Representing and Searching Sets of Strings

Size: px
Start display at page:

Download "Representing and Searching Sets of Strings"

Transcription

1 Representing and Searching Sets of Strings Antonio Carzaniga Faculty of Informatics University of Lugano December 1, 2006

2 Outline Radix search Ternary search tries

3 Why Sets of Strings?

4 Why Sets of Strings? Several very important applications

5 Why Sets of Strings? Several very important applications E.g., dictionary symbol table in a compiler all kinds of key-based index...

6 Symbol Table Operations

7 Symbol Table Operations insert(key) delete(key) search(key) min() max()

8 Dictionary Operations

9 Dictionary Operations insert(key) search(key)

10 Dictionary Operations insert(key) search(key) No delete operation Built once and searched many times

11 Binary Search BINARYSEARCH(A, k) 1 first 1 2 last length(a) 3 while first last 4 do m (first + last)/2 5 if A[m] = k 6 then return TRUE 7 elseif first = last 8 then return FALSE 9 elseif A[m] > k 10 then last m 1 11 else fisrt m return FALSE TREE-SEARCH(T, k) 1 x root(t) 2 while x = NIL k = key(x) 3 do if k < key(x) 4 then x left(x) 5 else x right(x) 6 if x = NIL 7 then return TRUE 8 else return FALSE

12 Binary Search BINARYSEARCH(A, k) 1 first 1 2 last length(a) 3 while first last 4 do m (first + last)/2 5 if A[m] = k 6 then return TRUE 7 elseif first = last 8 then return FALSE 9 elseif A[m] > k 10 then last m 1 11 else fisrt m return FALSE TREE-SEARCH(T, k) 1 x root(t) 2 while x = NIL k = key(x) 3 do if k < key(x) 4 then x left(x) 5 else x right(x) 6 if x = NIL 7 then return TRUE 8 else return FALSE Complexity?

13 Binary Search BINARYSEARCH(A, k) 1 first 1 2 last length(a) 3 while first last 4 do m (first + last)/2 5 if A[m] = k 6 then return TRUE 7 elseif first = last 8 then return FALSE 9 elseif A[m] > k 10 then last m 1 11 else fisrt m return FALSE TREE-SEARCH(T, k) 1 x root(t) 2 while x = NIL k = key(x) 3 do if k < key(x) 4 then x left(x) 5 else x right(x) 6 if x = NIL 7 then return TRUE 8 else return FALSE Complexity? we must account for the complexity of string comparisons

14 String Comparison

15 String Comparison Assuming a string is an array of bytes, A[m] = K becomes STRINGEQUALS(S 1, S 2 ) 1 if length(s 1 ) = length(s 2 ) 2 then return FALSE 3 for i 0 to length(s 1 ) 4 do if S 1 [i] = S 2 [i] 5 then return FALSE 6 return TRUE

16 String Comparison Assuming a string is an array of bytes, A[m] = K becomes STRINGEQUALS(S 1, S 2 ) 1 if length(s 1 ) = length(s 2 ) 2 then return FALSE 3 for i 0 to length(s 1 ) 4 do if S 1 [i] = S 2 [i] 5 then return FALSE 6 return TRUE The complexity of STRINGEQUALS(S 1, S 2 ) is O(M), where M is the max string size

17 String Comparison Assuming a string is an array of bytes, A[m] = K becomes STRINGEQUALS(S 1, S 2 ) 1 if length(s 1 ) = length(s 2 ) 2 then return FALSE 3 for i 0 to length(s 1 ) 4 do if S 1 [i] = S 2 [i] 5 then return FALSE 6 return TRUE The complexity of STRINGEQUALS(S 1, S 2 ) is O(M), where M is the max string size So, the complexity of BINARYSEARCH(A, K) is O(M lg N)

18 What About a Hash Table CHAINED-HASH-SEARCH(T, k) 1 L T[h(k)] 2 return LIST-SEARCH(L, k) HASH-SEARCH(T, k) 1 for i 1 to length(t) 2 do j h(k, i) 3 if T[j] = k 4 then return TRUE 5 if T[j] = NIL 6 then return FALSE 7 return FALSE

19 What About a Hash Table CHAINED-HASH-SEARCH(T, k) 1 L T[h(k)] 2 return LIST-SEARCH(L, k) HASH-SEARCH(T, k) 1 for i 1 to length(t) 2 do j h(k, i) 3 if T[j] = k 4 then return TRUE 5 if T[j] = NIL 6 then return FALSE 7 return FALSE Complexity?

20 What About a Hash Table CHAINED-HASH-SEARCH(T, k) 1 L T[h(k)] 2 return LIST-SEARCH(L, k) HASH-SEARCH(T, k) 1 for i 1 to length(t) 2 do j h(k, i) 3 if T[j] = k 4 then return TRUE 5 if T[j] = NIL 6 then return FALSE 7 return FALSE Complexity? here, too, we must account for the string comparisons

21 What About a Hash Table CHAINED-HASH-SEARCH(T, k) 1 L T[h(k)] 2 return LIST-SEARCH(L, k) HASH-SEARCH(T, k) 1 for i 1 to length(t) 2 do j h(k, i) 3 if T[j] = k 4 then return TRUE 5 if T[j] = NIL 6 then return FALSE 7 return FALSE Complexity? here, too, we must account for the string comparisons and for the hash functions

