# Lambda Calculus LC-1

Size: px
Start display at page:

Transcription

1 Lambda Calculus LC-1

2 λ- Calculus History-1 Developed by Alonzo Church during 1930 s-40 s One fundamental goal was to describe what can be computed. Full definition of λ-calculus is equivalent in power to a Turing machine Turing machines and λ-calculus are alternate descriptions of our understanding of what is computable In the mid to late 1950 s, John McCarthy developed Lisp A programming language based on λ-calculus Implementation includes syntactic sugar functions and forms that do not add to the power of what we can compute but make programs simpler and easier to understand LC-2

3 λ- Calculus Basis Mathematical theory for anonymous functions functions that have not been bound to names Present a subset of full definition to present the flavour Notation and interpretation scheme identifies functions and their application to operands argument-paramter binding Clearly indicates which variables are free and which are bound LC-3

4 Bound and Free Variables Bound variables are similar to local variables in Java (or any procedural language) function Changing the name of a bound variable (consistently) does not change the meaning (semantics) of a function Free variables are similar to global variables in Java (or any procedural language) function Changing the name of a free variable normally changes the meaning (semantics) of a function. LC-4

5 λ-functions 1 Consider following expression (u + 1)(u - 1) is u bound or free? Disambiguate the expression with the following λ-function ( λ u. (u + 1)(u - 1) ) bound variables defining form Clearly indicates that u is a bound variable Note the parallel with programming language functions void functionname( arguments) { function definition } It seems obvious now but that is because programming languages developed out of these mathematical notions LC-5

6 λ-functions 2 Consider the following expression (u + a)(u + b) Can have any of the following functions, depending on what you mean (λ u. (u + a)(u + b) ) u is bound, a and b are free (defined in the enclosing context) (λ u,b. (u + a)(u + b) ) u and b are bound, a is free (λ u,a,b. (u + a)(u + b) ) u, a and b are all bound, no free variables in the expression LC-6

7 Function application Functions are applied to arguments in a list immediately following the λ-function {λ u. (u + 1) (u + 2)} [3] ==> (3 + 1) (3 + 2) ==> 20 {λ u. (u + a) (u + b)} [7-1] ==> (6 + a) (6 + b) and no further in this context {λ u, v. (u - v) (u + v)} [2p + q, 2p - q] ==> ((2p+q) - (2p - q)) ((2p + q) + (2p - q)) Can pass expressions to a variable Different types of parenthesis can be used to make the expressions more readable Other than visual impact it doesn t matter which type of parenthesis is used as long as they are correctly matched. LC-7

8 Using auxiliary definitions Build up longer definitions with auxiliary definitions Define u/(u+5) where u = a(a+1) where a = 7-3 { λ u. u/(u+5) } [ { λ a. a(a+1) } [ 7-3 ] ] Note the nested function definition and argument application ==> { λ u. u/(u+5) } [ 4 (4+1) ] ==> { 20 / (20+5) } ==> 0.8 LC-8

9 Functions are Variables Define f(3) + f(5) where f(x) = ax(a + x) where a = 7-3 { λ f. f(3) + f(5) } [ { λ a. { λ x. a x (a + x) } } [ 7-3 ] ] Working from the inside out and right to left as arguments must be evaluated first ==> { λ f. f(3) + f(5) } [ { λ x. 4 x (4 + x) } ] ==> { λ x. 4 x (4 + x) } (3) + { λ x. 4 x (4 + x) } (5) ==> 4*3(4+3) + 4*5(4 + 5) ==> 364 LC-9

10 Lamba notation in Lisp Lambda λ expressions are a direct analogue of λ-calculus expressions They are the basis of Lisp functions, just a modified syntax to simplify the interpreter For example (defun double (x) (+ x x)) is the named version of the following unnamed lambda expression (lambda (x) (+ x x)) Note the similar syntax with λ-calculus and the change to prefix, from infix, to permit a uniform syntax for functions of any number of arguments { λ x. (x + x) } LC-10

11 Anonymous functions Recall in the abstraction for sumint we defined support functions to handle each case (defun double (int) (+ int int)) (defun square (int) (* int int)) (defun identity (int) int) This adds additonal symbols we may not want, especially if the function is to be used only once. Using lambda we get the same effect without adding symbols (sumint # (lambda (int) (+ int int)) 10) (sumint # (lambda (int) (* int int)) 10) (sumint # (lambda (int) int) 10) LC-11

