointer arrays.

UNIT-1. Chapter 1(Introduction and overview) 1. Asymptotic Notations 2. One Dimensional array 3. Multi Dimensional array 4. Pointer arrays. UNIT-1 Chapter 1(Introduction and overview) 1. Asymptotic Notations 2. One Dimensional array 3. Multi Dimensional array 4. Pointer arrays. Chapter 2 (Linked lists) 1. Definition 2. Single linked list 3.

More information

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Matrices Teachers Teaching with Technology (Scotland) MATRICES Aim To demonstrate how the TI-83 can be used to

More information

Week 5. Muhao Chen.

Week 5. Muhao Chen. Week 5 Muhao Chen Email: muhaochen@ucla.edu 1 Outline Multi-dimensional arrays C-string 2 Multi-dimensional Array An array of arrays int xy[3][4] = { {1,2,3,4}, {5,6,7,8}, {4,3,2,1} }; 1 2 3 4 5 6 7 8

More information

University of California, Berkeley College of Engineering

University of California, Berkeley College of Engineering University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Summer 2016 Instructors: Shreyas Chand, Justin Hsia 2016-07-07 Last Name (Please print

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Computer Science 136. Midterm Examination

Computer Science 136. Midterm Examination Computer Science 136 Professor Bruce Midterm Examination March 19, 1997 Question Points Score 1 20 2 15 3 10 4 21 5 14 6 7 TOTAL 87 Your name (Please print) I have neither given nor received aid on this

More information

9. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally likely.)

9. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally likely.) CSE 0 Name Test Spring 006 Last 4 Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose f ( x) is a monotonically increasing function. Which of the

More information

Multidimensional Arrays & Graphs. CMSC 420: Lecture 3

Multidimensional Arrays & Graphs. CMSC 420: Lecture 3 Multidimensional Arrays & Graphs CMSC 420: Lecture 3 Mini-Review Abstract Data Types: List Stack Queue Deque Dictionary Set Implementations: Linked Lists Circularly linked lists Doubly linked lists XOR

More information

國立清華大學電機工程學系. Outline

國立清華大學電機工程學系. Outline 國立清華大學電機工程學系 EE2410 Data Structure Chapter 4 Linked List (Part II) Outline Equivalence Class Sparse Matrices Doubly Linked Lists Generalized Lists Virtual Functions and Dynamic Binding ch4.2-2 1 Equivalence

More information

13.4 Case Study: vector<t>-based Matrices

13.4 Case Study: vector<t>-based Matrices 13.4 Case Study: vector-based Matrices 1 13.4 Case Study: vector-based Matrices A two-dimensional numeric array having m rows and n columns is called an m n matrix. There are many important applications

More information

Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees. Iulian Năstac

Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees. Iulian Năstac Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees Iulian Năstac Recapitulation It is considered the following type: typedef struct nod { ; struct nod *next; } NOD; 2 Circular

More information

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker

BLAS and LAPACK + Data Formats for Sparse Matrices. Part of the lecture Wissenschaftliches Rechnen. Hilmar Wobker BLAS and LAPACK + Data Formats for Sparse Matrices Part of the lecture Wissenschaftliches Rechnen Hilmar Wobker Institute of Applied Mathematics and Numerics, TU Dortmund email: hilmar.wobker@math.tu-dortmund.de

More information

January 16 Do not hand in a listing of the file InvalidRowCol.java.

January 16 Do not hand in a listing of the file InvalidRowCol.java. 0 Changes CSE 2011 Fundamentals of Data Structures Report 1: Sparse Matrices Due: Thursday, January 31, 1pm Where: In class If the class has begun your report is late January 16 Do not hand in a listing

More information

Classification s of Data Structures

Classification s of Data Structures Linear Data Structures using Sequential organization Classification s of Data Structures Types of Data Structures Arrays Declaration of arrays type arrayname [ arraysize ]; Ex-double balance[10]; Arrays

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing HW #9 10., 10.3, 10.7 Due April 17 { } Review Completing Graph Algorithms Maximal Independent Set Johnson s shortest path algorithm using adjacency lists Q= V; for all v in Q l[v] = infinity; l[s] = 0;

More information

EC8393FUNDAMENTALS OF DATA STRUCTURES IN C Unit 3

EC8393FUNDAMENTALS OF DATA STRUCTURES IN C Unit 3 UNIT 3 LINEAR DATA STRUCTURES 1. Define Data Structures Data Structures is defined as the way of organizing all data items that consider not only the elements stored but also stores the relationship between

More information

Data Structure. Chapter 4 List (Part II) Department of Communication Engineering National Central University Jhongli, Taiwan.

Data Structure. Chapter 4 List (Part II) Department of Communication Engineering National Central University Jhongli, Taiwan. Data Structure Chapter 4 List (Part II) Angela Chih-Wei Tang Department of Communication Engineering National Central University Jhongli, Taiwan 2009 Spring Outline Polynomials Sparse matrices Doubly linked

More information

Matrix Multiplication. (Dynamic Programming)

Matrix Multiplication. (Dynamic Programming) Matrix Multiplication (Dynamic Programming) Matrix Multiplication: Review Suppose that A 1 is of size S 1 x S 2, and A 2 is of size S 2 x S 3. What is the time complexity of computing A 1 * A 2? What is

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

ft-uiowa-math2550 Assignment HW8fall14 due 10/23/2014 at 11:59pm CDT 3. (1 pt) local/library/ui/fall14/hw8 3.pg Given the matrix

ft-uiowa-math2550 Assignment HW8fall14 due 10/23/2014 at 11:59pm CDT 3. (1 pt) local/library/ui/fall14/hw8 3.pg Given the matrix me me Assignment HW8fall4 due /23/24 at :59pm CDT ft-uiowa-math255 466666666666667 2 Calculate the determinant of 6 3-4 -3 D - E F 2 I 4 J 5 C 2 ( pt) local/library/ui/fall4/hw8 2pg Evaluate the following

More information

AH Matrices.notebook November 28, 2016

AH Matrices.notebook November 28, 2016 Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

More information

CS , Fall 2001 Exam 2

CS , Fall 2001 Exam 2 Andrew login ID: Full Name: CS 15-213, Fall 2001 Exam 2 November 13, 2001 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front. Write

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 5 Date of this version: June 14, 2018 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

Study of Butterfly Patterns of Matrix in Interconnection Network

Study of Butterfly Patterns of Matrix in Interconnection Network International Journal of Scientific & Engineering Research, Volume 7, Issue, December-6 3 ISSN 9-558 Study of Butterfly Patterns of Matrix in Interconnection Network Rakesh Kumar Katare Professor, Department

More information

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx 1 of 9 FreeMat Tutorial FreeMat is a general purpose matrix calculator. It allows you to enter matrices and then perform operations on them in the same way you would write the operations on paper. This

More information

For example, the system. 22 may be represented by the augmented matrix

For example, the system. 22 may be represented by the augmented matrix Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural of matrix) may be

More information