PENLIB/SDP User s Guide

Size: px
Start display at page:

Download "PENLIB/SDP User s Guide"

Transcription

1 PENLIB/SDP User s Guide Michal Kočvara Michael Stingl In this guide we give a description of parameters of function sdp, solving linear semidefinite programming problems with linear constraints. This function is part of the library PENLIB. We solve the dual linear SDP problem with linear constraints: n f i x i min x R n s.t. i= i + n b k i x k c i, k= i =,..., m l n k i x k i =,..., m. k= The matrix constraints can be written as one constraint with block diagonal matrices as follows: m + + m m x x n n m n x n Here we use the abbreviations n := vars, m l := constr, and m := mconstr. The input parameters are explained below. We assume that the linear constraint vectors b i can be sparse, so we give them in standard sparse format. Similarly, we assume that the matrix constraints data can be sparse. Here we distinguish two cases: Some many of the matrices i k for the k th constraint can be empty; so we only give those matrices for each matrix constraint that are nonempty. Further, each of the nonempty matrices i k can still be sparse; hence we give the matrices i k in sparse format value, column index, row index. Further, as all the matrices are symmetric, we only give the upper triangle. The function sdp is declared as int sdpint vars, int constr, int mconstr, int* msizes, double *fx, double* x, double* uoutput, double* fobj, double* ci, int* bi_dim, int* bi_idx, double* bi_val, int* ai_dim, int* ai_idx, int* ai_nzs, double* ai_val, int* ai_col, int* ai_row, int* ioptions, double* foptions, int* iresults, double* fresults, int* info;

2 vars number of variables integer number constr number of linear constraints integer number 3 mconstr number of matrix constraints diagonal blocks in each k integer number 4 msizes sizes of the diagonal blocks k, k,..., mconstr k integer array length: mconstr 5 fx on exit: objective function value double array length: 6 x on entry: initial guess for the solution on exit: solution vector x Not referenced, if x = on entry double array length: vars 7 uoutput on exit: linear multipliers u i i =,..., constr followed by upper triangular parts of matrix multipliers U j j =,..., mconstr in rowise storage format Not referenced, if uoutput = on entry double array length: constr + msizes*msizes+/ + msizes*msizes+/ msizesmconstr*msizesmconstr+/ 8 fobj objective vector f in full format double array length: vars 9 ci right-hand side vector of the linear constraint c in full format double array length: constr bi dim number of nonzeros in vector b i for each linear constraint integer array length: constr bi idx indices of nonzeros in each vector b i integer array length: bi dim+bi dim+... +bi dimconstr bi val nonzero values in each vector b i corresponding to indices in bi idx double array length: bi dim+bi dim+... +bi dimconstr 3 ai dim number of nonzero blocks i, i,..., i vars for each matrix constraint i =,,..., mconstr integer array length: mconstr 4 ai idx indices of nonzero blocks for each matrix constraint integer array length: ai dim+ai dim+... +ai dimmconstr 5 ai nzs number of nonzero values in each nonzero block i ai idx, i ai idx,..., i ai idxai dimi for each matrix constraint i =,,..., mconstr integer array length: ai dim+ai dim+... +ai dimmconstr 6 ai val nonzero values in the upper triangle of each nonzero block i ai idx, i ai idx,..., i ai idxai dimi for each matrix constraint i =,,..., mconstr double array length: ai nzs+ai nzs+... +ai nzslengthai nzs 7 ai col column indices of nonzero values in the upper triangle of each nonzero block i ai idx, i ai idx,..., i ai idxai dimi for each matrix constraint i =,,..., mconstr integer array length: ai nzs+ai nzs+... +ai nzslengthai nzs 8 ai row row indices of nonzero values in the upper triangle of each nonzero block i ai idx, i ai idx,..., i ai idxai dimi for each matrix constraint i =,,..., mconstr integer array length: ai nzs+ai nzs+... +ai nzslengthai nzs

