CUDA accelerated fault tree analysis with C-XSC

Size: px
Start display at page:

Download "CUDA accelerated fault tree analysis with C-XSC"

Transcription

1 CUDA accelerated fault tree analysis with C-XSC Gabor Rebner 1, Michael Beer 2 1 Department of Computer and Cognitive Sciences (INKO) University of Duisburg-Essen Duisburg, Germany 2 Institute for Risk & Uncertainty University of Liverpool Liverpool, UK / 19

2 1 2 Verification CUDA Fault Tree Analysis 3 C++ and CUDA Evaluation 4 Future Work 2 / 19

3 of verified fault tree analysis in C++ using high-performance GPU 1 computing Issues Using GPU accelerated high-performance features to 1 Reduce the trade-off between computation accuracy and computation time 2 Use directed rounding based on the IEEE standard on the GPU 1 Graphics Processing Unit 3 / 19

4 Verification Verification CUDA Fault Tree Analysis Definition We use verification in its narrow sense of referring to a mathematical proof for correctness of a result obtained by a computer calculation. Tools Interval arithmetic provided by C-XSC Floating point arithmetic with directed rounding Central Processing Unit (CPU) Compute Unified Device Architecture (CUDA) 4 / 19

5 A short introduction to CUDA Verification CUDA Fault Tree Analysis Compute Unified Device Architecture (CUDA) High Performance GPU architecture Single Instruction, Multiple Data (SIMD) implementation Up to 2 10 CUDA cores on the NVIDIA GTX 590 Restriction to NVIDIA graphic cards Support of IEEE 754 floating point operations Double precision Directed rounding to the next floating point number (such as fl (x) and fl (x) with x R ) 5 / 19

6 Fault Tree Analysis Verification CUDA Fault Tree Analysis Fundamentals The implementation is based on The approach by Traczinsky et al. (2006) Verified on modern computer systems CUDA 6 / 19

7 Verification CUDA Fault Tree Analysis 7 / 19

8 Complexity Verification CUDA Fault Tree Analysis Computation step Each computation of a logical gate (AND- or OR-gate) has a complexity of O(n 3 ): Computation of each interval element (O (n n)) Computation of the mass assignment for each interval Total complexity: O(n 3 ) Improvements The algorithm can be improved to obtain an upper bound of complexity slightly smaller than O(n 3 ). 8 / 19

9 Verification under CUDA C++ and CUDA Evaluation Goal Compute correct results on computer systems using finite floating point arithmetic Approach Directed rounding (GPU source code) Interval arithmetic (C-XSC in CPU source code) 9 / 19

10 Interval Notation C++ and CUDA Evaluation Real Intervals (IR) x = [x, x] x x x, x, x and x R Machine Intervals (IF) x = [x, x] x x x, x, x and x F\{Not a number, ± } Description x is an interval from the set IR or IF x is the infimum/minimum of x x is the supremum/maximum of x 10 / 19

11 Verification under CUDA C++ and CUDA Evaluation Goal Compute correct results on computer systems using finite floating point arithmetic Problem Let x = 1 3 and x R 2 x + x 2 3 }{{} in floating point arithmetic 3 [fl (x + x), fl (x + x) ] }{{}}{{} lower bound upper bound 11 / 19

12 Verification under CUDA C++ and CUDA Evaluation Let x and y be two scale elements (intervals) and m x and m y the corresponding mass assignments Lower Failure Bound (OR-Gate) lb = fl ( fl ( x + y ) fl ( x y )) with x, y [0, 1], m lb = fl (m x m y ) with m x, m y [0, 1]. 12 / 19

13 Verification under CUDA C++ and CUDA Evaluation Let x and y be two scale elements (intervals) and m x and m y the corresponding mass assignments Lower Failure Bound (AND-Gate) lb = fl ( x y ) with x, y [0, 1] ub = fl (x y) with x, y [0, 1] m = fl (m x m y ) with m x, m y [0, 1]. 13 / 19

14 Computation time C++ and CUDA Evaluation Wall-clock time [s] spend on computation Configurations: Benchmark 1 (B1): n = 200, f = 20, l = 100 Benchmark 2 (B2): n = 5000, f = 100, l = 60 C++(LB) a C++(UB) DSI b (LB) DSI(UB) B B a C++ utilizing C-XSC and CUDA b DSI and INTLAB V6 14 / 19

15 Computation time C++ and CUDA Evaluation 10 5 C++ & CUDA MATLAB & INTLAB 10 4 Wall-clock time [s] benchmark 1 (LB) benchmark 1 (UB) benchmark 2 (LB) benchmark 2 (UB) Figure : Wall-clock time [s] spend on computation (logarithmic) 15 / 19