22 Observation

23 Observation When we start BINARYSEARCH(A, K) A[m] is probably far away from K so, STRINGEQUALS(A[m], K) is likely to return quickly

24 Observation When we start BINARYSEARCH(A, K) A[m] is probably far away from K so, STRINGEQUALS(A[m], K) is likely to return quickly Later in BINARYSEARCH(A, K) A[m] gets closer and closer to K so, STRINGEQUALS(A[m], K) is likely to iterate for nearly M steps

25 Observation When we start BINARYSEARCH(A, K) A[m] is probably far away from K so, STRINGEQUALS(A[m], K) is likely to return quickly Later in BINARYSEARCH(A, K) A[m] gets closer and closer to K so, STRINGEQUALS(A[m], K) is likely to iterate for nearly M steps problem is STRINGEQUALS(A[m], K) is likely to go through the same prefix of K many times

26 A New Data Structure Idea: a data structure where common prefixes are shared

27 A New Data Structure Idea: a data structure where common prefixes are shared a l g o c c i a i a o / c l a s s l u g a n o n a t i c

28 A Trie Data structure useful for information retrieval (pronounced try to distinguish it from a tree... )

29 A Trie Data structure useful for information retrieval (pronounced try to distinguish it from a tree... ) Every node holds one character

30 A Trie Data structure useful for information retrieval (pronounced try to distinguish it from a tree... ) Every node holds one character Keys with a common prefix share a branch representing that prefix

31 A Trie Data structure useful for information retrieval (pronounced try to distinguish it from a tree... ) Every node holds one character Keys with a common prefix share a branch representing that prefix Keys are stored at (or just represented by) leaf nodes

32 A Trie Data structure useful for information retrieval (pronounced try to distinguish it from a tree... ) Every node holds one character Keys with a common prefix share a branch representing that prefix Keys are stored at (or just represented by) leaf nodes Question is: how do we represent nodes and links? one way would be to hold Σ = 256 links one for each character of the given alphabet Σ

33 Radix Search Every element x has an array of links links(x) e.g., in radix-256, an element represents a byte in a string (of bytes) Every element x has a value(x) that is TRUE if that prefix corresponds to a string in the dictionary this is to distinguish an entire word from a prefix

34 Every element x has an array of links links(x) Radix Search e.g., in radix-256, an element represents a byte in a string (of bytes) Every element x has a value(x) that is TRUE if that prefix corresponds to a string in the dictionary this is to distinguish an entire word from a prefix RADIXSEARCH(Root, K) 1 n Root 2 for i 1 to length(k) 3 do if links(n)[k[i]] = NIL 4 then return FALSE 5 else n = links(n)[k[i]] 6 return value

35 Complexities of Radix Search What is the complexity of Radix Search with a dictionary of N strings of up to M characters?

36 Complexities of Radix Search What is the complexity of Radix Search with a dictionary of N strings of up to M characters? T(N, M) = Θ(M)

37 Complexities of Radix Search What is the complexity of Radix Search with a dictionary of N strings of up to M characters? T(N, M) = Θ(M) What is the space complexity?

38 Complexities of Radix Search What is the complexity of Radix Search with a dictionary of N strings of up to M characters? T(N, M) = Θ(M) What is the space complexity? S(N, M) = Θ(min( Σ MN, Σ M+2 ))

39 Idea We do not represent a full array of links

40 Idea We do not represent a full array of links Instead, we represent a small binary index of the existing links

41 Idea We do not represent a full array of links Instead, we represent a small binary index of the existing links E.g., prefixes xa, xb, xn, xk, and xs might be represented as follows a b + k x n + s

42 Idea We do not represent a full array of links Instead, we represent a small binary index of the existing links E.g., prefixes xa, xb, xn, xk, and xs might be represented as follows b a next character link next character index + k x n + s

43 Ternary Search Trie

44 Ternary Search Trie Every node n represent a byte character(n)

45 Ternary Search Trie Every node n represent a byte character(n) Every node n has three links lower(n) links to a node representing a lower character at the same position higher(n) links to a node representing a higher character at the same position equal(n) links to a node representing a character in the next position

46 Ternary Search Trie Every node n represent a byte character(n) Every node n has three links lower(n) links to a node representing a lower character at the same position higher(n) links to a node representing a higher character at the same position equal(n) links to a node representing a character in the next position A TST consists of a root node R

47 TST Search A recursive search where N is the current node, K is the key, and p is the current position within K TSTSEARCH(N, K, p) 1 if N = NIL 2 then return FALSE 3 elseif K[p] = 0 4 then return TRUE 5 elseif K[p] < character(n) 6 then return TSTSEARCH(lower(N), K, p) 7 elseif K[p] > character(n) 8 then return TSTSEARCH(higher(N), K, p) 9 elseif K[p] = character(n) 10 then return TSTSEARCH(equal(N), K, p + 1) The search starts with the root node TSTSEARCH(R, K, 0)

48 TST Insertion

49 TST Insertion Same recursive pattern where N is the current node, K is the key, and p is the current position within K TSTINSERT(N, K, p) 1 if N = NULL 2 then N NEWNODE(K[p]) 3 if K[p] = 0 4 then return N 5 elseif K[p] < character(n) 6 then lower(n) TSTINSERT(lower(N), K, p) 7 elseif K[p] > character(n) 8 then higher(n) TSTINSERT(higher(N), K, p) 9 elseif K[p] = character(n) 10 then equal(n) TSTINSERT(equal(N), K, p + 1) 11 return N The insertion starts with the root node R TSTINSERT(R, K, 0)

