Processing lists in Prolog - 2

Size: px
Start display at page:

Download "Processing lists in Prolog - 2"

Transcription

1 Processing lists in Prolog - 2 This lecture shows that techniques introduced before (analysing terminating conditions and recursive programming) can be used to develop more complex procedures.

2 This lecture is about: writing procedures with one or more terminating or recursive clauses; deleting one or all instances of an element from a list; The effects of matching v. unification; changing the order in which solutions are presented by changing clause order. 8 - Processing lists in Prolog: 2 1

3 Last time: Terminating at the end of the list For instance counting all elements: Terminates at the % 1 - terminating end of the list. count_elem([], Total, Total). % 2 - recursive count_elem([hd Tail], Sum, Total) :- Sum1 is Sum + 1, count_elem([hd Tail], Sum1, Total). 8 - Processing lists in Prolog: 2 2

4 Last time: Terminating when given element is found For instance finding a given element: % 1 - terminating elem(elem, [Elem _]). % 2 - recursive elem(elem, [_ Tail]) :- elem(elem, Tail). Terminates before the end of the list. Notice, this can be run backwards to enumerate the individual elements of a list. Demo1 8 - Processing lists in Prolog: 2 3

5 Last time: Terminating when given number of elements have been scanned % 1 recursive nth(count, Item, [_ Tail]) :- Count > 1, Count0 is Count - 1, nth(count0, Item, Tail). % 2 terminating nth(1, Head, [Head _]). The code counts down from the given position to 1. Demo2 8 - Processing lists in Prolog: 2 4

6 Consolidation moment Three main ways to halt recursion in list processing: 1. at the end of the list ([]); 2. when a specific element is found; 3. when a specific position in a list is reached. 8 - Processing lists in Prolog: 2 5

7 More than one recursive clause We ve seen an example with two recursive clauses: classify([], [], []). classify([head Tail], [Head Numbers], Atoms) :- number(head), classify(tail, Numbers, Atoms). classify([head Tail], Numbers, [Head Atoms]) :- atom(head), classify(tail, Numbers, Atoms). 8 - Processing lists in Prolog: 2 6

8 More than one terminating clause - 1 It is sometimes necessary to have more than one terminating clause. Consider the task of pairing the elements of two lists with any elements left over added to the end of the list:?- pair([ann,bel], [joe,bob,sam], Res). Res = [<,ann,joe,>,<,bel,bob,>,sam]? ; no 8 - Processing lists in Prolog: 2 7

9 More than one terminating clause - 2 Terminating conditions? when both lists are empty: pair([], [], []). when first list is empty; second isn t: pair([], List, List). when first list isn t empty; second is empty: pair(list, [], List). 8 - Processing lists in Prolog: 2 8

10 More than one terminating clause - 3 The recursive clause is: pair([head1 Tail1], [Head2 Tail2], ['<', Head1, Head2, '>' Tail3]) :- pair(tail1, Tail2, Tail3). 8 - Processing lists in Prolog: 2 9

11 More than one terminating clause - 4 Unfortunately, this procedure doesn t work properly: Demo3 When 1st & 2nd arguments are reduced to [], the last goal is: pair([], [], Res). This unifies with the terminating clauses: pair([], [], []). pair([], List, List). pair(list, [], List). Demo4 8 - Processing lists in Prolog: 2 10

12 More than one terminating clause - 5 The solution is to write mutually exclusive terminating clauses: When the first list is empty and the second isn t: pair([], [Head Tail], [Head Tail]). When the first list isn t or isn t empty and the second is empty: pair(list, [], List). 8 - Processing lists in Prolog: 2 11

13 Deleting elements from a list - 1 Consider delete_1/3: % 1 - terminating delete_1(head, [Head Tail], Tail). % 2 - recursive delete_1(item, [Head Tail], [Head New_Tail]) :- delete_1(item, Tail, New_Tail). and the query: delete_1(var, [a,b,a,b], Pruned_List). 8 - Processing lists in Prolog: 2 12

14 Deleting elements from a list - 2 It is obvious that Var will be bound to a, b, a & b in turn, but what about the goal? delete_1(b, [a,b,a,b], Pruned_List). There are two ways of satisfying this goal. If there is local failure in a program containing delete_1/3, the next entry is taken off the stack and tried until none is left. Demo5 8 - Processing lists in Prolog: 2 13

15 Variations on deletion There are two obvious variants of delete_1/3: Delete one and only one occurrence of an element; Delete all occurrences of an element. These show two extensions of list processing. 8 - Processing lists in Prolog: 2 14

16 Delete one and only one element A very easy extension of delete_1/3: The clauses of delete_1/3 aren t mutually exclusive. An extra line ensure they are mutually exclusive: delete_2(head, [Head Tail], Tail). delete_2(item, [Head Tail], [Head New_Tail]) :- Item \= Head, delete_2(item, Tail, New_Tail). 8 - Processing lists in Prolog: 2 15

