Development of EUV wavefront metrology system (EWMS)

Size: px
Start display at page:

Download "Development of EUV wavefront metrology system (EWMS)"

Transcription

1 Development of EUV wavefront metrology system (EWMS) October 18, 2006 Katsuhiko Murakami, Katsumi Sugisaki, Masashi Okada, Katsura Ohtaki, Zhu Yucong, Zhiqian Liu, Jun Saito, Chidane Ouchi, Seima Kato, Masanobu Hasegawa, Takayuki Hasegawa, Hideo Yokota EUVA Masahito Niibe University of Hyogo Mitsuo Takeda University of Electro-Communications 1

2 Outline Introduction EUV wavefront metrology methods EUV experimental interferometer (EEI) results Status of EUV wavefront metrology system (EWMS) Summary 2

3 Introduction EUV Wavefront System (EWMS) was developed by EUVA in NEDO project. Before the development of EWMS, EUV experimental interferometer (EEI) was developed and several wavefront metrology methods were tested using EEI. Non-EUV wavefront metrology systems installed in the factories will be used in the manufacturing of EUV lithography tools. EWMS will play an important role as a standard system of EUV wavefront metrology. 3

4 EUV wavefront metrology project outline Project name: Development of EUV Wavefront Metrology Technology NEDO funding project Period: Start: January, 2002, End: March, 2006 Continuous research now underway Objective: Development of EUV wavefront metrology system for high-na (0.25) full-field projection optics Target: accuracy of less than 0.1nmRMS Light source: Undulator beamline of New Subaru synchrotron radiation source at University of Hyogo (UH) 4

5 Concept of EUV wavefront metrology system (EWMS) Goal of the project Wavefront of high NA (0.25) full-field projection optics can be measured. vacuum chamber stage EUV light (provided from SR undulator) metrology frame PO-box holder grating CCD pinhole PO-box pinhole/window stage vibration isolator vacuum pump 5

6 Why we need EUV wavefront metrology? Generally reflection type optics have no chromatic aberration. However, phase change accompanies the reflection by multilayer mirrors. Therefore wavefront measured with non-euv radiation is not equal to that measured with EUV radiation. The difference is not negligible considering optical performance. Wavefront metrology using EUV radiation is required. Reflectivity Reflectivity [%] Phase Phase Incidence angle 6

7 Difficulties and solutions of EUV wavefront metrology No coherence light source Common path type interferometer Limitation of optical elements Simple interferometer design using pinholes and gratings Extremely high accuracy required No mechanical reference surface 7

8 EUV wavefront metrology methods Seven different type of EUV metrology methods were tested using EEI. Diffraction type interferometers Point Diffraction Interferometer (PDI) Line Diffraction Interferometer (LDI) Shearing type Interferometers Lateral Shearing Interferometer (LDI) Slit Lateral Shearing Interferometer (SLDI) Cross-grating Lateral Shearing Interferometer (CGLSI) Digital Talbot Interferometer (DTI) Double-grating Lateral Shearing Interferometer (DLSI) 8

9 Diffraction type interferometers 1st Pinhole Pinhole (or Slits) Grating Test optics Gratings Window and 2nd Pinhole CCD Window and Slit CCD (a) PDI (b) LDI 9

10 Shearing type Interferometers 1/2 1st Slits 1st Pinhole 1st Pinhole Grating Test optic Grating Grating Windows CCD CCD CCD Windows CCD (a) SLSI (b) LSI (c) CGLSI (d) DTI 10

11 Lateral shearing Interferometer 2/2 Grating DLSI Windows Grating Test optics Window CCD 11

12 Concept of EUV experimental interferometer (EEI) Folding Mirror Vacuum Chamber EUV light (From illumination system) 3 rd Grating Stage (for DLSI) 1 st Grating Stage (for PDI, LDI) Photo Diode O 2 Gas Supply 1 st Mask Stage Schwarzschild Optics (NA=0.2) Vibration Isolator 2 nd Grating Stage (for Shearing interferometer) O 2 Gas Supply 2 nd Mask Stage Photo Diode CCD Camera 12

13 EUV wavefront metrology beam line at New Subaru 実験干渉計 EEI Schwarzschild 照明用 illuminator Schwarzschild Differential 差動排気機構 pumping system BL-9a Pumping 排気チャンバ chamber Filter フィルタ部 chamber M5 M4 13

14 EUV experimental interferometer (EEI) at New Subaru Clean chamber EEI Illuminator(NA:0.01) EUV beamline EUV beam Test optics Entire view of EEI Inside of EEI 14

15 EUV interference fringes PDI LDI LSI SLSI DLSI CGLSI DTI EUV interference fringes were obtained for 7 different wavefront metrology methods. 15