3 9 ioptions integer valued options see below integer array length: 8 foptions real valued options see below double array length: 7 iresults on exit: integer valued output information see below Not referenced, if iresults = on entry integer array length: 4 fresults on exit: real valued output information see below Not referenced, if fresults = on entry double array length: 3 3 info on exit: error flag see below integer array length: IOPTIONS name/value meaning default ioption DEF use default values for all options use user defined values ioption PBM MX ITER maximum number of iterations of the overall 5 algorithm ioption UM MX ITER maximum number of iterations for the unconstrained minimization ioption3 OUTPUT output level no output summary output brief output 3 full output ioption4 DENSE check density of the Hessian automatic check. For very large problems with dense Hessian, this may lead to memory difficulties. dense Hessian assumed ioption5 LS linesearch in unconstrained minimization do not use linesearch use linesearch ioption6 XOUT write solution vector x in the output file no yes ioption7 UOUT write computed multipliers in the output file no yes FOPTIONS name/value meaning default foption U scaling factor for linear constraints; must be positive. foption MU restriction for multiplier update for linear constraints.7 foption MU restriction for multiplier update for matrix constraints. foption3 PBM EPS stopping criterium for the overall algorithm.e-7 foption4 P EPS lower bound for the penalty parameters.e-6 foption5 UMIN lower bound for the multipliers.e-4 foption6 LPH stopping criterium for unconstrained minimization.e- 3

4 IRESULTS iresults iresults iresults iresults3 meaning number of outer iterations number of Newton steps number of linesearch steps elapsed time in seconds FRESULTS fresults fresults fresults meaning relative precision at x opt feasibility of linear inequalities at x opt feasibility of matrix inequalities at x opt INFO info info info info3 info4 info5 info6 info7 meaning no errors occured no progress in objective value, problem probably infeasible. Cholesky factorization of Hessian failed. The result still may be useful. Maximum iteration limit exceeded. The result still may be useful. Linesearch failed. The result still may be useful. Wrong input parameters ioptions, foptions. Memory error. Unknown error, please contact PENOPT GbR contact@penopt.com. 4

5 Example. Let f =,, 3 T. ssume that we have no linear constraints. ssume further that we have two matrix inequality constraints, first of size 3x3, second of size x. The first constraint contains full matrices, the second one diagonal matrices: + x + x x 3 The blocks k have then 6 nonzero elements, block k only two nonzero elements recall that we only give elements of the upper triangular matrix. In this case vars = 3 constr = mconstr = msizes = 3, x =.,.,. for example fobj =.,.,3. ci =. bi dim = bi idx = bi val =. ai dim = 4,4 ai idx =,,,3,,,,3 ai nzs = 6,6,6,6,,,, ai val =,..., 6,,..., 6,......,,,,,,, 3, 3 ai col =,,,,,,,,,,,,......,,,,,,,, ai row =,,,,,,,,,,,,......,,,,,,,, 5

6 Example. Let again f =,, 3 T. We have two linear constraints with b =,, T, b = 5, 6, T, c = 3, 3 T ssume further that we have two matrix inequality constraints, first of size 3x3, second of size x. The first constraint contains sparse matrices, the second one diagonal matrices. Some of the matrices are empty, as shown below: x + x x 3 In this case vars = 3 constr = mconstr = msizes = 3, x =.,.,. for example fobj =.,.,3. ci = 3., -3. bi dim =, bi idx =,, bi val =., 5., 6. ai dim =,3 ai idx =,3,,, ai nzs = 4,4,,, ai val =.,-.,.,.,.,-.,.,.,.,.,-., 3.,-3. ai col =,,,,,,,,,,,, ai row =,,,,,,,,,,,, 6

PENBMI User s Guide. We solve the SDP problem with linear and bilinear matrix inequality constraints:

PENBMI User s Guide. We solve the SDP problem with linear and bilinear matrix inequality constraints: PENBMI User s Guide Michal Kočvara Michael Stingl In this guide we give a description of parameters of function bmi, solving linear semidefinite programming problems with bilinear matrix inequality constraints.