16 Future Work Achievements Reduction of the trade-off between accuracy and computation time Verified computation on the GPU using CUDA 16 / 19

17 Future Work Future Work Perspective Using high performance computing In MATLAB utilizing the MEX-Interface with CUDA and C-XSC To compute Markov set chains (imprecise Markov chains) 17 / 19

18 [1] Auer, E. ; Luther, W. ; Rebner, G. ; Limbourg, P.: A Verified MATLAB Toolbox for the Dempster-Shafer Theory. In: Proceedings of the Workshop on the Theory of Belief Functions www. udue. de/ DSIPaperone, http: // www. udue. de/ DSI, 2010 [2] Carreras, C. ; Walker, I.: Interval Methods for Fault-Tree Analyses in Robotics. In: IEEE Transactions on Reliability 50 (2001), [3] IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic. In: IEEE Std (2008), 29, S DOI /IEEESTD [4] Krämer, H.: C-XSC 2.0: A C++ Library for Extended Scientific Computing. In: Lecture Notes in Computer Science Bd. 2991/2004. Springer-Verlag, Heidelberg, 2004, S [5] Krämer, W. ; Zimmer, M. ; Hofschuster, W.: Using C-XSC for High Performance Verified Computing. Version: In: Jónasson, Kristján (Hrsg.): Applied Parallel and Scientific Computing Bd Springer Berlin / Heidelberg, ISBN , / [6] NVIDIA: Plattform für Parallel-Programmierung und parallele Berechnungen. Website [7] Rebner, G. ; Auer, E. ; Luther, W.: A verified realization of a Dempster Shafer based fault tree analysis. In: Computing 94 (2012), S DOI /s ISSN X 18 / 19

19 Thank you 19 / 19

Floating-point Precision vs Performance Trade-offs

Floating-point Precision vs Performance Trade-offs Floating-point Precision vs Performance Trade-offs Wei-Fan Chiang School of Computing, University of Utah 1/31 Problem Statement Accelerating computations using graphical processing units has made significant

More information

Modern GPUs (Graphics Processing Units)

Modern GPUs (Graphics Processing Units) Modern GPUs (Graphics Processing Units) Powerful data parallel computation platform. High computation density, high memory bandwidth. Relatively low cost. NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB

More information

GPU Implementation of a Multiobjective Search Algorithm

GPU Implementation of a Multiobjective Search Algorithm Department Informatik Technical Reports / ISSN 29-58 Steffen Limmer, Dietmar Fey, Johannes Jahn GPU Implementation of a Multiobjective Search Algorithm Technical Report CS-2-3 April 2 Please cite as: Steffen

More information

c-xsc R. Klatte U. Kulisch A. Wiethoff C. Lawo M. Rauch A C++ Class Library for Extended Scientific Computing Springer-Verlag Berlin Heidelberg GmbH

c-xsc R. Klatte U. Kulisch A. Wiethoff C. Lawo M. Rauch A C++ Class Library for Extended Scientific Computing Springer-Verlag Berlin Heidelberg GmbH R. Klatte U. Kulisch A. Wiethoff C. Lawo M. Rauch c-xsc A C++ Class Library for Extended Scientific Computing Translated by G. F. Corliss C. Lawo R. Klatte A. Wiethoff C. Wolff Springer-Verlag Berlin Heidelberg

More information

Comparison of Packages for Interval Arithmetic

Comparison of Packages for Interval Arithmetic INFORMATICA, 2005, Vol. 16, No. 1, 145 154 145 2005 Institute of Mathematics and Informatics, Vilnius Comparison of Packages for Interval Arithmetic Julius ŽILINSKAS Institute of Mathematics and Informatics

More information

Moving MATLAB Algorithms into Complete Designs with Fixed-Point Simulation and Code Generation

Moving MATLAB Algorithms into Complete Designs with Fixed-Point Simulation and Code Generation Moving MATLAB Algorithms into Complete Designs with Fixed-Point Simulation and Code Generation Houman Zarrinkoub, PhD. Product Manager Signal Processing Toolboxes The MathWorks Inc. 2007 The MathWorks,

More information

COMPUTER-ASSISTED PROOFS AND SYMBOLIC COMPUTATIONS * Walter Krämer

COMPUTER-ASSISTED PROOFS AND SYMBOLIC COMPUTATIONS * Walter Krämer Serdica J. Computing 4 (2010), 73 84 COMPUTER-ASSISTED PROOFS AND SYMBOLIC COMPUTATIONS * Walter Krämer Abstract. We discuss some main points of computer-assisted proofs based on reliable numerical computations.