12 The function function What is the meaning of # in the following (sumint # (lambda (int) (+ int int)) 10) It is a short hand # (...) ==> (function (...)) One of its attributes is it works like quote, in that its argument is not evaluated, thus, in this simple context the following will also work (sumint (lambda (int) (+ int int)) 10) Later we will see another attribute of function that makes it different from quote. Whenever a function is to be quoted use # in place of LC-12

13 Recursion Recursion with lambda functions uses labels to temporarily name a function The following is a general λ-calculus template. The name is in scope within the entire body but is out of scope outside of the lambda expression. {label name ( lambda arguments. body_references_name ) } In Lisp can use labels to define a mutually recursive set of functions ( labels (list of named lambda expressions) ) sequence of forms using the temporarily named functions LC-13

14 Example 1 of recursion A recursive multiply that uses only addition. The temporary function is called mult Use quote not function (eval '(labels ((mult (k n) (cond ((zerop n) 0) (t (+ k (mult k (1- n)))) ))) (mult 2 3) ) ) LC-14

15 Example 2 of recursion rectimes computes k*n by supplying the paramters to a unary function that is a variation of example 1. Note the form (temp n) is within the labels section. (defun rectimes (k n) )) (labels ((temp (n) (temp n) ))) (cond ((zerop n) 0) (t (+ k (temp (1- n)))) LC-15

### Lambda Calculus. Gunnar Gotshalks LC-1

Lambda Calculus LC-1 l- Calculus History Developed by Alonzo Church during 1930 s-40 s One fundamental goal was to describe what can be computed. Full definition of l-calculus is equivalent in power to

### Lambda Calculus and Lambda notation in Lisp II. Based on Prof. Gotshalks notes on Lambda Calculus and Chapter 9 in Wilensky.

λ Calculus Basis Lambda Calculus and Lambda notation in Lisp II Based on Prof. Gotshalks notes on Lambda Calculus and Chapter 9 in Wilensky Mathematical theory for anonymous functions» functions that have

### Lambda Calculus see notes on Lambda Calculus

Lambda Calculus see notes on Lambda Calculus Shakil M. Khan adapted from Gunnar Gotshalks recap so far: Lisp data structures basic Lisp programming bound/free variables, scope of variables Lisp symbols,

### Functional Programming. Big Picture. Design of Programming Languages

Functional Programming Big Picture What we ve learned so far: Imperative Programming Languages Variables, binding, scoping, reference environment, etc What s next: Functional Programming Languages Semantics

### Functional Programming. Pure Functional Languages

Functional Programming Pure functional PLs S-expressions cons, car, cdr Defining functions read-eval-print loop of Lisp interpreter Examples of recursive functions Shallow, deep Equality testing 1 Pure

### Functional Programming. Pure Functional Programming

Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

### Functional Programming. Pure Functional Languages

Functional Programming Pure functional PLs S-expressions cons, car, cdr Defining functions read-eval-print loop of Lisp interpreter Examples of recursive functions Shallow, deep Equality testing 1 Pure

### Functional Programming

Functional Programming CS331 Chapter 14 Functional Programming Original functional language is LISP LISt Processing The list is the fundamental data structure Developed by John McCarthy in the 60 s Used

### 11/6/17. Functional programming. FP Foundations, Scheme (2) LISP Data Types. LISP Data Types. LISP Data Types. Scheme. LISP: John McCarthy 1958 MIT

Functional programming FP Foundations, Scheme (2 In Text: Chapter 15 LISP: John McCarthy 1958 MIT List Processing => Symbolic Manipulation First functional programming language Every version after the

### Organization of Programming Languages CS3200/5200N. Lecture 11

Organization of Programming Languages CS3200/5200N Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Functional vs. Imperative The design of the imperative languages

### Harvard School of Engineering and Applied Sciences CS 152: Programming Languages. Lambda calculus

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Tuesday, February 19, 2013 The lambda calculus (or λ-calculus) was introduced by Alonzo Church and Stephen Cole Kleene in

### FP Foundations, Scheme

FP Foundations, Scheme In Text: Chapter 15 1 Functional Programming -- Prelude We have been discussing imperative languages C/C++, Java, Fortran, Pascal etc. are imperative languages Imperative languages