17 Delete all instances of an element - 1 This requires more thought: different from delete_1/3 because all elements of the input list must be scanned; a terminate-at-end of list pattern; the head of the input list either matches the element to be deleted OR it does not match the element to be deleted; OR-choice has to be represented by two recursive rules. 8 - Processing lists in Prolog: 2 16

18 Delete all instances of an element - 2 The terminating clause: When the input list is empty, then the output list is empty. delete_all(_head, [], []). 8 - Processing lists in Prolog: 2 17

19 Delete all instances of an element - 3 The recursive clauses: When the heads of the input and output lists don t match the element being deleted: % 2 - recursive: head doesn't match delete_all(item, [Head Tail], [Head New_Tail]) :- Item \= Head, delete_all(item, Tail, New_Tail). 8 - Processing lists in Prolog: 2 18

20 Delete all instances of an element - 4 The recursive clauses: When the heads of the input list matches the element being deleted: % 3 - recursive: head does match delete_all(item, [Item Tail], New_Tail) :- delete_all(item, Tail, New_Tail). Demo6 8 - Processing lists in Prolog: 2 19

21 Matching v. unification - 1 Look again at the deletion of one element: % 1 - terminating delete_1(head, [Head Tail], Tail). % 2 - recursive delete_1(item, [Head Tail], [Head New_Tail]) :- delete_1(item, Tail, New_Tail). 8 - Processing lists in Prolog: 2 20

22 Matching v. unification - 2 What happens with the query??- delete_1(var, [a,b,a,b], New_List). Var = a, New_List = [b,a,b]? ; Var = b, New_List = [a,a,b]? ; no 8 - Processing lists in Prolog: 2 21

23 Matching v. unification - 3 Suppose we want to have matching instead of unification:?- 'delete=='(var, [a,b,a,b], New_List). no?- 'delete=='(b, [a,b,a,b], New_List). New_List = [a,a,b]? ; no 8 - Processing lists in Prolog: 2 22

24 Matching v. unification - 4 The program needs two additions: % 1 - terminating 'delete=='(item, [Head Tail], Tail) :- Item == Head. % 2 - recursive 'delete=='(item, [Head Tail], Common mistake: use \=/2. [Head New_Tail]) :- Item \== Head, 'delete=='(item, Tail, New_Tail). 8 - Processing lists in Prolog: 2 23

25 The effect of clause order - 1 So far, we ve generally placed the terminating clause first in a procedure. What effect does the order of clauses have? Consider again delete_1/3: % 1 - terminating delete_1(head, [Head Tail], Tail). % 2 - recursive delete_1(item, [Head Tail], [Head New_Tail]) :- delete_1(item, Tail, New_Tail). 8 - Processing lists in Prolog: 2 24

26 The effect of clause order - 2 If we use a non-deterministic query:?- delete_1(a, [a,1,a,2,a,3], Res). Res = [1,a,2,a,3]? ; Res = [a,1,2,a,3]? ; Res = [a,1,a,2,3]? ; no 8 - Processing lists in Prolog: 2 25

27 The effect of clause order - 3 If we swap the clauses around in our procedure: % 2 - recursive delete_1(item, [Head Tail], [Head New_Tail]) :- delete_1(item, Tail, New_Tail). % 1 - terminating delete_1(head, [Head Tail], Tail). 8 - Processing lists in Prolog: 2 26

28 The effect of clause order - 4 and use the same query:?- delete_1(a, [a,1,a,2,a,3], Res). Res = [a,1,a,2,3]? ; Res = [a,1,2,a,3]? ; Res = [1,a,2,a,3]? ; no 8 - Processing lists in Prolog: 2 27

29 The effect of clause order - 5 Compare the bag of solutions: Terminating first: [1,a,2,a,3] [a,1,2,a,3] [a,1,a,2,3] Recursive first: [a,1,a,2,3] [a,1,2,a,3] [1,a,2,a,3] 8 - Processing lists in Prolog: 2 28

30 In summary: The effect of clause order - 6 Clause order shouldn t matter in a declarative language because process is not significant. But that isn t always true: Out-of-lecture activity: Experiment with clause ordering and the query:?- delete_all(var, List, [a,b,a,b]). 8 - Processing lists in Prolog: 2 29

31 This time More advanced use of Prolog lists allows us to: use more than one terminating clause (eg pair/3); apply an operation to all matching list elements (delete_all/3); use matching (==/2) instead of unification; change the order of solutions by changing clause order. 8 - Processing lists in Prolog: 2 30

32 Next time A last look at lists, specifically: lists as stacks and queues; processing lists within lists; making list processing more efficient; stopping Prolog running out of stack space and/using too much memory. 8 - Processing lists in Prolog: 2 31