More information

An update on Scalable Implementation of Primitives for Homomorphic EncRyption FPGA implementation using Simulink Abstract

An update on Scalable Implementation of Primitives for Homomorphic EncRyption FPGA implementation using Simulink Abstract An update on Scalable Implementation of Primitives for Homomorphic EncRyption FPGA implementation using Simulink David Bruce Cousins, Kurt Rohloff, Chris Peikert, Rick Schantz Raytheon BBN Technologies,

More information

A Parameterized Floating-Point Formalizaton in HOL Light

A Parameterized Floating-Point Formalizaton in HOL Light NSV 2015 A Parameterized Floating-Point Formalizaton in HOL Light Charles Jacobsen a,1,2 Alexey Solovyev a,3,5 Ganesh Gopalakrishnan a,4,5 a School of Computing University of Utah Salt Lake City, USA Abstract

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

GPU Programming for Mathematical and Scientific Computing

GPU Programming for Mathematical and Scientific Computing GPU Programming for Mathematical and Scientific Computing Ethan Kerzner and Timothy Urness Department of Mathematics and Computer Science Drake University Des Moines, IA 50311 ethan.kerzner@gmail.com timothy.urness@drake.edu

More information

General Purpose GPU Programming. Advanced Operating Systems Tutorial 9

General Purpose GPU Programming. Advanced Operating Systems Tutorial 9 General Purpose GPU Programming Advanced Operating Systems Tutorial 9 Tutorial Outline Review of lectured material Key points Discussion OpenCL Future directions 2 Review of Lectured Material Heterogeneous

More information

Optimization Problems Under One-sided (max, min)-linear Equality Constraints

Optimization Problems Under One-sided (max, min)-linear Equality Constraints WDS'12 Proceedings of Contributed Papers, Part I, 13 19, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Optimization Problems Under One-sided (max, min)-linear Equality Constraints M. Gad Charles University,

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

Modelling Geometrical Tolerances with Intervals Using ISO-Standard STEP

Modelling Geometrical Tolerances with Intervals Using ISO-Standard STEP Modelling Geometrical Tolerances with Intervals Using ISO-Standard STEP Eva Dyllong, Wolfram Luther, and Holger Traczinski Institute of Computer Science and Interactive Systems Faculty of Engineering Gerhard-Mercator-University

More information

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards By Allan P. Engsig-Karup, Morten Gorm Madsen and Stefan L. Glimberg DTU Informatics Workshop

More information

ait: WORST-CASE EXECUTION TIME PREDICTION BY STATIC PROGRAM ANALYSIS

ait: WORST-CASE EXECUTION TIME PREDICTION BY STATIC PROGRAM ANALYSIS ait: WORST-CASE EXECUTION TIME PREDICTION BY STATIC PROGRAM ANALYSIS Christian Ferdinand and Reinhold Heckmann AbsInt Angewandte Informatik GmbH, Stuhlsatzenhausweg 69, D-66123 Saarbrucken, Germany info@absint.com

More information

A Detailed GPU Cache Model Based on Reuse Distance Theory

A Detailed GPU Cache Model Based on Reuse Distance Theory A Detailed GPU Cache Model Based on Reuse Distance Theory Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal Eindhoven University of Technology (Netherlands) Henri Bal Vrije Universiteit Amsterdam

More information

Lecture 1: Introduction and Basics

Lecture 1: Introduction and Basics CS 515 Programming Language and Compilers I Lecture 1: Introduction and Basics Zheng (Eddy) Zhang Rutgers University Fall 2017, 9/5/2017 Class Information Instructor: Zheng (Eddy) Zhang Email: eddyzhengzhang@gmailcom

More information

Supercomputing the Cascade Processes of Radiation Transport

Supercomputing the Cascade Processes of Radiation Transport 19 th World Conference on Non-Destructive Testing 2016 Supercomputing the Cascade Processes of Radiation Transport Mikhail ZHUKOVSKIY 1, Mikhail MARKOV 1, Sergey PODOLYAKO 1, Roman USKOV 1, Carsten BELLON

More information

A MATLAB Interface to the GPU

A MATLAB Interface to the GPU A MATLAB Interface to the GPU Second Winter School Geilo, Norway André Rigland Brodtkorb SINTEF ICT Department of Applied Mathematics 2007-01-24 Outline 1 Motivation and previous

More information

Lecture 6. Abstract Interpretation

Lecture 6. Abstract Interpretation Lecture 6. Abstract Interpretation Wei Le 2014.10 Outline Motivation History What it is: an intuitive understanding An example Steps of abstract interpretation Galois connection Narrowing and Widening

More information

Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU

Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU Debunking the 100X GPU vs CPU Myth: An Evaluation of Throughput Computing on CPU and GPU The myth 10x-1000x speed up on GPU vs CPU Papers supporting the myth: Microsoft: N. K. Govindaraju, B. Lloyd, Y.