### Functional programming with Common Lisp

Functional programming with Common Lisp Dr. C. Constantinides Department of Computer Science and Software Engineering Concordia University Montreal, Canada August 11, 2016 1 / 81 Expressions and functions

### Chapter 1. Fundamentals of Higher Order Programming

Chapter 1 Fundamentals of Higher Order Programming 1 The Elements of Programming Any powerful language features: so does Scheme primitive data procedures combinations abstraction We will see that Scheme

### Introductory Example

CSc 520 Principles of Programming Languages 21: Lambda Calculus Introduction Christian Collberg Department of Computer Science University of Arizona collberg@cs.arizona.edu Copyright c 2005 Christian Collberg

### One of a number of approaches to a mathematical challenge at the time (1930): Constructibility

λ Calculus Church s λ Calculus: Brief History One of a number of approaches to a mathematical challenge at the time (1930): Constructibility (What does it mean for an object, e.g. a natural number, to

### CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages Lecture 16: Functional Programming Zheng (Eddy Zhang Rutgers University April 2, 2018 Review: Computation Paradigms Functional: Composition of operations on data.

### Scheme Tutorial. Introduction. The Structure of Scheme Programs. Syntax

Scheme Tutorial Introduction Scheme is an imperative language with a functional core. The functional core is based on the lambda calculus. In this chapter only the functional core and some simple I/O is

### 15 Unification and Embedded Languages in Lisp

15 Unification and Embedded Languages in Lisp Chapter Objectives Chapter Contents Pattern matching in Lisp: Database examples Full unification as required for Predicate Calculus problem solving Needed

### Recursive Functions of Symbolic Expressions and Their Computation by Machine Part I

Recursive Functions of Symbolic Expressions and Their Computation by Machine Part I by John McCarthy Ik-Soon Kim Winter School 2005 Feb 18, 2005 Overview Interesting paper with By John Mitchell Interesting

### CSCE 314 Programming Languages

CSCE 314 Programming Languages Haskell 101 Dr. Hyunyoung Lee 1 Contents 1. Historical Background of Haskell 2. Lazy, Pure, and Functional Language 3. Using ghc and ghci 4. Functions 5. Haskell Scripts

### 1.3. Conditional expressions To express case distinctions like

Introduction Much of the theory developed in the underlying course Logic II can be implemented in a proof assistant. In the present setting this is interesting, since we can then machine extract from a

### CS 6110 S14 Lecture 1 Introduction 24 January 2014

CS 6110 S14 Lecture 1 Introduction 24 January 2014 1 Introduction What is a program? Is it just something that tells the computer what to do? Yes, but there is much more to it than that. The basic expressions

### Imperative, OO and Functional Languages A C program is

Imperative, OO and Functional Languages A C program is a web of assignment statements, interconnected by control constructs which describe the time sequence in which they are to be executed. In Java programming,

### Closures. Mooly Sagiv. Michael Clarkson, Cornell CS 3110 Data Structures and Functional Programming

Closures Mooly Sagiv Michael Clarkson, Cornell CS 3110 Data Structures and Functional Programming t ::= x x. t t t Call-by-value big-step Operational Semantics terms variable v ::= values abstraction x.

### Introduction to the Lambda Calculus

Introduction to the Lambda Calculus Overview: What is Computability? Church s Thesis The Lambda Calculus Scope and lexical address The Church-Rosser Property Recursion References: Daniel P. Friedman et

### 6.184 Lecture 4. Interpretation. Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson

6.184 Lecture 4 Interpretation Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson 1 Interpretation Parts of an interpreter Arithmetic calculator

### INF 212 ANALYSIS OF PROG. LANGS LAMBDA CALCULUS. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS LAMBDA CALCULUS Instructors: Crista Lopes Copyright Instructors. History Formal mathematical system Simplest programming language Intended for studying functions, recursion

### Functional Languages. Hwansoo Han

Functional Languages Hwansoo Han Historical Origins Imperative and functional models Alan Turing, Alonzo Church, Stephen Kleene, Emil Post, etc. ~1930s Different formalizations of the notion of an algorithm

### CS 242. Fundamentals. Reading: See last slide

CS 242 Fundamentals Reading: See last slide Syntax and Semantics of Programs Syntax The symbols used to write a program Semantics The actions that occur when a program is executed Programming language

### Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define

CS 6A Scheme Summer 207 Discussion 0: July 25, 207 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