This lecture covers: Prolog s execution strategy explained more precisely. Revision of the elementary Prolog data types

This lecture covers: Prolog s execution strategy explained more precisely. Revision of the elementary Prolog data types This lecture covers: Prolog s execution strategy explained more precisely The execution strategy has been presented as simply placing all matching clauses onto the stack. In fact, Prolog is slightly more

More information

Exercises on the Fundamentals of Prolog

Exercises on the Fundamentals of Prolog 1 Introduction Exercises on the Fundamentals of Prolog These exercises are intended to help reinforce material taught in the lectures of CIS335 course in Prolog. They do not contribute any marks to the

More information

This lecture presents ordered lists. An ordered list is one which is maintained in some predefined order, such as alphabetical or numerical order.

This lecture presents ordered lists. An ordered list is one which is maintained in some predefined order, such as alphabetical or numerical order. 6.1 6.2 This lecture presents ordered lists. An ordered list is one which is maintained in some predefined order, such as alphabetical or numerical order. A list is numerically ordered if, for every item

More information

Lecture 21: Relational Programming II. November 15th, 2011

Lecture 21: Relational Programming II. November 15th, 2011 Lecture 21: Relational Programming II November 15th, 2011 Lecture Outline Relational Programming contd The Relational Model of Computation Programming with choice and Solve Search Strategies Relational

More information

Derived from PROgramming in LOGic (1972) Prolog and LISP - two most popular AI languages. Prolog programs based on predicate logic using Horn clauses

Derived from PROgramming in LOGic (1972) Prolog and LISP - two most popular AI languages. Prolog programs based on predicate logic using Horn clauses Prolog Programming Derived from PROgramming in LOGic (1972) Good at expressing logical relationships between concepts Prolog and LISP - two most popular AI languages Execution of a Prolog program is a

More information

3 Lists. List Operations (I)

3 Lists. List Operations (I) 3 Lists. List Operations (I) The list is the simplest yet the most useful Prolog structure. A list is a sequence of any number of objects. Example 3.1: L = [1, 2, 3], R = [a, b, c], T = [john, marry, tim,

More information

Intro. Scheme Basics. scm> 5 5. scm>

Intro. Scheme Basics. scm> 5 5. scm> Intro Let s take some time to talk about LISP. It stands for LISt Processing a way of coding using only lists! It sounds pretty radical, and it is. There are lots of cool things to know about LISP; if

More information

Implementação de Linguagens 2016/2017

Implementação de Linguagens 2016/2017 Implementação de Linguagens Ricardo Rocha DCC-FCUP, Universidade do Porto ricroc @ dcc.fc.up.pt Ricardo Rocha DCC-FCUP 1 Logic Programming Logic programming languages, together with functional programming

More information

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or elements of the set. a) Use capital letters to stand for sets

More information

Week - 03 Lecture - 18 Recursion. For the last lecture of this week, we will look at recursive functions. (Refer Slide Time: 00:05)

Week - 03 Lecture - 18 Recursion. For the last lecture of this week, we will look at recursive functions. (Refer Slide Time: 00:05) Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 03 Lecture - 18 Recursion For the

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Type Inference Some statically typed languages, like ML (and to a lesser extent Scala), offer alternative

More information

Introduction to Prolog Paper Refs. Prolog tutor. Julian Verdurmen. Seminar Softw. tech. for teaching and learning. September 30, 2009

Introduction to Prolog Paper Refs. Prolog tutor. Julian Verdurmen. Seminar Softw. tech. for teaching and learning. September 30, 2009 Seminar Softw. tech. for teaching and learning September 30, 2009 Outline 1 Introduction to Prolog Basics Simple example 2 Basics Simple example Outline 1 Introduction to Prolog Basics Simple example 2

More information

LING/C SC/PSYC 438/538. Lecture 20 Sandiway Fong

LING/C SC/PSYC 438/538. Lecture 20 Sandiway Fong LING/C SC/PSYC 438/538 Lecture 20 Sandiway Fong Today's Topics SWI-Prolog installed? We will start to write grammars today Quick Homework 8 SWI Prolog Cheatsheet At the prompt?- 1. halt. 2. listing. listing(name).