More information

[Sahu* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Sahu* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SPAA AWARE ERROR TOLERANT 32 BIT ARITHMETIC AND LOGICAL UNIT FOR GRAPHICS PROCESSOR UNIT Kaushal Kumar Sahu*, Nitin Jain Department

More information

Using C-XSC in a Multi-Threaded Environment

Using C-XSC in a Multi-Threaded Environment Bergische Universität Wuppertal Using C-XSC in a Multi-Threaded Environment Michael Zimmer Preprint BUW-WRSWT 2011/2 Wissenschaftliches Rechnen/ Softwaretechnologie Impressum Herausgeber: Prof. Dr. W.

More information

Computer Organization and Design, 5th Edition: The Hardware/Software Interface

Computer Organization and Design, 5th Edition: The Hardware/Software Interface Computer Organization and Design, 5th Edition: The Hardware/Software Interface 1 Computer Abstractions and Technology 1.1 Introduction 1.2 Eight Great Ideas in Computer Architecture 1.3 Below Your Program

More information

Similarity Measures of Pentagonal Fuzzy Numbers

Similarity Measures of Pentagonal Fuzzy Numbers Volume 119 No. 9 2018, 165-175 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Similarity Measures of Pentagonal Fuzzy Numbers T. Pathinathan 1 and

More information

Journal of mathematics and computer science 13 (2014),

Journal of mathematics and computer science 13 (2014), Journal of mathematics and computer science 13 (2014), 231-237 Interval Interpolation by Newton's Divided Differences Ali Salimi Shamloo Parisa Hajagharezalou Department of Mathematics, Shabestar Branch,

More information

Internet Routing Games

Internet Routing Games CS498: UnderGraduate Project Internet Routing Games Submitted by: Pranay Borkar Roll no.:-14189 Mentored by: Prof. Sunil Simon Dept. of Computer Science and Engineering Indian Institute of Technology,Kanpur

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Offload acceleration of scientific calculations within.net assemblies

Offload acceleration of scientific calculations within.net assemblies Offload acceleration of scientific calculations within.net assemblies Lebedev A. 1, Khachumov V. 2 1 Rybinsk State Aviation Technical University, Rybinsk, Russia 2 Institute for Systems Analysis of Russian

More information

CUDA. GPU Computing. K. Cooper 1. 1 Department of Mathematics. Washington State University

CUDA. GPU Computing. K. Cooper 1. 1 Department of Mathematics. Washington State University GPU Computing K. Cooper 1 1 Department of Mathematics Washington State University 2014 Review of Parallel Paradigms MIMD Computing Multiple Instruction Multiple Data Several separate program streams, each

More information

Parallel Programming. Michael Gerndt Technische Universität München

Parallel Programming. Michael Gerndt Technische Universität München Parallel Programming Michael Gerndt Technische Universität München gerndt@in.tum.de Contents 1. Introduction 2. Parallel architectures 3. Parallel applications 4. Parallelization approach 5. OpenMP 6.

More information

Speeding up MATLAB Applications Sean de Wolski Application Engineer

Speeding up MATLAB Applications Sean de Wolski Application Engineer Speeding up MATLAB Applications Sean de Wolski Application Engineer 2014 The MathWorks, Inc. 1 Non-rigid Displacement Vector Fields 2 Agenda Leveraging the power of vector and matrix operations Addressing

More information

Cuda C Programming Guide Appendix C Table C-

Cuda C Programming Guide Appendix C Table C- Cuda C Programming Guide Appendix C Table C-4 Professional CUDA C Programming (1118739329) cover image into the powerful world of parallel GPU programming with this down-to-earth, practical guide Table

More information

General Purpose GPU Programming. Advanced Operating Systems Tutorial 7

General Purpose GPU Programming. Advanced Operating Systems Tutorial 7 General Purpose GPU Programming Advanced Operating Systems Tutorial 7 Tutorial Outline Review of lectured material Key points Discussion OpenCL Future directions 2 Review of Lectured Material Heterogeneous

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic Raymond J. Spiteri Lecture Notes for CMPT 898: Numerical Software University of Saskatchewan January 9, 2013 Objectives Floating-point numbers Floating-point arithmetic Analysis