Elementary Data Structures and Hash Tables

Elementary Data Structures and Hash Tables Elementary Data Structures and Hash Tables Antonio Carzaniga Faculty of Informatics University of Lugano November 24, 2006 Outline Common concepts and notation Stacks Queues Linked lists Trees Direct-access

More information

Binary Search Trees. Antonio Carzaniga. Faculty of Informatics University of Lugano. October 22, Antonio Carzaniga 1

Binary Search Trees. Antonio Carzaniga. Faculty of Informatics University of Lugano. October 22, Antonio Carzaniga 1 Binary Search Trees Antonio Carzaniga Faculty of Informatics University of Lugano October 22, 2008 2006 Antonio Carzaniga 1 Binary search trees Outline Randomized binary search trees 2006 Antonio Carzaniga

More information

Binary Search Trees. Motivation. Binary search tree. Tirgul 7

Binary Search Trees. Motivation. Binary search tree. Tirgul 7 Tirgul 7 Binary Search Trees Motivation We would like to have a dynamic ADT that efficiently supports the following common operations: Insert & Delete Search for an element Minimum & Maximum Predecessor

More information

Elementary Data Structures and Hash Tables

Elementary Data Structures and Hash Tables Elementary Data Structures and Hash Tables Antonio Carzaniga Faculty of Informatics Università della Svizzera italiana March 23, 2016 Outline Common concepts and notation Stacks Queues Linked lists Trees

More information

Binary Trees. Recursive definition. Is this a binary tree?

Binary Trees. Recursive definition. Is this a binary tree? Binary Search Trees Binary Trees Recursive definition 1. An empty tree is a binary tree 2. A node with two child subtrees is a binary tree 3. Only what you get from 1 by a finite number of applications

More information

Binary Search Trees. 1. Inorder tree walk visit the left subtree, the root, and right subtree.

Binary Search Trees. 1. Inorder tree walk visit the left subtree, the root, and right subtree. Binary Search Trees Search trees are data structures that support many dynamic set operations including Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete. Thus, a search tree can be

More information

Design and Analysis of Algorithms Lecture- 9: Binary Search Trees

Design and Analysis of Algorithms Lecture- 9: Binary Search Trees Design and Analysis of Algorithms Lecture- 9: Binary Search Trees Dr. Chung- Wen Albert Tsao 1 Binary Search Trees Data structures that can support dynamic set operations. Search, Minimum, Maximum, Predecessor,

More information

Binary search trees. Support many dynamic-set operations, e.g. Search. Minimum. Maximum. Insert. Delete ...

Binary search trees. Support many dynamic-set operations, e.g. Search. Minimum. Maximum. Insert. Delete ... Binary search trees Support many dynamic-set operations, e.g. Search Minimum Maximum Insert Delete... Can be used as dictionary, priority queue... you name it Running time depends on height of tree: 1

More information

Binary Search Tree Binary Search tree is a binary tree in which each internal node x stores an element such that the element stored in the left subtree of x are less than or equal to x and elements stored

More information

CSCI 104 Tries. Mark Redekopp David Kempe

CSCI 104 Tries. Mark Redekopp David Kempe 1 CSCI 104 Tries Mark Redekopp David Kempe TRIES 2 3 Review of Set/Map Again Recall the operations a set or map performs Insert(key) Remove(key) find(key) : bool/iterator/pointer Get(key) : value [Map

More information

CS/COE 1501 cs.pitt.edu/~bill/1501/ Searching

CS/COE 1501 cs.pitt.edu/~bill/1501/ Searching CS/COE 1501 cs.pitt.edu/~bill/1501/ Searching Review: Searching through a collection Given a collection of keys C, how to we search for a given key k? Store collection in an array Unsorted Sorted Linked

More information

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree 0/2/ Preview Binary Tree Tree Binary Tree Property functions In-order walk Pre-order walk Post-order walk Search Tree Insert an element to the Tree Delete an element form the Tree A binary tree is a tree

More information

Binary search trees :

Binary search trees : Binary search trees Binary search trees : Search trees are data structures that generally offer the following dynamic-set operations : SEARCH MINIMUM MAXIMUM PREDECESSOR SUCCESSOR INSERT DELETE Basic operations

More information

Binary Search Trees. Antonio Carzaniga. Faculty of Informatics University of Lugano. October 21, Antonio Carzaniga 1

Binary Search Trees. Antonio Carzaniga. Faculty of Informatics University of Lugano. October 21, Antonio Carzaniga 1 Binary Search Trees Antonio Carzaniga Faculty of Informatics University of Lugano October 21, 2010 2006 Antonio Carzaniga 1 Binary search trees Outline Randomized binary search trees 2006 Antonio Carzaniga

More information

Lecture 6: Analysis of Algorithms (CS )

Lecture 6: Analysis of Algorithms (CS ) Lecture 6: Analysis of Algorithms (CS583-002) Amarda Shehu October 08, 2014 1 Outline of Today s Class 2 Traversals Querying Insertion and Deletion Sorting with BSTs 3 Red-black Trees Height of a Red-black