More information

IKI30820 Logic Programming Programming Style and Techniques Slide 09

IKI30820 Logic Programming Programming Style and Techniques Slide 09 IKI30820 Logic Programming Programming Style and Techniques Slide 09 Ari Saptawijaya (slides) Adila A. Krisnadhi (L A T E Xadaptation) Fakultas Ilmu Komputer Universitas Indonesia 2009/2010 Semester Gasal

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17 01.433/33 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/2/1.1 Introduction In this lecture we ll talk about a useful abstraction, priority queues, which are

More information

INTRODUCTION TO PROLOG

INTRODUCTION TO PROLOG INTRODUCTION TO PROLOG PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2018 Dalhousie University 1/44 STRUCTURE OF A PROLOG PROGRAM Where, declaratively, Haskell expresses a computation as a system

More information

Prolog Cut: Summary. CSC324 Logic & Relational Programming Illustrated in Prolog. Prolog Cut: Summary. Non-deterministic Programming

Prolog Cut: Summary. CSC324 Logic & Relational Programming Illustrated in Prolog. Prolog Cut: Summary. Non-deterministic Programming Prolog Cut: Summary CSC324 Logic & Relational Programming Illustrated in Prolog Afsaneh Fazly Cut (! ) can be used to: remove duplicate (& unnecessary) responses. remove incorrect responses. improve efficiency

More information

COP4020 Fall 2006 Final Exam

COP4020 Fall 2006 Final Exam COP4020 Fall 2006 Final Exam Name: (Please print) Put the answers on these sheets. You can collect 100 points in total for this exam. 1. Consider the following Ada program fragment: search: loop i := i+1;

More information

Logic Languages. Hwansoo Han

Logic Languages. Hwansoo Han Logic Languages Hwansoo Han Logic Programming Based on first-order predicate calculus Operators Conjunction, disjunction, negation, implication Universal and existential quantifiers E A x for all x...

More information

CMSC 331 Final Exam Section 0201 December 18, 2000

CMSC 331 Final Exam Section 0201 December 18, 2000 CMSC 331 Final Exam Section 0201 December 18, 2000 Name: Student ID#: You will have two hours to complete this closed book exam. We reserve the right to assign partial credit, and to deduct points for

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2018 Lecture 7b Andrew Tolmach Portland State University 1994-2018 Dynamic Type Checking Static type checking offers the great advantage of catching errors early And

More information

Day 28 Arithmetic Sequence. Find the next two terms of each sequence. Then describe the pattern. The equations will be completed later.

Day 28 Arithmetic Sequence. Find the next two terms of each sequence. Then describe the pattern. The equations will be completed later. Find the next two terms of each sequence. Then describe the pattern. The equations will be completed later. 1, 3, 5, 7, 9,, Description: Equation: 2, 7, 12, 17, 22,, Description: Equation: -416, -323,

More information

Recursion, Structures, and Lists

Recursion, Structures, and Lists Recursion, Structures, and Lists Artificial Intelligence Programming in Prolog Lecturer: Tim Smith Lecture 4 04/10/04 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 1 The central ideas of Prolog

More information

Topic B: Backtracking and Lists

Topic B: Backtracking and Lists Topic B: Backtracking and Lists 1 Recommended Exercises and Readings From Programming in Prolog (5 th Ed.) Readings: Chapter 3 2 Searching for the Answer In order for a Prolog program to report the correct

More information

DAY 28 - ARITHMETIC SEQUENCES

DAY 28 - ARITHMETIC SEQUENCES DAY 28 - ARITHMETIC SEQUENCES ARITHMETIC SEQUENCE An ARITHMETIC SEQUENCE is where the rule of the pattern is always ADDED. The rule is called the COMMON DIFFERENCE ARITHMETIC SEQUENCE You can use the following

More information

6.001 Notes: Section 4.1

6.001 Notes: Section 4.1 6.001 Notes: Section 4.1 Slide 4.1.1 In this lecture, we are going to take a careful look at the kinds of procedures we can build. We will first go back to look very carefully at the substitution model,

More information

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book)

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book) COMP2411 Lecture 20: Logic Programming Examples (This material not in the book) There are several distinct but often equivalent ways to think about logic programs 1. As computing logical consequences of

More information

Prolog Programming. Lecture Module 8

Prolog Programming. Lecture Module 8 Prolog Programming Lecture Module 8 Prolog Language Prolog is unique in its ability to infer facts from the given facts and rules. In Prolog, an order of clauses in the program and goals in the body of

More information

Search. (Textbook Chpt ) Computer Science cpsc322, Lecture 2. May, 10, CPSC 322, Lecture 2 Slide 1

Search. (Textbook Chpt ) Computer Science cpsc322, Lecture 2. May, 10, CPSC 322, Lecture 2 Slide 1 Search Computer Science cpsc322, Lecture 2 (Textbook Chpt 3.0-3.4) May, 10, 2012 CPSC 322, Lecture 2 Slide 1 Colored Cards You need to have 4 colored index cards Come and get them from me if you still

More information

PRACTICE MIDTERM EXAM #2

PRACTICE MIDTERM EXAM #2 This practice exam is based on the actual midterm exam from Cynthia s Spring 2014 class. It did not include a classes problem (which you should expect this quarter), and the memory/pointers problem covered

More information

Resources matter. Orders of Growth of Processes. R(n)= (n 2 ) Orders of growth of processes. Partial trace for (ifact 4) Partial trace for (fact 4)