More information

EFFICIENT RELIABILITY AND UNCERTAINTY ASSESSMENT ON LIFELINE NETWORKS USING THE SURVIVAL SIGNATURE

EFFICIENT RELIABILITY AND UNCERTAINTY ASSESSMENT ON LIFELINE NETWORKS USING THE SURVIVAL SIGNATURE UNCECOMP 2017 2 nd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.) Rhodes Island, Greece, 15 17

More information

Acceleration of SAT-based Iterative Property Checking

Acceleration of SAT-based Iterative Property Checking Acceleration of SAT-based Iterative Property Checking Daniel Große Rolf Drechsler Institute of Computer Science University of Bremen 28359 Bremen, Germany {grosse, drechsle}@informatik.uni-bremen.de Abstract

More information

Modelling and simulation of seismic reflectivity

Modelling and simulation of seismic reflectivity Modelling reflectivity Modelling and simulation of seismic reflectivity Rita Aggarwala, Michael P. Lamoureux, and Gary F. Margrave ABSTRACT We decompose the reflectivity series obtained from a seismic

More information

Decision Fusion using Dempster-Schaffer Theory

Decision Fusion using Dempster-Schaffer Theory Decision Fusion using Dempster-Schaffer Theory Prof. D. J. Parish High Speed networks Group Department of Electronic and Electrical Engineering D.J.Parish@lboro.ac.uk Loughborough University Overview Introduction

More information

CS516 Programming Languages and Compilers II

CS516 Programming Languages and Compilers II CS516 Programming Languages and Compilers II Zheng Zhang Spring 2015 Jan 22 Overview and GPU Programming I Rutgers University CS516 Course Information Staff Instructor: zheng zhang (eddy.zhengzhang@cs.rutgers.edu)

More information

Accelerating CFD with Graphics Hardware

Accelerating CFD with Graphics Hardware Accelerating CFD with Graphics Hardware Graham Pullan (Whittle Laboratory, Cambridge University) 16 March 2009 Today Motivation CPUs and GPUs Programming NVIDIA GPUs with CUDA Application to turbomachinery

More information

International Journal of Computer Science and Network (IJCSN) Volume 1, Issue 4, August ISSN

International Journal of Computer Science and Network (IJCSN) Volume 1, Issue 4, August ISSN Accelerating MATLAB Applications on Parallel Hardware 1 Kavita Chauhan, 2 Javed Ashraf 1 NGFCET, M.D.University Palwal,Haryana,India Page 80 2 AFSET, M.D.University Dhauj,Haryana,India Abstract MATLAB

More information

COMPUTER ARCHITECTURE

COMPUTER ARCHITECTURE COURSE: COMPUTER ARCHITECTURE per week: Lectures 3h Lab 2h For the specialty: COMPUTER SYSTEMS AND TECHNOLOGIES Degree: BSc Semester: VII Lecturer: Assoc. Prof. PhD P. BOROVSKA Head of Computer Systems

More information

GPU & Computer Arithmetics

GPU & Computer Arithmetics GPU & Computer Arithmetics David Defour University of Perpignan Key multicore challenges Performance challenge How to scale from 1 to 1000 cores The number of cores is the new MegaHertz Power efficiency

More information

MPC Toolbox with GPU Accelerated Optimization Algorithms

MPC Toolbox with GPU Accelerated Optimization Algorithms Downloaded from orbit.dtu.dk on: Apr 21, 218 MPC Toolbox with GPU Accelerated Optimization Algorithms Gade-Nielsen, Nicolai Fog; Jørgensen, John Bagterp; Dammann, Bernd Published in: The 1th European Workshop

More information

Using Graphics Chips for General Purpose Computation

Using Graphics Chips for General Purpose Computation White Paper Using Graphics Chips for General Purpose Computation Document Version 0.1 May 12, 2010 442 Northlake Blvd. Altamonte Springs, FL 32701 (407) 262-7100 TABLE OF CONTENTS 1. INTRODUCTION....1

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function

A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function Chen-Ting Chang, Yu-Sheng Chen, I-Wei Wu, and Jyh-Jiun Shann Dept. of Computer Science, National Chiao

More information

Uses of GPU Powered Interval Optimization for Parameter Identification in the Context of SO Fuel Cells

Uses of GPU Powered Interval Optimization for Parameter Identification in the Context of SO Fuel Cells 9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 4-6, 2013 ThC2.1 Uses of GPU Powered Interval Optimization for Parameter Identification in the Context of SO Fuel Cells Stefan