More information

CS 220: Discrete Structures and their Applications. Recursive objects and structural induction in zybooks

CS 220: Discrete Structures and their Applications. Recursive objects and structural induction in zybooks CS 220: Discrete Structures and their Applications Recursive objects and structural induction 6.9 6.10 in zybooks Using recursion to define objects We can use recursion to define functions: The factorial

More information

Lecture Notes on Tries

Lecture Notes on Tries Lecture Notes on Tries 15-122: Principles of Imperative Computation Thomas Cortina Notes by Frank Pfenning Lecture 24 April 19, 2011 1 Introduction In the data structures implementing associative arrays

More information

CISC 235 Topic 3. General Trees, Binary Trees, Binary Search Trees

CISC 235 Topic 3. General Trees, Binary Trees, Binary Search Trees CISC 235 Topic 3 General Trees, Binary Trees, Binary Search Trees Outline General Trees Terminology, Representation, Properties Binary Trees Representations, Properties, Traversals Recursive Algorithms

More information

B-Trees. CS321 Spring 2014 Steve Cutchin

B-Trees. CS321 Spring 2014 Steve Cutchin B-Trees CS321 Spring 2014 Steve Cutchin Topics for Today HW #2 Once Over B Trees Questions PA #3 Expression Trees Balance Factor AVL Heights Data Structure Animations Graphs 2 B-Tree Motivation When data

More information

Animations. 01/29/04 Lecture

Animations. 01/29/04 Lecture Animations BST: http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/bst-example.html Rotations: http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html RB-Trees: http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/redblacktree-example.html

More information

Data Structures. Dynamic Sets

Data Structures. Dynamic Sets Data Structures Binary Search Tree Dynamic Sets Elements have a key and satellite data Dynamic sets support queries such as: Search(S, k) Minimum(S) Maximum(S) Successor(S, x) Predecessor(S, x) Insert(S,

More information

speller.c dictionary contains valid words, one per line 1. calls load on the dictionary file

speller.c dictionary contains valid words, one per line 1. calls load on the dictionary file mispellings speller.c 1. calls load on the dictionary file dictionary contains valid words, one per line 2. calls check on each word in the text file and prints all misspelled words 3. calls size to determine

More information

Suffix trees and applications. String Algorithms

Suffix trees and applications. String Algorithms Suffix trees and applications String Algorithms Tries a trie is a data structure for storing and retrieval of strings. Tries a trie is a data structure for storing and retrieval of strings. x 1 = a b x

More information

Lecture Notes on Tries

Lecture Notes on Tries Lecture Notes on Tries 15-122: Principles of Imperative Computation Thomas Cortina, Frank Pfenning, Rob Simmons, Penny Anderson Lecture 22 June 20, 2014 1 Introduction In the data structures implementing

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

Range Searching and Windowing

Range Searching and Windowing CS 6463 -- Fall 2010 Range Searching and Windowing Carola Wenk 1 Orthogonal range searching Input: n points in d dimensions E.g., representing a database of n records each with d numeric fields Query:

More information

Search trees, binary trie, patricia trie Marko Berezovský Radek Mařík PAL 2012

Search trees, binary trie, patricia trie Marko Berezovský Radek Mařík PAL 2012 Search trees, binary trie, patricia trie Marko Berezovský Radek Mařík PAL 212 p 2

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

Need Backtracking! L 0 A 1 B 2 K 3 P 4 C 5 I 6 Z 7 S 8 A 9 N 10 X 11 A 12 N 13 X 14 P 15

Need Backtracking! L 0 A 1 B 2 K 3 P 4 C 5 I 6 Z 7 S 8 A 9 N 10 X 11 A 12 N 13 X 14 P 15 CSE 100: TRIES Need Backtracking! L 0 A 1 B 2 K 3 P 4 C 5 I 6 Z 7 S 8 A 9 N 10 X 11 A 12 N 13 X 14 P 15 isonboard(g,v, word ) ( v is the vertex where the search starts, word is the word we are looking

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 350 - Algorithms and Complexity Basic Sorting Sean Anderson 1/18/18 Portland State University Table of contents 1. Core Concepts of Sort 2. Selection Sort 3. Insertion Sort 4. Non-Comparison Sorts 5.

More information

Today s Outline. CS 561, Lecture 8. Direct Addressing Problem. Hash Tables. Hash Tables Trees. Jared Saia University of New Mexico

Today s Outline. CS 561, Lecture 8. Direct Addressing Problem. Hash Tables. Hash Tables Trees. Jared Saia University of New Mexico Today s Outline CS 561, Lecture 8 Jared Saia University of New Mexico Hash Tables Trees 1 Direct Addressing Problem Hash Tables If universe U is large, storing the array T may be impractical Also much

More information

CSE Data Structures and Introduction to Algorithms... In Java! Instructor: Fei Wang. Binary Search Trees. CSE2100 DS & Algorithms 1

CSE Data Structures and Introduction to Algorithms... In Java! Instructor: Fei Wang. Binary Search Trees. CSE2100 DS & Algorithms 1 CSE 2100 Data Structures and Introduction to Algorithms...! In Java!! Instructor: Fei Wang! Binary Search Trees 1 R-10.6, 10.7!!! Draw the 11-entry hash table that results from using the hash function