Resources matter. Orders of Growth of Processes. R(n)= (n 2 ) Orders of growth of processes. Partial trace for (ifact 4) Partial trace for (fact 4) Orders of Growth of Processes Today s topics Resources used by a program to solve a problem of size n Time Space Define order of growth Visualizing resources utilization using our model of evaluation Relating

More information

CS1102: Macros and Recursion

CS1102: Macros and Recursion CS1102: Macros and Recursion Kathi Fisler, WPI October 5, 2009 This lecture looks at several more macro examples. It aims to show you when you can use recursion safely with macros and when you can t. 1

More information

Practice Midterm Exam Solutions

Practice Midterm Exam Solutions CSE 332: Data Abstractions Autumn 2015 Practice Midterm Exam Solutions Name: Sample Solutions ID #: 1234567 TA: The Best Section: A9 INSTRUCTIONS: You have 50 minutes to complete the exam. The exam is

More information

Lecture #24: Programming Languages and Programs

Lecture #24: Programming Languages and Programs Lecture #24: Programming Languages and Programs A programming language is a notation for describing computations or processes. These range from low-level notations, such as machine language or simple hardware

More information

Prolog (cont d) Remark. Using multiple clauses. Intelligent Systems and HCI D7023E

Prolog (cont d) Remark. Using multiple clauses. Intelligent Systems and HCI D7023E Intelligent Systems and HCI D703E Lecture : More Prolog Paweł Pietrzak Prolog (cont d) 1 Remark The recent version of SWI- Prolog displays true and false rather than and no Using multiple clauses Different

More information

Analysis of algorithms

Analysis of algorithms Analysis of algorithms Time and space To analyze an algorithm means: developing a formula for predicting how fast an algorithm is, based on the size of the input (time complexity), and/or developing a

More information

Fundamentals of Prolog

Fundamentals of Prolog Fundamentals of Prolog Prof. Geraint A. Wiggins Centre for Cognition, Computation and Culture Goldsmiths College, University of London Contents Summary of Lecture 1 What makes a good Prolog program? What

More information

Parallel Computing. Lecture 16: OpenMP - IV

Parallel Computing. Lecture 16: OpenMP - IV CSCI-UA.0480-003 Parallel Computing Lecture 16: OpenMP - IV Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com PRODUCERS AND CONSUMERS Queues A natural data structure to use in many multithreaded

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Information Extraction, Hidden Markov Models Sameer Maskey * Most of the slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny Speech Recognition Lecture 4:

More information

Greedy Algorithms. This is such a simple approach that it is what one usually tries first.

Greedy Algorithms. This is such a simple approach that it is what one usually tries first. Greedy Algorithms A greedy algorithm tries to solve an optimisation problem by making a sequence of choices. At each decision point, the alternative that seems best at that moment is chosen. This is such

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

COMP 9416, session 1, 2006 p. 1. Datalog. COMP 9416, session 1, 2006

COMP 9416, session 1, 2006 p. 1. Datalog. COMP 9416, session 1, 2006 OMP 9416, session 1, 2006 p. 1 Datalog OMP 9416, session 1, 2006 OMP 9416, session 1, 2006 p. 2 Atoms, integers and variables The fact "person(socrates).", the fact "sum(2,3,y)." and the rule "mortal(x)

More information

Lecture 1: a partial introduction to Prolog

Lecture 1: a partial introduction to Prolog Lecture 1: a partial introduction to Prolog First programs in Prolog including: working with objects to display information; change contents of an object; comparing and contrasting Prolog and Java; briefly

More information

Programming Paradigms

Programming Paradigms PP 2017/18 Unit 9 Prolog: Accumulators, Order of Goals/Clauses, and the Cut 1/38 Programming Paradigms Unit 9 Prolog: Accumulators, Order of Goals/Clauses, and the Cut J. Gamper Free University of Bozen-Bolzano

More information

Lecture Notes on Priority Queues

Lecture Notes on Priority Queues Lecture Notes on Priority Queues 15-122: Principles of Imperative Computation Frank Pfenning Lecture 16 October 18, 2012 1 Introduction In this lecture we will look at priority queues as an abstract type

More information

CmpSci 187: Programming with Data Structures Spring 2015

CmpSci 187: Programming with Data Structures Spring 2015 CmpSci 187: Programming with Data Structures Spring 2015 Lecture #13, Concurrency, Interference, and Synchronization John Ridgway March 12, 2015 Concurrency and Threads Computers are capable of doing more

More information

Assertions and Exceptions Lecture 11 Fall 2005

Assertions and Exceptions Lecture 11 Fall 2005 Assertions and Exceptions 6.170 Lecture 11 Fall 2005 10.1. Introduction In this lecture, we ll look at Java s exception mechanism. As always, we ll focus more on design issues than the details of the language,