More information

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 10 Fall 2018

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 10 Fall 2018 Memory Bandwidth and Low Precision Computation CS6787 Lecture 10 Fall 2018 Memory as a Bottleneck So far, we ve just been talking about compute e.g. techniques to decrease the amount of compute by decreasing

More information

Optimization of HOM Couplers using Time Domain Schemes

Optimization of HOM Couplers using Time Domain Schemes Optimization of HOM Couplers using Time Domain Schemes Workshop on HOM Damping in Superconducting RF Cavities Carsten Potratz Universität Rostock October 11, 2010 10/11/2010 2009 UNIVERSITÄT ROSTOCK FAKULTÄT

More information

AN ANALYSIS ON MARKOV RANDOM FIELDS (MRFs) USING CYCLE GRAPHS

AN ANALYSIS ON MARKOV RANDOM FIELDS (MRFs) USING CYCLE GRAPHS Volume 8 No. 0 208, -20 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: 0.2732/ijpam.v8i0.54 ijpam.eu AN ANALYSIS ON MARKOV RANDOM FIELDS (MRFs) USING CYCLE

More information

Introduction to Matlab GPU Acceleration for. Computational Finance. Chuan- Hsiang Han 1. Section 1: Introduction

Introduction to Matlab GPU Acceleration for. Computational Finance. Chuan- Hsiang Han 1. Section 1: Introduction Introduction to Matlab GPU Acceleration for Computational Finance Chuan- Hsiang Han 1 Abstract: This note aims to introduce the concept of GPU computing in Matlab and demonstrates several numerical examples

More information

Representation of Action Spaces in Multiple Levels of Detail

Representation of Action Spaces in Multiple Levels of Detail Representation of Action Spaces in Multiple Levels of Detail Andreas Hasselberg Dirk Söffker Institute of Flight Guidance, German Aerospace Center, Braunschweig, Germany (e-mail: andreas.hasselberg@dlr.de)

More information

A Parallel Decoding Algorithm of LDPC Codes using CUDA

A Parallel Decoding Algorithm of LDPC Codes using CUDA A Parallel Decoding Algorithm of LDPC Codes using CUDA Shuang Wang and Samuel Cheng School of Electrical and Computer Engineering University of Oklahoma-Tulsa Tulsa, OK 735 {shuangwang, samuel.cheng}@ou.edu

More information

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects A technique for adding range restrictions to generalized searching problems Prosenjit Gupta Ravi Janardan y Michiel Smid z August 30, 1996 Abstract In a generalized searching problem, a set S of n colored

More information

Simulation of one-layer shallow water systems on multicore and CUDA architectures

Simulation of one-layer shallow water systems on multicore and CUDA architectures Noname manuscript No. (will be inserted by the editor) Simulation of one-layer shallow water systems on multicore and CUDA architectures Marc de la Asunción José M. Mantas Manuel J. Castro Received: date

More information

XIV International PhD Workshop OWD 2012, October Optimal structure of face detection algorithm using GPU architecture

XIV International PhD Workshop OWD 2012, October Optimal structure of face detection algorithm using GPU architecture XIV International PhD Workshop OWD 2012, 20 23 October 2012 Optimal structure of face detection algorithm using GPU architecture Dmitry Pertsau, Belarusian State University of Informatics and Radioelectronics

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

A Bibliography of Publications of Jingling Xue

A Bibliography of Publications of Jingling Xue A Bibliography of Publications of Jingling Xue Jingling Xue Department of Mathematics, Statistics and Computing Science Armidale, NSW 2351 Australia Tel: +61 67 73 3149 FAX: +61 67 73 3312 E-mail: xue@neumann.une.edu.au

More information

GPU Programming Using NVIDIA CUDA

GPU Programming Using NVIDIA CUDA GPU Programming Using NVIDIA CUDA Siddhante Nangla 1, Professor Chetna Achar 2 1, 2 MET s Institute of Computer Science, Bandra Mumbai University Abstract: GPGPU or General-Purpose Computing on Graphics

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke 1 3 Robert Strzodka 2 Stefan Turek 1 dominik.goeddeke@math.uni-dortmund.de 1 Mathematics III: Applied Mathematics and Numerics, University

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Warps and Reduction Algorithms

Warps and Reduction Algorithms Warps and Reduction Algorithms 1 more on Thread Execution block partitioning into warps single-instruction, multiple-thread, and divergence 2 Parallel Reduction Algorithms computing the sum or the maximum

More information

PORTFOLIO OPTIMISATION

PORTFOLIO OPTIMISATION PORTFOLIO OPTIMISATION N. STCHEDROFF Abstract. Portfolio optimisation is computationally intensive and has potential for performance improvement. This paper examines the effects of evaluating large numbers