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

Lecture 5: Scheduling and Binary Search Trees

Lecture 5: Scheduling and Binary Search Trees Lecture 5: Scheduling and Binary Search Trees Lecture Overview Runway reservation system Definition How to solve with lists Binary Search Trees Readings Operations CLRS Chapter 10, 12.1-3 Runway Reservation

More information

COT 5407: Introduction to Algorithms. Giri Narasimhan. ECS 254A; Phone: x3748

COT 5407: Introduction to Algorithms. Giri Narasimhan. ECS 254A; Phone: x3748 COT 5407: Introduction to Algorithms Giri Narasimhan ECS 254A; Phone: x3748 giri@cis.fiu.edu http://www.cis.fiu.edu/~giri/teach/5407s17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494 2/2/17

More information

Dictionaries (Maps) Hash tables. ADT Dictionary or Map. n INSERT: inserts a new element, associated to unique value of a field (key)

Dictionaries (Maps) Hash tables. ADT Dictionary or Map. n INSERT: inserts a new element, associated to unique value of a field (key) Dictionaries (Maps) Hash tables ADT Dictionary or Map Has following operations: n INSERT: inserts a new element, associated to unique value of a field (key) n SEARCH: searches an element with a certain

More information

12 Binary Search Tree

12 Binary Search Tree 12 Binary Search Tree Binary Search Trees (BSTs) are data structures that support many dynamic set operations. The typical operations include: SEARCH INSERT DELETE MINIMUM MAXIMUM PREDECESSOR SUCCESSOR

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS583-002) Amarda Shehu Fall 2017 1 Binary Search Trees Traversals, Querying, Insertion, and Deletion Sorting with BSTs 2 Example: Red-black Trees Height of a Red-black

More information

CS 315 Data Structures mid-term 2

CS 315 Data Structures mid-term 2 CS 315 Data Structures mid-term 2 1) Shown below is an AVL tree T. Nov 14, 2012 Solutions to OPEN BOOK section. (a) Suggest a key whose insertion does not require any rotation. 18 (b) Suggest a key, if

More information

1 A node in a tree. Trees. Datatypes ISC

1 A node in a tree. Trees. Datatypes ISC Datatypes ISC-5315 1 1 A node in a tree /*C*/ typedef struct _node { struct _node *left; struct _node *right; struct _node *parent; float value; node; # # Python example class Node: Node class: this is

More information

Announcements. Biostatistics 615/815 Lecture 8: Hash Tables, and Dynamic Programming. Recap: Example of a linked list

Announcements. Biostatistics 615/815 Lecture 8: Hash Tables, and Dynamic Programming. Recap: Example of a linked list Announcements Biostatistics 615/815 Lecture 8:, and Dynamic Programming Hyun Min Kang February 1st, 2011 Homework #2 For problem 3, assume that all the input values are unique Include the class definition

More information

Chapter 12 Digital Search Structures

Chapter 12 Digital Search Structures Chapter Digital Search Structures Digital Search Trees Binary Tries and Patricia Multiway Tries C-C Tsai P. Digital Search Tree A digital search tree is a binary tree in which each node contains one element.

More information

Access Methods. Basic Concepts. Index Evaluation Metrics. search key pointer. record. value. Value

Access Methods. Basic Concepts. Index Evaluation Metrics. search key pointer. record. value. Value Access Methods This is a modified version of Prof. Hector Garcia Molina s slides. All copy rights belong to the original author. Basic Concepts search key pointer Value record? value Search Key - set of

More information

A dictionary interface.

A dictionary interface. A dictionary interface. interface Dictionary { public Data search(key k); public void insert(key k, Data d); public void delete(key k); A dictionary behaves like a many-to-one function. The search method

More information

speller.c dictionary contains valid words, one per line 1. calls load on the dictionary file

speller.c dictionary contains valid words, one per line 1. calls load on the dictionary file mispellings speller.c 1. calls load on the dictionary file dictionary contains valid words, one per line 2. calls check on each word in the text file and prints all misspelled words 3. calls size to determine

More information

CSE2331/5331. Topic 6: Binary Search Tree. Data structure Operations CSE 2331/5331

CSE2331/5331. Topic 6: Binary Search Tree. Data structure Operations CSE 2331/5331 CSE2331/5331 Topic 6: Binary Search Tree Data structure Operations Set Operations Maximum Extract-Max Insert Increase-key We can use priority queue (implemented by heap) Search Delete Successor Predecessor

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 07 / 15 / 2016 Instructor: Michael Eckmann Today s Topics Questions? Comments? Binary trees implementation Binary search trees Michael Eckmann - Skidmore College

More information

HO #13 Fall 2015 Gary Chan. Hashing (N:12)

HO #13 Fall 2015 Gary Chan. Hashing (N:12) HO #13 Fall 2015 Gary Chan Hashing (N:12) Outline Motivation Hashing Algorithms and Improving the Hash Functions Collisions Strategies Open addressing and linear probing Separate chaining COMP2012H (Hashing)

More information

Trees in java.util. A set is an object that stores unique elements In Java, two implementations are available:

Trees in java.util. A set is an object that stores unique elements In Java, two implementations are available: Trees in java.util A set is an object that stores unique elements In Java, two implementations are available: The class HashSet implements the set with a hash table and a hash function The class TreeSet,