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 7b Andrew Tolmach Portland State University 1994-2017 Values and Types We divide the universe of values according to types A type is a set of values and

More information

CS402 Theory of Automata Solved Subjective From Midterm Papers. MIDTERM SPRING 2012 CS402 Theory of Automata

CS402 Theory of Automata Solved Subjective From Midterm Papers. MIDTERM SPRING 2012 CS402 Theory of Automata Solved Subjective From Midterm Papers Dec 07,2012 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 MIDTERM SPRING 2012 Q. Point of Kleen Theory. Answer:- (Page 25) 1. If a language can be accepted

More information

Chemistry Studio. B.Tech Project. Ashish Gupta (Y8140) Akshay Mittal (Y8056)

Chemistry Studio. B.Tech Project. Ashish Gupta (Y8140) Akshay Mittal (Y8056) Chemistry Studio An Intelligent Tutoring System: Problem Solving B.Tech Project Ashish Gupta (Y8140) Akshay Mittal (Y8056) Mentored By: Prof. Amey Karkare, IIT Kanpur Dr. Sumit Gulwani, MSR Redmond Dr.

More information

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting CS2 Algorithms and Data Structures Note 10 Depth-First Search and Topological Sorting In this lecture, we will analyse the running time of DFS and discuss a few applications. 10.1 A recursive implementation

More information

COSC 2P91. Bringing it all together... Week 4b. Brock University. Brock University (Week 4b) Bringing it all together... 1 / 22

COSC 2P91. Bringing it all together... Week 4b. Brock University. Brock University (Week 4b) Bringing it all together... 1 / 22 COSC 2P91 Bringing it all together... Week 4b Brock University Brock University (Week 4b) Bringing it all together... 1 / 22 A note on practicality and program design... Writing a single, monolithic source

More information

Computer Science E-119 Fall Problem Set 1. Due before lecture on Wednesday, September 26

Computer Science E-119 Fall Problem Set 1. Due before lecture on Wednesday, September 26 Due before lecture on Wednesday, September 26 Getting Started Before starting this assignment, make sure that you have completed Problem Set 0, which can be found on the assignments page of the course

More information

CSE 120. Computer Science Principles

CSE 120. Computer Science Principles Adam Blank Lecture 17 Winter 2017 CSE 120 Computer Science Principles CSE 120: Computer Science Principles Proofs & Computation e w h e q 0 q 1 q 2 q 3 h,e w,e w,h w,h q garbage w,h,e CSE = Abstraction

More information

RACKET BASICS, ORDER OF EVALUATION, RECURSION 1

RACKET BASICS, ORDER OF EVALUATION, RECURSION 1 RACKET BASICS, ORDER OF EVALUATION, RECURSION 1 COMPUTER SCIENCE 61AS 1. What is functional programming? Give an example of a function below: Functional Programming In functional programming, you do not

More information

In This Lecture. Transactions and Recovery. Transactions. Transactions. Isolation and Durability. Atomicity and Consistency. Transactions Recovery

In This Lecture. Transactions and Recovery. Transactions. Transactions. Isolation and Durability. Atomicity and Consistency. Transactions Recovery In This Lecture Database Systems Lecture 15 Natasha Alechina Transactions Recovery System and Media s Concurrency Concurrency problems For more information Connolly and Begg chapter 20 Ullmanand Widom8.6

More information

Types, Expressions, and States

Types, Expressions, and States 8/27: solved Types, Expressions, and States CS 536: Science of Programming, Fall 2018 A. Why? Expressions represent values in programming languages, relative to a state. Types describe common properties

More information

Unit 6 Chapter 15 EXAMPLES OF COMPLEXITY CALCULATION

Unit 6 Chapter 15 EXAMPLES OF COMPLEXITY CALCULATION DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 15 EXAMPLES OF COMPLEXITY CALCULATION http://milanvachhani.blogspot.in EXAMPLES FROM THE SORTING WORLD Sorting provides a good set of examples for analyzing

More information

Solutions to Homework 10

Solutions to Homework 10 CS/Math 240: Intro to Discrete Math 5/3/20 Instructor: Dieter van Melkebeek Solutions to Homework 0 Problem There were five different languages in Problem 4 of Homework 9. The Language D 0 Recall that

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

Prolog-2 nd Lecture. Prolog Predicate - Box Model

Prolog-2 nd Lecture. Prolog Predicate - Box Model Prolog-2 nd Lecture Tracing in Prolog Procedural interpretation of execution Box model of Prolog predicate rule How to follow a Prolog trace? Trees in Prolog use nested terms Unification Informally Formal

More information

The Prolog to Mercury transition guide

The Prolog to Mercury transition guide The Prolog to Mercury transition guide Version 14.01.1 Thomas Conway Zoltan Somogyi Fergus Henderson Copyright c 1995 2014 The University of Melbourne. Permission is granted to make and distribute verbatim

More information

Lecture Overview Prolog 1. Introduction Interaction Terms 2. Clauses and predicates Clauses Predicates Variables 3.