More information

PENBMI User s Guide (Version 2.1)

PENBMI User s Guide (Version 2.1) PENBMI User s Guide (Version 2.) Michal Kočvara Michael Stingl PENOPT GbR March 5, 26 Contents Installation 3. Unpacking... 3.2 Compilation... 3 2 The problem 4 3 The algorithm 5 4 C/C++/FORTRAN interface

More information

USER S GUIDE FOR TOMLAB /PENOPT 1

USER S GUIDE FOR TOMLAB /PENOPT 1 USER S GUIDE FOR TOMLAB /PENOPT 1 Kenneth Holmström 2, Anders O. Göran 3 and Marcus M. Edvall 4 November 6, 26 1 More information available at the TOMLAB home page: http://tomopt.com. E-mail: tomlab@tomopt.com.

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as EXTENSION Using Matrix Row Operations to Solve Systems The elimination method used to solve systems introduced in the previous section can be streamlined into a systematic method by using matrices (singular:

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #16 Loops: Matrix Using Nested for Loop

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #16 Loops: Matrix Using Nested for Loop Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #16 Loops: Matrix Using Nested for Loop In this section, we will use the, for loop to code of the matrix problem.

More information

Sparse Matrices. sparse many elements are zero dense few elements are zero

Sparse Matrices. sparse many elements are zero dense few elements are zero Sparse Matrices sparse many elements are zero dense few elements are zero Special Matrices A square matrix has the same number of rows and columns. Some special forms of square matrices are Diagonal: M(i,j)

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

Chapter 4. Matrix and Vector Operations

Chapter 4. Matrix and Vector Operations 1 Scope of the Chapter Chapter 4 This chapter provides procedures for matrix and vector operations. This chapter (and Chapters 5 and 6) can handle general matrices, matrices with special structure and

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

CSDP User s Guide

CSDP User s Guide CSDP 6.. User s Guide Brian Borchers July 4, 7 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

CSDP User s Guide. Brian Borchers. November 1, 2006

CSDP User s Guide. Brian Borchers. November 1, 2006 CSDP User s Guide Brian Borchers November, 6 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2 Universidad de Chile The numerical simulation of complex PDE problems Facultad de Ciencias Físicas y Matemáticas P. Frey, M. De Buhan Year 2008 MA691 & CC60X A numerical simulation project The finite element

More information

Matlab (Matrix laboratory) is an interactive software system for numerical computations and graphics.

Matlab (Matrix laboratory) is an interactive software system for numerical computations and graphics. Matlab (Matrix laboratory) is an interactive software system for numerical computations and graphics. Starting MATLAB - On a PC, double click the MATLAB icon - On a LINUX/UNIX machine, enter the command:

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

CSDP User s Guide. Brian Borchers. August 15, 2006

CSDP User s Guide. Brian Borchers. August 15, 2006 CSDP User s Guide Brian Borchers August 5, 6 Introduction CSDP is a software package for solving semidefinite programming problems. The algorithm is a predictor corrector version of the primal dual barrier

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Package Rcsdp. April 25, 2016

Package Rcsdp. April 25, 2016 Package Rcsdp April 25, 2016 Version 0.1.55 Title R Interface to the CSDP Semidefinite Programming Library Author Hector Corrada Bravo (CSDP by Brian Borchers) Maintainer Hector Corrada Bravo

More information

How to declare an array in C?

How to declare an array in C? Introduction An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Representation of a large number of homogeneous values.

More information

SDPLR 1.03-beta User s Guide (short version)

SDPLR 1.03-beta User s Guide (short version) SDPLR 3-beta User s Guide (short version) August 12, 2009 1 Summary SDPLR is a C software package for solving large-scale semidefinite programming problems. Source code, binaries, and a Matlab interface

More information

ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1

ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1 ADDENDUM TO THE SEDUMI USER GUIDE VERSION 1.1 IMRE PÓLIK 1. Introduction The main goal of this reference guide is to give a summary of all the options in SeDuMi. The default value of the options is satisfactory

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner

fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner fspai-1.0 Factorized Sparse Approximate Inverse Preconditioner Thomas Huckle Matous Sedlacek 2011 08 01 Technische Universität München Research Unit Computer Science V Scientific Computing in Computer

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2013 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2013 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Module 19.1: nag ip Integer Programming. Contents

Module 19.1: nag ip Integer Programming. Contents Operations Research Module Contents Module 19.1: nag ip Integer Programming nag ip contains a procedure for solving zero-one, general, mixed or all integer linear programming problems. Contents Introduction..............................................................