More information

Module 2: Classical Algorithm Design Techniques

Module 2: Classical Algorithm Design Techniques Module 2: Classical Algorithm Design Techniques Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Module

More information

CS 124: Course Review for Final Exam. Grades So Far (with Top Students) Exam Format: Similar to Midterms Class Quizzes Some Topic Highlights

CS 124: Course Review for Final Exam. Grades So Far (with Top Students) Exam Format: Similar to Midterms Class Quizzes Some Topic Highlights S : ourse Review for inal xam Grades So ar (with Top Students) xam ormat: Similar to Midterms lass Quizzes Some Topic Highlights Illustrations of O,, (lass Quiz ) f (N) g (N) g (N) True or false?. g (N)=O(f

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Search trees, binary trie, patricia trie Marko Berezovský Radek Mařík PAL 212 p 2

More information

Final Examination CSE 100 UCSD (Practice)

Final Examination CSE 100 UCSD (Practice) Final Examination UCSD (Practice) RULES: 1. Don t start the exam until the instructor says to. 2. This is a closed-book, closed-notes, no-calculator exam. Don t refer to any materials other than the exam

More information

Radix Searching. The insert procedure for digital search trees also derives directly from the corresponding procedure for binary search trees:

Radix Searching. The insert procedure for digital search trees also derives directly from the corresponding procedure for binary search trees: Radix Searching The most simple radix search method is digital tree searching - the binary search tree with the branch in the tree according to the bits of keys: at the first level the leading bit is used,

More information

Red-Black Trees (2) Antonio Carzaniga. April 23, Faculty of Informatics Università della Svizzera italiana Antonio Carzaniga

Red-Black Trees (2) Antonio Carzaniga. April 23, Faculty of Informatics Università della Svizzera italiana Antonio Carzaniga Red-Black Trees (2) Antonio Carzaniga Faculty of Informatics Università della Svizzera italiana April 23, 2013 Recap on Red-Black Trees 2006 Antonio Carzaniga Recap on Red-Black Trees 12 5 18 2 9 15 19

More information

Applied Databases. Sebastian Maneth. Lecture 14 Indexed String Search, Suffix Trees. University of Edinburgh - March 9th, 2017

Applied Databases. Sebastian Maneth. Lecture 14 Indexed String Search, Suffix Trees. University of Edinburgh - March 9th, 2017 Applied Databases Lecture 14 Indexed String Search, Suffix Trees Sebastian Maneth University of Edinburgh - March 9th, 2017 2 Recap: Morris-Pratt (1970) Given Pattern P, Text T, find all occurrences of

More information

Lecture Notes on Tries

Lecture Notes on Tries Lecture Notes on Tries 15-122: Principles of Imperative Computation Thomas Cortina, Frank Pfenning, Rob Simmons, Penny Anderson Lecture 21 November 10, 2014 1 Introduction In the data structures implementing

More information

Trees and Graphs Shabsi Walfish NYU - Fundamental Algorithms Summer 2006

Trees and Graphs Shabsi Walfish NYU - Fundamental Algorithms Summer 2006 Trees and Graphs Basic Definitions Tree: Any connected, acyclic graph G = (V,E) E = V -1 n-ary Tree: Tree s/t all vertices of degree n+1 A root has degree n Binary Search Tree: A binary tree such that

More information

Quiz 1 Solutions. (a) f(n) = n g(n) = log n Circle all that apply: f = O(g) f = Θ(g) f = Ω(g)

Quiz 1 Solutions. (a) f(n) = n g(n) = log n Circle all that apply: f = O(g) f = Θ(g) f = Ω(g) Introduction to Algorithms March 11, 2009 Massachusetts Institute of Technology 6.006 Spring 2009 Professors Sivan Toledo and Alan Edelman Quiz 1 Solutions Problem 1. Quiz 1 Solutions Asymptotic orders

More information

Predecessor. Predecessor Problem van Emde Boas Tries. Philip Bille

Predecessor. Predecessor Problem van Emde Boas Tries. Philip Bille Predecessor Predecessor Problem van Emde Boas Tries Philip Bille Predecessor Predecessor Problem van Emde Boas Tries Predecessors Predecessor problem. Maintain a set S U = {,..., u-} supporting predecessor(x):

More information

Data Structures and Methods. Johan Bollen Old Dominion University Department of Computer Science

Data Structures and Methods. Johan Bollen Old Dominion University Department of Computer Science Data Structures and Methods Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen January 20, 2004 Page 1 Lecture Objectives 1. To this point:

More information

External Sorting Methods

External Sorting Methods External Sorting Methods Assumptions: data is too large to be held in main memory; data is read or written in blocks; 1 or more external devices available for sorting Sorting in main memory is cheap or

More information

Trees. Prof. Dr. Debora Weber-Wulff

Trees. Prof. Dr. Debora Weber-Wulff Trees Prof. Dr. Debora Weber-Wulff Flickr, _marmota, 2007 Major Sources Michell Waite & Robert Lafore, Data Structures & Algorithms in Java Michael T. Goodrich and Roberto Tamassia Data Structures and

More information

Binary Search Trees. EECS 214, Fall 2018

Binary Search Trees. EECS 214, Fall 2018 Binary Search Trees EECS 214, Fall 2018 2 A data structure for dictionaries There are several data structures that we can use to represent dictionaries: A list of keys-value pairs A hash table An array