Lecture Overview Prolog 1. Introduction Interaction Terms 2. Clauses and predicates Clauses Predicates Variables 3. 1 Lecture Overview Prolog 1. Introduction Interaction Terms 2. Clauses and predicates Clauses Predicates Variables 3. Satisfying goals 2 Prolog A standard free Prolog can be downloaded from http://www.swi-prolog.org

More information

Variables. Substitution

Variables. Substitution Variables Elements of Programming Languages Lecture 4: Variables, binding and substitution James Cheney University of Edinburgh October 6, 2015 A variable is a symbol that can stand for another expression.

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

Linked Lists, Stacks, and Queues

Linked Lists, Stacks, and Queues Department of Computer Science and Engineering Chinese University of Hong Kong In a nutshell, a data structure describes how data are stored in memory, in order to facilitate certain operations. In all

More information

Automata Theory TEST 1 Answers Max points: 156 Grade basis: 150 Median grade: 81%

Automata Theory TEST 1 Answers Max points: 156 Grade basis: 150 Median grade: 81% Automata Theory TEST 1 Answers Max points: 156 Grade basis: 150 Median grade: 81% 1. (2 pts) See text. You can t be sloppy defining terms like this. You must show a bijection between the natural numbers

More information

COS 126 General Computer Science Fall Final - Solutions 1

COS 126 General Computer Science Fall Final - Solutions 1 COS 126 General Computer Science Fall 1997 Final - Solutions 1 Question 1 This is a FIFO queue, so we follow a first in, first out policy: E, EA, A, AS, S, SY, SYQ, SYQU, YQU, QU, QUE,QUES,QUEST,UEST,UESTI,ESTI,ESTIO,STIO,TIO,IO,O,ON,N,empty.

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

Prolog - 3 Prolog search trees + traces

Prolog - 3 Prolog search trees + traces Prolog - 3 Prolog search trees + traces 1 Review member(a, [A B]). member(a, [B C]) :- member (A,C). goal-oriented semantics: can get value assignment for goal member(a,[b C]) by showing truth of subgoal

More information

Lecture 3 - States and Searching

Lecture 3 - States and Searching Lecture 3 - States and Searching Jesse Hoey School of Computer Science University of Waterloo January 15, 2018 Readings: Poole & Mackworth Chapt. 3 (all) Searching Often we are not given an algorithm to

More information

Exceptions & a Taste of Declarative Programming in SQL

Exceptions & a Taste of Declarative Programming in SQL Exceptions & a Taste of Declarative Programming in SQL David E. Culler CS8 Computational Structures in Data Science http://inst.eecs.berkeley.edu/~cs88 Lecture 12 April 18, 2016 Computational Concepts

More information

NOTE: Answer ANY FOUR of the following 6 sections:

NOTE: Answer ANY FOUR of the following 6 sections: A-PDF MERGER DEMO Philadelphia University Lecturer: Dr. Nadia Y. Yousif Coordinator: Dr. Nadia Y. Yousif Internal Examiner: Dr. Raad Fadhel Examination Paper... Programming Languages Paradigms (750321)

More information

CSE332: Data Abstractions Lecture 22: Shared-Memory Concurrency and Mutual Exclusion. Tyler Robison Summer 2010

CSE332: Data Abstractions Lecture 22: Shared-Memory Concurrency and Mutual Exclusion. Tyler Robison Summer 2010 CSE332: Data Abstractions Lecture 22: Shared-Memory Concurrency and Mutual Exclusion Tyler Robison Summer 2010 1 Toward sharing resources (memory) So far we ve looked at parallel algorithms using fork-join

More information

Lecture 16: Logic Programming in Prolog

Lecture 16: Logic Programming in Prolog Lecture 16: Logic Programming in Prolog COMP 524 Programming Language Concepts Stephen Olivier March 26, 2009 Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts Goal of

More information

Lecture 8: September 30

Lecture 8: September 30 CMPSCI 377 Operating Systems Fall 2013 Lecture 8: September 30 Lecturer: Prashant Shenoy Scribe: Armand Halbert 8.1 Semaphores A semaphore is a more generalized form of a lock that can be used to regulate

More information

Randomized Algorithms, Hash Functions

Randomized Algorithms, Hash Functions Randomized Algorithms, Hash Functions Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 http://cseweb.ucsd.edu/classes/wi16/cse21-abc/

More information

Lecture 11: Feb. 10, 2016

Lecture 11: Feb. 10, 2016 CS323: AI (Hands on with Prolog) Spring 2016 Lecturer: K.R. Chowdhary Lecture 11: Feb. 10, 2016 : Professor of CS (VF) Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Lecture 9: A closer look at terms