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Presenting: Comparing the Power and Performance of Intel's SCC to State-of-the-Art CPUs and GPUs

Presenting: Comparing the Power and Performance of Intel's SCC to State-of-the-Art CPUs and GPUs Presenting: Comparing the Power and Performance of Intel's SCC to State-of-the-Art CPUs and GPUs A paper comparing modern architectures Joakim Skarding Christian Chavez Motivation Continue scaling of performance

More information

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1 Lecture 15: Introduction to GPU programming Lecture 15: Introduction to GPU programming p. 1 Overview Hardware features of GPGPU Principles of GPU programming A good reference: David B. Kirk and Wen-mei

More information

efmea RAISING EFFICIENCY OF FMEA BY MATRIX-BASED FUNCTION AND FAILURE NETWORKS

efmea RAISING EFFICIENCY OF FMEA BY MATRIX-BASED FUNCTION AND FAILURE NETWORKS efmea RAISING EFFICIENCY OF FMEA BY MATRIX-BASED FUNCTION AND FAILURE NETWORKS Maik Maurer Technische Universität München, Product Development, Boltzmannstr. 15, 85748 Garching, Germany. Email: maik.maurer@pe.mw.tum.de

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

GPU programming. Dr. Bernhard Kainz

GPU programming. Dr. Bernhard Kainz GPU programming Dr. Bernhard Kainz Overview About myself Motivation GPU hardware and system architecture GPU programming languages GPU programming paradigms Pitfalls and best practice Reduction and tiling

More information

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017 INTRODUCTION TO OPENACC Analyzing and Parallelizing with OpenACC, Feb 22, 2017 Objective: Enable you to to accelerate your applications with OpenACC. 2 Today s Objectives Understand what OpenACC is and

More information

Bichromatic Line Segment Intersection Counting in O(n log n) Time

Bichromatic Line Segment Intersection Counting in O(n log n) Time Bichromatic Line Segment Intersection Counting in O(n log n) Time Timothy M. Chan Bryan T. Wilkinson Abstract We give an algorithm for bichromatic line segment intersection counting that runs in O(n log

More information

Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC

Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC Fourth Workshop on Accelerator Programming Using Directives (WACCPD), Nov. 13, 2017 Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation using OpenACC Takuma

More information

Accelerating Correlation Power Analysis Using Graphics Processing Units (GPUs)

Accelerating Correlation Power Analysis Using Graphics Processing Units (GPUs) Accelerating Correlation Power Analysis Using Graphics Processing Units (GPUs) Hasindu Gamaarachchi, Roshan Ragel Department of Computer Engineering University of Peradeniya Peradeniya, Sri Lanka hasindu8@gmailcom,

More information

Assessment of Human Skills Using Trapezoidal Fuzzy Numbers

Assessment of Human Skills Using Trapezoidal Fuzzy Numbers American Journal of Computational and Applied Mathematics 2015, 5(4): 111-116 DOI: 10.5923/j.ajcam.20150504.03 Assessment of Human Skills Using Trapezoidal Fuzzy Numbers Michael Gr. Voskoglou Department

More information

Offloading Java to Graphics Processors

Offloading Java to Graphics Processors Offloading Java to Graphics Processors Peter Calvert (prc33@cam.ac.uk) University of Cambridge, Computer Laboratory Abstract Massively-parallel graphics processors have the potential to offer high performance

More information

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT K.Sandyarani 1 and P. Nirmal Kumar 2 1 Research Scholar, Department of ECE, Sathyabama

More information

COMPUTATIONAL OPTIMIZATION OF A TIME-DOMAIN BEAMFORMING ALGORITHM USING CPU AND GPU

COMPUTATIONAL OPTIMIZATION OF A TIME-DOMAIN BEAMFORMING ALGORITHM USING CPU AND GPU BeBeC-214-9 COMPUTATIONAL OPTIMIZATION OF A TIME-DOMAIN BEAMFORMING ALGORITHM USING CPU AND GPU Johannes Stier, Christopher Hahn, Gero Zechel and Michael Beitelschmidt Technische Universität Dresden, Institute

More information

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3. ECS231 Handout Computer Arithmetic I: Floating-point numbers and representations 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.1416 10 1 sign significandbase

More information

Developing a Data Driven System for Computational Neuroscience

Developing a Data Driven System for Computational Neuroscience Developing a Data Driven System for Computational Neuroscience Ross Snider and Yongming Zhu Montana State University, Bozeman MT 59717, USA Abstract. A data driven system implies the need to integrate

More information

[ NOTICE ] YOU HAVE TO INSTALL ALL FILES PREVIOUSLY, BECAUSE A INSTALLATION TIME IS TOO LONG.