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Lagrangean relaxation - exercises

Lagrangean relaxation - exercises Lagrangean relaxation - exercises Giovanni Righini Set covering We start from the following Set Covering Problem instance: min z = x + 2x 2 + x + 2x 4 + x 5 x + x 2 + x 4 x 2 + x x 2 + x 4 + x 5 x + x

More information

USER S GUIDE FOR QPOPT 1.0: A FORTRAN PACKAGE FOR QUADRATIC PROGRAMMING

USER S GUIDE FOR QPOPT 1.0: A FORTRAN PACKAGE FOR QUADRATIC PROGRAMMING USER S GUIDE FOR QPOPT 1.0: A FORTRAN PACKAGE FOR QUADRATIC PROGRAMMING Philip E. GILL Department of Mathematics University of California, San Diego La Jolla, California 92093-0112 Walter MURRAY and Michael

More information

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors

1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors 1. (a) O(log n) algorithm for finding the logical AND of n bits with n processors on an EREW PRAM: See solution for the next problem. Omit the step where each processor sequentially computes the AND of

More information

An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type.

An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Data Structures Introduction An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Representation of a large number of homogeneous

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2018 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Intel Math Kernel Library (Intel MKL) Sparse Solvers. Alexander Kalinkin Intel MKL developer, Victor Kostin Intel MKL Dense Solvers team manager

Intel Math Kernel Library (Intel MKL) Sparse Solvers. Alexander Kalinkin Intel MKL developer, Victor Kostin Intel MKL Dense Solvers team manager Intel Math Kernel Library (Intel MKL) Sparse Solvers Alexander Kalinkin Intel MKL developer, Victor Kostin Intel MKL Dense Solvers team manager Copyright 3, Intel Corporation. All rights reserved. Sparse

More information

An iteration of the simplex method (a pivot )

An iteration of the simplex method (a pivot ) Recap, and outline of Lecture 13 Previously Developed and justified all the steps in a typical iteration ( pivot ) of the Simplex Method (see next page). Today Simplex Method Initialization Start with

More information

Automatic Tuning of Sparse Matrix Kernels

Automatic Tuning of Sparse Matrix Kernels Automatic Tuning of Sparse Matrix Kernels Kathy Yelick U.C. Berkeley and Lawrence Berkeley National Laboratory Richard Vuduc, Lawrence Livermore National Laboratory James Demmel, U.C. Berkeley Berkeley

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner

fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner fspai-1.1 Factorized Sparse Approximate Inverse Preconditioner Thomas Huckle Matous Sedlacek 2011 09 10 Technische Universität München Research Unit Computer Science V Scientific Computing in Computer

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

NAG Library Routine Document F07KDF (DPSTRF)

NAG Library Routine Document F07KDF (DPSTRF) NAG Library Routine Document (DPSTRF) Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Lecture 12: convergence. Derivative (one variable)

Lecture 12: convergence. Derivative (one variable) Lecture 12: convergence More about multivariable calculus Descent methods Backtracking line search More about convexity (first and second order) Newton step Example 1: linear programming (one var., one

More information

CS , Fall 2001 Exam 2

CS , Fall 2001 Exam 2 Andrew login ID: Full Name: CS 15-213, Fall 2001 Exam 2 November 13, 2001 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front. Write

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Data Structures for sparse matrices

Data Structures for sparse matrices Data Structures for sparse matrices The use of a proper data structures is critical to achieving good performance. Generate a symmetric sparse matrix A in matlab and time the operations of accessing (only)

More information

Communication balancing in Mondriaan sparse matrix partitioning

Communication balancing in Mondriaan sparse matrix partitioning Communication balancing in Mondriaan sparse matrix partitioning Rob Bisseling and Wouter Meesen Rob.Bisseling@math.uu.nl http://www.math.uu.nl/people/bisseling Department of Mathematics Utrecht University