More information

DSA - Seminar 6. Deadline for Project stage for projects without trees: today, until 11:59 PM

DSA - Seminar 6. Deadline for Project stage for projects without trees: today, until 11:59 PM DSA - Seminar 6 Deadline for Project stage for projects without trees: today, until 11:59 PM 1. Iterator for a SortedMap represented on a hash table, collision resolution with separate chaining. - Assume

More information

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011 Exam 3 15-122 Principles of Imperative Computation, Summer 2011 William Lovas June 24, 2011 Name: Sample Solution Andrew ID: wlovas Instructions This exam is closed-book with one double-sided sheet of

More information

Cache-Oblivious String Dictionaries

Cache-Oblivious String Dictionaries Cache-Oblivious String Dictionaries Gerth Stølting Brodal University of Aarhus Joint work with Rolf Fagerberg #"! Outline of Talk Cache-oblivious model Basic cache-oblivious techniques Cache-oblivious

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS LECTURE 11 Babeş - Bolyai University Computer Science and Mathematics Faculty 2017-2018 In Lecture 9-10... Hash tables ADT Stack ADT Queue ADT Deque ADT Priority Queue Hash tables Today Hash tables 1 Hash

More information

10/9/17. Using recursion to define objects. CS 220: Discrete Structures and their Applications

10/9/17. Using recursion to define objects. CS 220: Discrete Structures and their Applications Using recursion to define objects CS 220: Discrete Structures and their Applications Recursive objects and 6.9 6.10 in zybooks We can use recursion to define functions: The factorial function can be defined

More information

Data Structures and Algorithms 2018

Data Structures and Algorithms 2018 Question 1 (12 marks) Data Structures and Algorithms 2018 Assignment 4 25% of Continuous Assessment Mark Deadline : 5pm Monday 12 th March, via Canvas Sort the array [5, 3, 4, 6, 8, 4, 1, 9, 7, 1, 2] using

More information

Chapter 7. Space and Time Tradeoffs. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 7. Space and Time Tradeoffs. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 7 Space and Time Tradeoffs Copyright 2007 Pearson Addison-Wesley. All rights reserved. Space-for-time tradeoffs Two varieties of space-for-time algorithms: input enhancement preprocess the input

More information

The Domain Name System

The Domain Name System The Domain Name System Antonio Carzaniga Faculty of Informatics University of Lugano March 27, 2007 c 2005 2007 Antonio Carzaniga 1 IP addresses and host names DNS architecture DNS process DNS requests/replies

More information

Chapter 12: Indexing and Hashing (Cnt(

Chapter 12: Indexing and Hashing (Cnt( Chapter 12: Indexing and Hashing (Cnt( Cnt.) Basic Concepts Ordered Indices B+-Tree Index Files B-Tree Index Files Static Hashing Dynamic Hashing Comparison of Ordered Indexing and Hashing Index Definition

More information

Predecessor. Predecessor. Predecessors. Predecessors. Predecessor Problem van Emde Boas Tries. Predecessor Problem van Emde Boas Tries.

Predecessor. Predecessor. Predecessors. Predecessors. Predecessor Problem van Emde Boas Tries. Predecessor Problem van Emde Boas Tries. Philip Bille s problem. Maintain a set S U = {,..., u-} supporting predecessor(x): return the largest element in S that is x. sucessor(x): return the smallest element in S that is x. insert(x): set S =

More information

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once.

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once. Chapter 8. Sorting in Linear Time Types of Sort Algorithms The only operation that may be used to gain order information about a sequence is comparison of pairs of elements. Quick Sort -- comparison-based

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

R16 SET - 1 '' ''' '' ''' Code No: R

R16 SET - 1 '' ''' '' ''' Code No: R 1. a) Define Latency time and Transmission time? (2M) b) Define Hash table and Hash function? (2M) c) Explain the Binary Heap Structure Property? (3M) d) List the properties of Red-Black trees? (3M) e)

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Optimal Search Trees; Tries Ulf Leser Content of this Lecture Optimal Search Trees Definition Construction Analysis Searching Strings: Tries Ulf Leser: Algorithms and Data

More information

CS 3343 Fall 2007 Red-black trees Carola Wenk

CS 3343 Fall 2007 Red-black trees Carola Wenk CS 3343 Fall 2007 Red-black trees Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 334 Analysis of Algorithms 1 Search Trees A binary search tree is a binary tree.

More information

CS 361, Lecture 21. Outline. Things you can do. Things I will do. Evaluation Results

CS 361, Lecture 21. Outline. Things you can do. Things I will do. Evaluation Results HW Difficulty CS 361, Lecture 21 Jared Saia University of New Mexico The HW in this class is inherently difficult, this is a difficult class. You need to be able to solve problems as hard as the problems

More information

SORTING. Practical applications in computing require things to be in order. To consider: Runtime. Memory Space. Stability. In-place algorithms???

SORTING. Practical applications in computing require things to be in order. To consider: Runtime. Memory Space. Stability. In-place algorithms??? SORTING + STRING COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges book.