### Functional Languages. CSE 307 Principles of Programming Languages Stony Brook University

Functional Languages CSE 307 Principles of Programming Languages Stony Brook University http://www.cs.stonybrook.edu/~cse307 1 Historical Origins 2 The imperative and functional models grew out of work

### 11/6/17. Outline. FP Foundations, Scheme. Imperative Languages. Functional Programming. Mathematical Foundations. Mathematical Foundations

Outline FP Foundations, Scheme In Text: Chapter 15 Mathematical foundations Functional programming λ-calculus LISP Scheme 2 Imperative Languages We have been discussing imperative languages C/C++, Java,

### COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages Functional Programming Prof. Robert van Engelen Overview What is functional programming? Historical origins of functional programming Functional programming today Concepts

### Programming Languages

Programming Languages Tevfik Koşar Lecture - XIII March 2 nd, 2006 1 Roadmap Functional Languages Lambda Calculus Intro to Scheme Basics Functions Bindings Equality Testing Searching 2 1 Functional Languages

### Functional Programming

Functional Programming Björn B. Brandenburg The University of North Carolina at Chapel Hill Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts. Brief

### Closures. Mooly Sagiv. Michael Clarkson, Cornell CS 3110 Data Structures and Functional Programming

Closures Mooly Sagiv Michael Clarkson, Cornell CS 3110 Data Structures and Functional Programming Summary 1. Predictive Parsing 2. Large Step Operational Semantics (Natural) 3. Small Step Operational Semantics

### Formal Systems and their Applications

Formal Systems and their Applications Dave Clarke (Dave.Clarke@cs.kuleuven.be) Acknowledgment: these slides are based in part on slides from Benjamin Pierce and Frank Piessens 1 Course Overview Introduction

### Scheme. Functional Programming. Lambda Calculus. CSC 4101: Programming Languages 1. Textbook, Sections , 13.7

Scheme Textbook, Sections 13.1 13.3, 13.7 1 Functional Programming Based on mathematical functions Take argument, return value Only function call, no assignment Functions are first-class values E.g., functions

### Lambda Calculus. Variables and Functions. cs3723 1

Lambda Calculus Variables and Functions cs3723 1 Lambda Calculus Mathematical system for functions Computation with functions Captures essence of variable binding Function parameters and substitution Can

### CMSC 330: Organization of Programming Languages. Lambda Calculus

CMSC 330: Organization of Programming Languages Lambda Calculus 1 Turing Completeness Turing machines are the most powerful description of computation possible They define the Turing-computable functions

### Functions as data. Massimo Merro. 9 November Massimo Merro The Lambda language 1 / 21

Functions as data Massimo Merro 9 November 2011 Massimo Merro The Lambda language 1 / 21 The core of sequential programming languages In the mid 1960s, Peter Landin observed that a complex programming

### CSCC24 Functional Programming Scheme Part 2

CSCC24 Functional Programming Scheme Part 2 Carolyn MacLeod 1 winter 2012 1 Based on slides from Anya Tafliovich, and with many thanks to Gerald Penn and Prabhakar Ragde. 1 The Spirit of Lisp-like Languages

### Control Flow February 9, Lecture 7

Chapter 6 Control Flow February 9, Lecture 7 Expressions A simple object Literal constant Named variable Constant Or a function applied to arguments For built-in functions we use the term operator (like

### 5. Introduction to the Lambda Calculus. Oscar Nierstrasz

5. Introduction to the Lambda Calculus Oscar Nierstrasz Roadmap > What is Computability? Church s Thesis > Lambda Calculus operational semantics > The Church-Rosser Property > Modelling basic programming

### INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Common Lisp Fundamentals

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Common Lisp Fundamentals Stephan Oepen & Murhaf Fares Language Technology Group (LTG) August 30, 2017 Last Week: What is

### CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages Lambda Calculus CMSC 330 Summer 2017 1 100 years ago Albert Einstein proposed special theory of relativity in 1905 In the paper On the Electrodynamics of

### 6.037 Lecture 4. Interpretation. What is an interpreter? Why do we need an interpreter? Stages of an interpreter. Role of each part of the interpreter

6.037 Lecture 4 Interpretation Interpretation Parts of an interpreter Meta-circular Evaluator (Scheme-in-scheme!) A slight variation: dynamic scoping Original material by Eric Grimson Tweaked by Zev Benjamin,