More information

abstract classes & types

abstract classes & types abstract classes & types learning objectives algorithms your software system software hardware learn how to define and use abstract classes learn how to define types without implementation learn about

More information

INF580 Advanced Mathematical Programming

INF580 Advanced Mathematical Programming INF580 Advanced Mathematical Programming TD6 Random projections Leo Liberti CNRS LIX, Ecole Polytechnique, France 1902015 Leo Liberti (CNRS LIX) INF580 / TD6 1902015 1 / 1 Do you believe in the JLL? Outline

More information

Systems of Inequalities

Systems of Inequalities Systems of Inequalities 1 Goals: Given system of inequalities of the form Ax b determine if system has an integer solution enumerate all integer solutions 2 Running example: Upper bounds for x: (2)and

More information

Constrained optimization

Constrained optimization Constrained optimization Problem in standard form minimize f(x) subject to a i (x) = 0, for i =1, 2, p c j (x) 0 for j =1, 2,,q f : R n R a i : R n R c j : R n R f(x )=, if problem is infeasible f(x )=,

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

SDPA (SemiDefinite Programming Algorithm) User s Manual Version 6.2.0

SDPA (SemiDefinite Programming Algorithm) User s Manual Version 6.2.0 Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

Sparse Multifrontal Performance Gains via NVIDIA GPU January 16, 2009

Sparse Multifrontal Performance Gains via NVIDIA GPU January 16, 2009 Sparse Multifrontal Performance Gains via NVIDIA GPU January 16, 2009 Dan l Pierce, PhD, MBA, CEO & President AAI Joint with: Yukai Hung, Chia-Chi Liu, Yao-Hung Tsai, Weichung Wang, and David Yu Access

More information

Introduction to Languages for Scientific Computing, winter semester 14/15: Final Exam

Introduction to Languages for Scientific Computing, winter semester 14/15: Final Exam Introduction to Languages for Scientific Computing, winter semester 14/15: Final Exam Lecture given by: Paolo Bientinesi First exam, 10.02.2015 The following document is a transcript from memory created

More information

Package sparsehessianfd

Package sparsehessianfd Type Package Package sparsehessianfd Title Numerical Estimation of Sparse Hessians Version 0.3.3.3 Date 2018-03-26 Maintainer Michael Braun March 27, 2018 URL http://www.smu.edu/cox/departments/facultydirectory/braunmichael

More information

Design Issues in Matrix package Development

Design Issues in Matrix package Development Design Issues in Matrix package Development Martin Maechler and Douglas Bates R Core Development Team maechler@stat.math.ethz.ch, bates@r-project.org Spring 2008 (typeset on November 16, 2017) Abstract

More information

NUMERICAL PARALLEL COMPUTING

NUMERICAL PARALLEL COMPUTING Lecture 4: More on OpenMP http://people.inf.ethz.ch/iyves/pnc11/ Peter Arbenz, Andreas Adelmann Computer Science Dept, ETH Zürich, E-mail: arbenz@inf.ethz.ch Paul Scherrer Institut, Villigen E-mail: andreas.adelmann@psi.ch

More information

Constrained Optimization Unconstrained Optimization

Constrained Optimization Unconstrained Optimization Athena A Visual Studio Nonlinear Optimization Tutorial Start Athena Visual Studio The basic elements of an From the File menu select New. optimization problem are listed You are in the Process Modeling

More information

Bentley Rules for Optimizing Work

Bentley Rules for Optimizing Work 6.172 Performance Engineering of Software Systems SPEED LIMIT PER ORDER OF 6.172 LECTURE 2 Bentley Rules for Optimizing Work Charles E. Leiserson September 11, 2012 2012 Charles E. Leiserson and I-Ting

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication Nur Dean PhD Program in Computer Science The Graduate Center, CUNY 05/01/2017 Nur Dean (The Graduate Center) Matrix Multiplication 05/01/2017 1 / 36 Today, I will talk about matrix

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

USER S GUIDE FOR TOMLAB /CONOPT 1

USER S GUIDE FOR TOMLAB /CONOPT 1 USER S GUIDE FOR TOMLAB /CONOPT 1 Kenneth Holmström 2, Anders O. Göran 3 and Marcus M. Edvall 4 April 25, 2007 1 More information available at the TOMLAB home page: http://tomopt.com. E-mail: tomlab@tomopt.com.