More information

Lecture 6: Hashing Steven Skiena

Lecture 6: Hashing Steven Skiena Lecture 6: Hashing Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.stonybrook.edu/ skiena Dictionary / Dynamic Set Operations Perhaps

More information

CPS 231 Exam 2 SOLUTIONS

CPS 231 Exam 2 SOLUTIONS CPS 231 Exam 2 SOLUTIONS Fall 2003 1:00-2:25, Tuesday November 20th Closed book exam NAME: Problem Max Obtained 1 10 2 25 3 (a) 15 3 (b) 15 3 (c) 10 4 (a) 10 4 (b) 15 4 (c) 10 Total 110 1 [10 points ]

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano December 10, 2014 Outline Hierarchical routing BGP Routing 2005 2007 Antonio Carzaniga

More information

ECE250: Algorithms and Data Structures B-Trees (Part A)

ECE250: Algorithms and Data Structures B-Trees (Part A) ECE250: Algorithms and Data Structures B-Trees (Part A) Ladan Tahvildari, PEng, SMIEEE Associate Professor Software Technologies Applied Research (STAR) Group Dept. of Elect. & Comp. Eng. University of

More information

Hash Tables. Reading: Cormen et al, Sections 11.1 and 11.2

Hash Tables. Reading: Cormen et al, Sections 11.1 and 11.2 COMP3600/6466 Algorithms 2018 Lecture 10 1 Hash Tables Reading: Cormen et al, Sections 11.1 and 11.2 Many applications require a dynamic set that supports only the dictionary operations Insert, Search

More information

Laboratory Module X B TREES

Laboratory Module X B TREES Purpose: Purpose 1... Purpose 2 Purpose 3. Laboratory Module X B TREES 1. Preparation Before Lab When working with large sets of data, it is often not possible or desirable to maintain the entire structure

More information

CS 270 Algorithms. Oliver Kullmann. Binary search. Lists. Background: Pointers. Trees. Implementing rooted trees. Tutorial

CS 270 Algorithms. Oliver Kullmann. Binary search. Lists. Background: Pointers. Trees. Implementing rooted trees. Tutorial Week 7 General remarks Arrays, lists, pointers and 1 2 3 We conclude elementary data structures by discussing and implementing arrays, lists, and trees. Background information on pointers is provided (for

More information

Comparisons. Θ(n 2 ) Θ(n) Sorting Revisited. So far we talked about two algorithms to sort an array of numbers. What is the advantage of merge sort?

Comparisons. Θ(n 2 ) Θ(n) Sorting Revisited. So far we talked about two algorithms to sort an array of numbers. What is the advantage of merge sort? So far we have studied: Comparisons Insertion Sort Merge Sort Worst case Θ(n 2 ) Θ(nlgn) Best case Θ(n) Θ(nlgn) Sorting Revisited So far we talked about two algorithms to sort an array of numbers What

More information

Grid of Segment Trees for Packet Classification

Grid of Segment Trees for Packet Classification 2010 24th IEEE International Conference on Advanced Information Networking and Applications Grid of Segment Trees for Packet Classification Yeim-Kuan Chang, Yung-Chieh Lin, and Chen-Yu Lin Department of

More information

String quicksort solves this problem by processing the obtained information immediately after each symbol comparison.

String quicksort solves this problem by processing the obtained information immediately after each symbol comparison. Lcp-Comparisons General (non-string) comparison-based sorting algorithms are not optimal for sorting strings because of an imbalance between effort and result in a string comparison: it can take a lot

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

Applications of Succinct Dynamic Compact Tries to Some String Problems

Applications of Succinct Dynamic Compact Tries to Some String Problems Applications of Succinct Dynamic Compact Tries to Some String Problems Takuya Takagi 1, Takashi Uemura 2, Shunsuke Inenaga 3, Kunihiko Sadakane 4, and Hiroki Arimura 1 1 IST & School of Engineering, Hokkaido

More information

Comparisons. Heaps. Heaps. Heaps. Sorting Revisited. Heaps. So far we talked about two algorithms to sort an array of numbers

Comparisons. Heaps. Heaps. Heaps. Sorting Revisited. Heaps. So far we talked about two algorithms to sort an array of numbers So far we have studied: Comparisons Tree is completely filled on all levels except possibly the lowest, which is filled from the left up to a point Insertion Sort Merge Sort Worst case Θ(n ) Θ(nlgn) Best

More information

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F))

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F)) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES UNIT IV NONLINEAR DATA STRUCTURES Part A 1. Define Tree [N/D 08]

More information

String Matching. Pedro Ribeiro 2016/2017 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) String Matching 2016/ / 42

String Matching. Pedro Ribeiro 2016/2017 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) String Matching 2016/ / 42 String Matching Pedro Ribeiro DCC/FCUP 2016/2017 Pedro Ribeiro (DCC/FCUP) String Matching 2016/2017 1 / 42 On this lecture The String Matching Problem Naive Algorithm Deterministic Finite Automata Knuth-Morris-Pratt

More information

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009 CS 5633 -- Spring 2009 Orthogonal range searching Range Trees Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Input: n points in d dimensions

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures (Overflow) Hashing Marius Kloft This Module Introduction 2 Abstract Data Types 1 Complexity analysis 1 Styles of algorithms 1 Lists, stacks, queues 2 Sorting (lists) 3 Searching

More information

CSE 214 Computer Science II Searching

CSE 214 Computer Science II Searching CSE 214 Computer Science II Searching Fall 2017 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse214/sec02/ Introduction Searching in a

More information