### CMSC 330: Organization of Programming Languages. Lambda Calculus

CMSC 330: Organization of Programming Languages Lambda Calculus 1 100 years ago Albert Einstein proposed special theory of relativity in 1905 In the paper On the Electrodynamics of Moving Bodies 2 Prioritätsstreit,

### Z Notation. June 21, 2018

Z Notation June 21, 2018 1 Definitions There are many different ways to introduce an object in a Z specification: declarations, abbreviations, axiomatic definitions, and free types. Keep in mind that the

### Nano-Lisp The Tutorial Handbook

Nano-Lisp The Tutorial Handbook Francis Sergeraert March 4, 2006 1 Various types of Nano-Lisp objects. There are several type notions and in this documentation only the notion of implementation type (itype

### CS115 - Module 9 - filter, map, and friends

Fall 2017 Reminder: if you have not already, ensure you: Read How to Design Programs, Intermezzo 3 (Section 18); Sections 19-23. Abstraction abstraction, n. 3a.... The process of isolating properties or

### CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Dan Grossman Spring 2011

CS152: Programming Languages Lecture 11 STLC Extensions and Related Topics Dan Grossman Spring 2011 Review e ::= λx. e x e e c v ::= λx. e c τ ::= int τ τ Γ ::= Γ, x : τ (λx. e) v e[v/x] e 1 e 1 e 1 e

### CMPUT 325 : Lambda Calculus Basics. Lambda Calculus. Dr. B. Price and Dr. R. Greiner. 13th October 2004

CMPUT 325 : Lambda Calculus Basics Dr. B. Price and Dr. R. Greiner 13th October 2004 Dr. B. Price and Dr. R. Greiner CMPUT 325 : Lambda Calculus Basics 1 Lambda Calculus Lambda calculus serves as a formal

### CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Haskell Basics

1 CSCE 314: Programming Languages Dr. Flemming Andersen Haskell Basics 2 Contents 1. Jump into Haskell: Using ghc and ghci (more detail) 2. Historical Background of Haskell 3. Lazy, Pure, and Functional

### Comp 411 Principles of Programming Languages Lecture 7 Meta-interpreters. Corky Cartwright January 26, 2018

Comp 411 Principles of Programming Languages Lecture 7 Meta-interpreters Corky Cartwright January 26, 2018 Denotational Semantics The primary alternative to syntactic semantics is denotational semantics.

### Functional Programming Languages (FPL)

Functional Programming Languages (FPL) 1. Definitions... 2 2. Applications... 2 3. Examples... 3 4. FPL Characteristics:... 3 5. Lambda calculus (LC)... 4 6. Functions in FPLs... 7 7. Modern functional

### Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP)

Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP) Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology

### 9/23/2014. Why study? Lambda calculus. Church Rosser theorem Completeness of Lambda Calculus: Turing Complete

Dr A Sahu Dept of Computer Science & Engineering IIT Guwahati Why study? Lambda calculus Syntax Evaluation Relationship to programming languages Church Rosser theorem Completeness of Lambda Calculus: Turing

### Recursion. Tjark Weber. Functional Programming 1. Based on notes by Sven-Olof Nyström. Tjark Weber (UU) Recursion 1 / 37

Tjark Weber Functional Programming 1 Based on notes by Sven-Olof Nyström Tjark Weber (UU) Recursion 1 / 37 Background FP I / Advanced FP FP I / Advanced FP This course (Functional Programming I) (5 hp,

### Lambda Calculus. Lambda Calculus

Lambda Calculus Formalism to describe semantics of operations in functional PLs Variables are free or bound Function definition vs function abstraction Substitution rules for evaluating functions Normal

### Lecture 5: The Halting Problem. Michael Beeson

Lecture 5: The Halting Problem Michael Beeson Historical situation in 1930 The diagonal method appears to offer a way to extend just about any definition of computable. It appeared in the 1920s that it

### Evaluating Scheme Expressions

Evaluating Scheme Expressions How Scheme evaluates the expressions? (procedure arg 1... arg n ) Find the value of procedure Find the value of arg 1 Find the value of arg n Apply the value of procedure

### CS152: Programming Languages. Lecture 7 Lambda Calculus. Dan Grossman Spring 2011

CS152: Programming Languages Lecture 7 Lambda Calculus Dan Grossman Spring 2011 Where we are Done: Syntax, semantics, and equivalence For a language with little more than loops and global variables Now:

### Functional Programming and λ Calculus. Amey Karkare Dept of CSE, IIT Kanpur

Functional Programming and λ Calculus Amey Karkare Dept of CSE, IIT Kanpur 0 Software Development Challenges Growing size and complexity of modern computer programs Complicated architectures Massively

### Scheme Datatypes. expressions. pairs. atoms. lists. symbols. booleans

Lisp Lisp was invented in 1958 at MIT by John McCarthy. Lisp stands for list processing. Its intended use was research in artificial intelligence. It is based on the λ calculus which was invented by Alonzo

### M. Snyder, George Mason University LAMBDA CALCULUS. (untyped)

1 LAMBDA CALCULUS (untyped) 2 The Untyped Lambda Calculus (λ) Designed by Alonzo Church (1930s) Turing Complete (Turing was his doctoral student!) Models functions, always as 1-input Definition: terms,

### From the λ-calculus to Functional Programming Drew McDermott Posted

From the λ-calculus to Functional Programming Drew McDermott drew.mcdermott@yale.edu 2015-09-28 Posted 2015-10-24 The λ-calculus was intended from its inception as a model of computation. It was used by

### CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages Lambda Calculus CMSC 330 1 Programming Language Features Many features exist simply for convenience Multi-argument functions foo ( a, b, c ) Use currying

### CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages Lecture 15: Review and Functional Programming Zheng (Eddy) Zhang Rutgers University March 19, 2018 Class Information Midterm exam forum open in Sakai. HW4 and

### Introduction to Lambda Calculus. Lecture 7 CS /08/09

Introduction to Lambda Calculus Lecture 7 CS 565 02/08/09 Lambda Calculus So far, we ve explored some simple but non-interesting languages language of arithmetic expressions IMP (arithmetic + while loops)

### Project 2: Scheme Interpreter

Project 2: Scheme Interpreter CSC 4101, Fall 2017 Due: 12 November 2017 For this project, you will implement a simple Scheme interpreter in C++ or Java. Your interpreter should be able to handle the same

### CSE 341: Programming Languages

CSE 341: Programming Languages Autumn 2005 Lecture 10 Mutual Recursion, Equivalence, and Syntactic Sugar CSE 341 Autumn 2005, Lecture 10 1 Mutual Recursion You ve already seen how multiple functions can

### Lisp Basic Example Test Questions

2009 November 30 Lisp Basic Example Test Questions 1. Assume the following forms have been typed into the interpreter and evaluated in the given sequence. ( defun a ( y ) ( reverse y ) ) ( setq a (1 2

### This example highlights the difference between imperative and functional programming. The imperative programming solution is based on an accumulator

1 2 This example highlights the difference between imperative and functional programming. The imperative programming solution is based on an accumulator (total) and a counter (i); it works by assigning

### SOFTWARE ARCHITECTURE 6. LISP

1 SOFTWARE ARCHITECTURE 6. LISP Tatsuya Hagino hagino@sfc.keio.ac.jp slides URL https://vu5.sfc.keio.ac.jp/sa/ 2 Compiler vs Interpreter Compiler Translate programs into machine languages Compilers are

### CS 360 Programming Languages Interpreters

CS 360 Programming Languages Interpreters Implementing PLs Most of the course is learning fundamental concepts for using and understanding PLs. Syntax vs. semantics vs. idioms. Powerful constructs like

### FUNKCIONÁLNÍ A LOGICKÉ PROGRAMOVÁNÍ 2. ÚVOD DO LISPU: ATOMY, SEZNAMY, FUNKCE,

FUNKCIONÁLNÍ A LOGICKÉ PROGRAMOVÁNÍ 2. ÚVOD DO LISPU: ATOMY, SEZNAMY, FUNKCE, 2011 Jan Janoušek MI-FLP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti L I S P - Introduction L I S P

### Week 4: Functional Programming

CS320 Principles of Programming Languages Week 4: Functional Programming Jingke Li Portland State University Fall 2017 PSU CS320 Fall 17 Week 4: Functional Programming 1/ 66 Topic List for this Unit Functional

### Recursive Functions of Symbolic Expressions and Their Application, Part I

Recursive Functions of Symbolic Expressions and Their Application, Part I JOHN MCCARTHY Review: Amit Kirschenbaum Seminar in Programming Languages Recursive Functions of Symbolic Expressions and Their