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Part 1. The Review of Linear Programming The Revised Simplex Method

Part 1. The Review of Linear Programming The Revised Simplex Method In the name of God Part 1. The Review of Linear Programming 1.4. Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline in Tableau Format Comparison Between the Simplex and the Revised Simplex

More information

Programming Problem for the 1999 Comprehensive Exam

Programming Problem for the 1999 Comprehensive Exam Programming Problem for the 1999 Comprehensive Exam Out: Monday 1/25/99 at 9:00 am Due: Friday 1/29/99 at 5:00 pm Department of Computer Science Brown University Providence, RI 02912 1.0 The Task This

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Generalized Network Flow Programming

Generalized Network Flow Programming Appendix C Page Generalized Network Flow Programming This chapter adapts the bounded variable primal simplex method to the generalized minimum cost flow problem. Generalized networks are far more useful

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Singular Value Decomposition, and Application to Recommender Systems

Singular Value Decomposition, and Application to Recommender Systems Singular Value Decomposition, and Application to Recommender Systems CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Recommendation

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

UNIT 2 ARRAYS 2.0 INTRODUCTION. Structure. Page Nos.

UNIT 2 ARRAYS 2.0 INTRODUCTION. Structure. Page Nos. UNIT 2 ARRAYS Arrays Structure Page Nos. 2.0 Introduction 23 2.1 Objectives 24 2.2 Arrays and Pointers 24 2.3 Sparse Matrices 25 2.4 Polynomials 28 2.5 Representation of Arrays 30 2.5.1 Row Major Representation

More information

Unconstrained Optimization

Unconstrained Optimization Unconstrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Denitions Economics is a science of optima We maximize utility functions, minimize

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

Two Dimensional Arrays

Two Dimensional Arrays + Two Dimensional Arrays + Two Dimensional Arrays So far we have studied how to store linear collections of data using a single dimensional array. However, the data associated with certain systems (a digital

More information

Sparse Linear Systems

Sparse Linear Systems 1 Sparse Linear Systems Rob H. Bisseling Mathematical Institute, Utrecht University Course Introduction Scientific Computing February 22, 2018 2 Outline Iterative solution methods 3 A perfect bipartite

More information

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing HW #9 10., 10.3, 10.7 Due April 17 { } Review Completing Graph Algorithms Maximal Independent Set Johnson s shortest path algorithm using adjacency lists Q= V; for all v in Q l[v] = infinity; l[s] = 0;

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Ch 09 Multidimensional arrays & Linear Systems. Andrea Mignone Physics Department, University of Torino AA

Ch 09 Multidimensional arrays & Linear Systems. Andrea Mignone Physics Department, University of Torino AA Ch 09 Multidimensional arrays & Linear Systems Andrea Mignone Physics Department, University of Torino AA 2017-2018 Multidimensional Arrays A multidimensional array is an array containing one or more arrays.

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

Maltepe University Computer Engineering Department. BİL 133 Algorithms and Programming. Chapter 8: Arrays

Maltepe University Computer Engineering Department. BİL 133 Algorithms and Programming. Chapter 8: Arrays Maltepe University Computer Engineering Department BİL 133 Algorithms and Programming Chapter 8: Arrays What is an Array? Scalar data types use a single memory cell to store a single value. For many problems

More information

Sparse Matrices. This means that for increasing problem size the matrices become sparse and sparser. O. Rheinbach, TU Bergakademie Freiberg

Sparse Matrices. This means that for increasing problem size the matrices become sparse and sparser. O. Rheinbach, TU Bergakademie Freiberg Sparse Matrices Many matrices in computing only contain a very small percentage of nonzeros. Such matrices are called sparse ( dünn besetzt ). Often, an upper bound on the number of nonzeros in a row can

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Computer Programming: C++

Computer Programming: C++ The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Fall 2017 ECOM 2003 Muath i.alnabris Computer Programming: C++ Experiment #7 Arrays Part II Passing Array to a Function

More information