[ NOTICE ] YOU HAVE TO INSTALL ALL FILES PREVIOUSLY, BECAUSE A INSTALLATION TIME IS TOO LONG. [ NOTICE ] YOU HAVE TO INSTALL ALL FILES PREVIOUSLY, BECAUSE A INSTALLATION TIME IS TOO LONG. Setting up Development Environment 1. O/S Platform is Windows. 2. Install the latest NVIDIA Driver. 11) 3.

More information

MatCL - OpenCL MATLAB Interface

MatCL - OpenCL MATLAB Interface MatCL - OpenCL MATLAB Interface MatCL - OpenCL MATLAB Interface Slide 1 MatCL - OpenCL MATLAB Interface OpenCL toolkit for Mathworks MATLAB/SIMULINK Compile & Run OpenCL Kernels Handles OpenCL memory management

More information

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU 1 1 Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086 Abstract.

More information

A PACKAGE FOR DEVELOPMENT OF ALGORITHMS FOR GLOBAL OPTIMIZATION 1

A PACKAGE FOR DEVELOPMENT OF ALGORITHMS FOR GLOBAL OPTIMIZATION 1 Mathematical Modelling and Analysis 2005. Pages 185 190 Proceedings of the 10 th International Conference MMA2005&CMAM2, Trakai c 2005 Technika ISBN 9986-05-924-0 A PACKAGE FOR DEVELOPMENT OF ALGORITHMS

More information

Interval Arithmetic and Computational Science: Performance Considerations

Interval Arithmetic and Computational Science: Performance Considerations Interval Arithmetic and Computational Science: Performance Considerations Alistair P. Rendell, Bill Clarke, and Josh Milthorpe Department of Computer Science, Australian National University Canberra ACT0200,

More information

Extending the Range of C-XSC: Some Tools and Applications for the use in Parallel and other Environments

Extending the Range of C-XSC: Some Tools and Applications for the use in Parallel and other Environments Extending the Range of C-XSC: Some Tools and Applications for the use in Parallel and other Environments Markus Grimmer 1 CETEQ GmbH & Co. KG 42119 Wuppertal, Lise-Meitner-Str. 5-9, Germany markus.grimmer@math.uni-wuppertal.de

More information

Verification of Numerical Results, using Posits, Valids, and Quires

Verification of Numerical Results, using Posits, Valids, and Quires Verification of Numerical Results, using Posits, Valids, and Quires Gerd Bohlender, Karlsruhe Institute of Technology CoNGA Singapore, March 28, 2018 Outline Floating-Point Arithmetic Pure vs. Applied

More information

Partial Wave Analysis using Graphics Cards

Partial Wave Analysis using Graphics Cards Partial Wave Analysis using Graphics Cards Niklaus Berger IHEP Beijing Hadron 2011, München The (computational) problem with partial wave analysis n rec * * i=1 * 1 Ngen MC NMC * i=1 A complex calculation

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS Agenda Forming a GPGPU WG 1 st meeting Future meetings Activities Forming a GPGPU WG To raise needs and enhance information sharing A platform for knowledge

More information

Visualizing Variability Models Using Hyperbolic Trees

Visualizing Variability Models Using Hyperbolic Trees Visualizing Variability Models Using Hyperbolic Trees R. Bashroush, A. Al-Nemrat, M. Bachrouch, H. Jahankhani School of Computing, IT and Engineering, University of East London, London, United Kingdom

More information

THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT HARDWARE PLATFORMS

THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT HARDWARE PLATFORMS Computer Science 14 (4) 2013 http://dx.doi.org/10.7494/csci.2013.14.4.679 Dominik Żurek Marcin Pietroń Maciej Wielgosz Kazimierz Wiatr THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT

More information

Simultaneous Solving of Linear Programming Problems in GPU

Simultaneous Solving of Linear Programming Problems in GPU Simultaneous Solving of Linear Programming Problems in GPU Amit Gurung* amitgurung@nitm.ac.in Binayak Das* binayak89cse@gmail.com Rajarshi Ray* raj.ray84@gmail.com * National Institute of Technology Meghalaya

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Estimation d arrondis, analyse de stabilité des grands codes de calcul numérique

Estimation d arrondis, analyse de stabilité des grands codes de calcul numérique Estimation d arrondis, analyse de stabilité des grands codes de calcul numérique Jean-Marie Chesneaux, Fabienne Jézéquel, Jean-Luc Lamotte, Jean Vignes Laboratoire d Informatique de Paris 6, P. and M.

More information