### Programming Language Features. CMSC 330: Organization of Programming Languages. Turing Completeness. Turing Machine.

CMSC 330: Organization of Programming Languages Lambda Calculus Programming Language Features Many features exist simply for convenience Multi-argument functions foo ( a, b, c ) Ø Use currying or tuples

### CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages Lambda Calculus CMSC 330 1 Programming Language Features Many features exist simply for convenience Multi-argument functions foo ( a, b, c ) Ø Use currying

### Introduction to lambda calculus Part 3

Introduction to lambda calculus Part 3 Antti-Juhani Kaijanaho 2017-01-27... 1 Untyped lambda calculus... 2 Typed lambda calculi In an untyped lambda calculus extended with integers, it is required that

### A Small Interpreted Language

A Small Interpreted Language What would you need to build a small computing language based on mathematical principles? The language should be simple, Turing equivalent (i.e.: it can compute anything that

### Activity. CSCI 334: Principles of Programming Languages. Lecture 4: Fundamentals II. What is computable? What is computable?

Activity CSCI 334: Principles of Programming Languages Lecture 4: Fundamentals II Write a function firsts that, when given a list of cons cells, returns a list of the left element of each cons. ( (a. b)

### Whereweare. CS-XXX: Graduate Programming Languages. Lecture 7 Lambda Calculus. Adding data structures. Data + Code. What about functions

Whereweare CS-XXX: Graduate Programming Languages Lecture 7 Lambda Calculus Done: Syntax, semantics, and equivalence For a language with little more than loops and global variables Now: Didn t IMP leave

### Recursion Chapter 4 Self-Reference. Recursive Definitions Inductive Proofs Implementing Recursion

Recursion Chapter 4 Self-Reference Recursive Definitions Inductive Proofs Implementing Recursion Imperative Algorithms Based on a basic abstract machine model - linear execution model - storage - control

### SCHEME 8. 1 Introduction. 2 Primitives COMPUTER SCIENCE 61A. March 23, 2017

SCHEME 8 COMPUTER SCIENCE 61A March 2, 2017 1 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

### Computer Science 21b: Structure and Interpretation of Computer Programs (Spring Term, 2004)

Computer Science 21b: Structure and Interpretation of Computer Programs (Spring Term, 2004) There are only 5 ideas in Computer Science, and by the end of this course, you ll know 3 of them --Harry Mairson

### Topic III. LISP : functions, recursion, and lists References: Chapter 3 of Concepts in programming languages by J. C. Mitchell. CUP, 2003.

Topic III LISP : functions, recursion, and lists References: Chapter 3 of Concepts in programming languages by J. C. Mitchell. CUP, 2003. Chapters 5( 4.5) and 13( 1) of Programming languages: Design and

### CSE413: Programming Languages and Implementation Racket structs Implementing languages with interpreters Implementing closures

CSE413: Programming Languages and Implementation Racket structs Implementing languages with interpreters Implementing closures Dan Grossman Fall 2014 Hi! I m not Hal J I love this stuff and have taught

### An introduction to Scheme

An introduction to Scheme Introduction A powerful programming language is more than just a means for instructing a computer to perform tasks. The language also serves as a framework within which we organize

### Comp 311: Sample Midterm Examination

Comp 311: Sample Midterm Examination October 29, 2007 Name: Id #: Instructions 1. The examination is closed book. If you forget the name for a Scheme operation, make up a name for it and write a brief

### Programming Language Pragmatics

Chapter 10 :: Functional Languages Programming Language Pragmatics Michael L. Scott Historical Origins The imperative and functional models grew out of work undertaken Alan Turing, Alonzo Church, Stephen

### CSc 520 Principles of Programming Languages

CSc 520 Principles of Programming Languages 3: Scheme Introduction Christian Collberg collberg@cs.arizona.edu Department of Computer Science University of Arizona Copyright c 2005 Christian Collberg [1]

### Lecture08: Scope and Lexical Address

Lecture08: Scope and Lexical Address Free and Bound Variables (EOPL 1.3.1) Given an expression E, does a particular variable reference x appear free or bound in that expression? Definition: A variable

### CPS 506 Comparative Programming Languages. Programming Language Paradigm

CPS 506 Comparative Programming Languages Functional Programming Language Paradigm Topics Introduction Mathematical Functions Fundamentals of Functional Programming Languages The First Functional Programming