Lecture 9: A closer look at terms Lecture 9: A closer look at terms Theory Introduce the == predicate Take a closer look at term structure Introduce strings in Prolog Introduce operators Exercises Exercises of LPN: 9.1, 9.2, 9.3, 9.4,

More information

CSE 143, Winter 2009 Sample Midterm Exam #2

CSE 143, Winter 2009 Sample Midterm Exam #2 CSE 143, Winter 2009 Sample Midterm Exam #2 1. Stacks and Queues. Write a method interleave that accepts a queue of integers as a parameter and rearranges the elements by alternating the elements from

More information

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog CS 360: Programming Languages Lecture 10: Logic Programming with Prolog Geoffrey Mainland Drexel University Section 1 Administrivia Midterm Tuesday Midterm is Tuesday, February 14! Study guide is on the

More information

Prolog. Logic Programming vs Prolog

Prolog. Logic Programming vs Prolog Language constructs Prolog Facts, rules, queries through examples Horn clauses Goal-oriented semantics Procedural semantics How computation is performed? Comparison to logic programming 1 Logic Programming

More information

Lecture 10 Notes Linked Lists

Lecture 10 Notes Linked Lists Lecture 10 Notes Linked Lists 15-122: Principles of Imperative Computation (Summer 1 2015) Frank Pfenning, Rob Simmons, André Platzer 1 Introduction In this lecture we discuss the use of linked lists to

More information

Prolog. Intro to Logic Programming

Prolog. Intro to Logic Programming Prolog Logic programming (declarative) Goals and subgoals Prolog Syntax Database example rule order, subgoal order, argument invertibility, backtracking model of execution, negation by failure, variables

More information

Analysis of Algorithms. 5-Dec-16

Analysis of Algorithms. 5-Dec-16 Analysis of Algorithms 5-Dec-16 Time and space To analyze an algorithm means: developing a formula for predicting how fast an algorithm is, based on the size of the input (time complexity), and/or developing

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 02 Lecture - 45 Memoization Let us continue our discussion of inductive definitions. (Refer Slide Time: 00:05)

More information

Overview. Elements of Programming Languages. Records. Named variants. Last time: Simple data structures: pairing (product types), choice (sum types)

Overview. Elements of Programming Languages. Records. Named variants. Last time: Simple data structures: pairing (product types), choice (sum types) Overview Elements of Programming Languages Lecture 7: Records, variants, and subtyping James Cheney University of Edinburgh October 12, 2017 Last time: Simple data structures: pairing (product types),

More information

Lecture 4: Elementary Data Structures Steven Skiena

Lecture 4: Elementary Data Structures Steven Skiena Lecture 4: Elementary Data Structures Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.stonybrook.edu/ skiena Problem of the Day Find two

More information

Lecture 10 Notes Linked Lists

Lecture 10 Notes Linked Lists Lecture 10 Notes Linked Lists 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, Rob Simmons, André Platzer 1 Introduction In this lecture we discuss the use of linked lists to

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP p. 1/?? Introduction to OpenMP Synchronisation Nick Maclaren Computing Service nmm1@cam.ac.uk, ext. 34761 June 2011 Introduction to OpenMP p. 2/?? Summary Facilities here are relevant

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

ENGI 1020 Introduction to Computer Programming J U L Y 5, R E Z A S H A H I D I

ENGI 1020 Introduction to Computer Programming J U L Y 5, R E Z A S H A H I D I ENGI 1020 Introduction to Computer Programming J U L Y 5, 2 0 1 0 R E Z A S H A H I D I Passing by value Recall that it is possible to call functions with variable names different than the parameters in

More information

CpSc 421 Final Solutions

CpSc 421 Final Solutions CpSc 421 Final Solutions Do any eight of the ten problems below. If you attempt more than eight problems, please indicate which ones to grade (otherwise we will make a random choice). This allows you to

More information

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430 Implementing Mutual Exclusion Sarah Diesburg Operating Systems CS 3430 From the Previous Lecture The too much milk example shows that writing concurrent programs directly with load and store instructions

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 Parallel Programming using OpenMP Mike Bailey mjb@cs.oregonstate.edu openmp.pptx OpenMP Multithreaded Programming 2 OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 OpenMP Multithreaded Programming 2 Parallel Programming using OpenMP OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard to perform shared-memory multithreading

More information

Logical Decision Rules: Teaching C4.5 to Speak Prolog

Logical Decision Rules: Teaching C4.5 to Speak Prolog Logical Decision Rules: Teaching C4.5 to Speak Prolog Kamran Karimi and Howard J. Hamilton Department of Computer Science University of Regina Regina, Saskatchewan Canada S4S 0A2 {karimi,hamilton}@cs.uregina.ca

More information