16 Measured EUV wavefront using EEI Diffraction type interferometers Shearing type interferometers 1.29 nmrms 1.21 nmrms 1.26 nmrms 1.20 nmrms 1.52 nmrms 0.95 nmrms (a) PDI (b) LDI (c) CGLSI (d) DTI (e) LSI (f) DLSI EUV wavefront was measured using 6 different metrology methods. Good agreement between deferent metrology methods. 16

17 Comparison of metrology method Method Test result PDI LDI LSI SLSI DLSI CGLSI DTI High Accuracy, Small measurement range, Difficult operation (alignment of PH, contamination of PH) Higher fringe contrast than PDI, Two sets of measurement in X, Y direction Wide measurement range, Easy alignment, Two sets of measurement in X, Y direction, Difficult to measure astigmatism Improved LSI but no significant advantage, Two sets of measurement in X, Y direction Need the least photons, Two sets of measurement in X, Y direction, Difficult to measure astigmatism Wide measurement range, Easy alignment, Astigmatism can be measured, Moderate accuracy Wide measurement range, Easy alignment, Astigmatism can be measured CGLSI was selected as a main metrology method of EWMS. 17

18 Measurement of system error (criterion of accuracy) of EEI Measured wavefront Rotate test optic Remove Test wavefront System error derivation SYSTEM TEST SYSTEM SYSTEM - = SYSTEM TEST SYSTEM Measurement with rotating test optics can distinguish system error of interferometer from error of test optics. 18

19 Measured system error in PDI and CGLSI Zernike coefficients [nm] Zernike orders Measured system errors: 0.06nmRMS (PDI), 0.12nmRMS (CGLSI) Our target accuracy (0.1nmRMS) was achieved in PDI. CGLSI showed very good accuracy beyond our expectation. 19

20 EUV wavefront metrology system (EWMS) PO loading crane Optical element stage Metrology frame EUV light 3.8m PO loader Projection optics (PO) Illumination optics stage PO rotation stage Optical element stage 20

21 Installation of EWMS at New Subaru completed 21

22 EWMS is ready to start EUV wavefront metrology Optical elements for metrology (pinholes and gratings) for EWMS were completed. Thermal chamber was installed. Prototype EUV projection optics will be delivered at the end of October. 22

23 Summary 7 different EUV metrology method were tested using EEI. Measured system error were 0.06nmRMS for PDI and 0.12nmRMS for CGLSI. CGLSI was selected main metrology method of EWMS. EWMS was completed and ready to start EUV wavefront metrology. 23

24 Acknowledgment The authors would like to thank the operation staff of New Subaru synchrotron facility for their help. This work was supported by NEDO (New Energy and Technology Development Organization). 24

Iterative procedure for in-situ EUV optical testing with an incoherent source

Iterative procedure for in-situ EUV optical testing with an incoherent source APS/123-QED Iterative procedure for in-situ EUV optical testing with an incoherent source Ryan Miyakawa and Patrick Naulleau Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Avideh Zakhor Dept.

More information

SCDI for EUV photomask metrology RESCAN - Reflective EUV Mask Scanning Lensless Imaging Tool

SCDI for EUV photomask metrology RESCAN - Reflective EUV Mask Scanning Lensless Imaging Tool EUV Litho Workshop 2017 WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN P. Helfenstein a, I. Mochi a, R. Rajendran a, S. Fernandez a, S. Yoshitake b, Y. Ekinci a a Paul Scherrer Institut, Switzerland b NuFlare Technology

More information

Outline. Abstract. Modeling Approach

Outline. Abstract. Modeling Approach EUV Interference Lithography Michael Goldstein ϕ, Donald Barnhart λ, Ranju D. Venables ϕ, Bernice Van Der Meer ϕ, Yashesh A. Shroff ϕ ϕ = Intel Corporation (www.intel.com), λ = Optica Software (www.opticasoftware.com)

More information

Extreme Ultraviolet Phase Contrast Imaging

Extreme Ultraviolet Phase Contrast Imaging Extreme Ultraviolet Phase Contrast Imaging Gregory Denbeaux 1, Rashi Garg 1, Andy Aquila 2, Anton Barty 3, Kenneth Goldberg 2, Eric Gullikson 2, Yanwei Liu 2, Obert Wood 4 1, University at Albany, Albany,

More information

Development of EUV-Scatterometry for CD Characterization of Masks. Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany

Development of EUV-Scatterometry for CD Characterization of Masks. Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany Development of EUV-Scatterometry for CD Characterization of Masks PB Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany Jan Perlich, Frank-Michael Kamm, Jenspeter Rau nfineon

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Development of shape measuring system using a line sensor in a lateral shearing interferometer

Development of shape measuring system using a line sensor in a lateral shearing interferometer Development of shape measuring system using a line sensor in a lateral shearing interferometer Takashi NOMURA*a, Kazuhide KAMIYA*a, Akiko NAGATA*a, Hatsuzo TASHIRO **b, Seiichi OKUDA ***c a Toyama Prefectural

More information

Laser readiness for all optical EUV FEL

Laser readiness for all optical EUV FEL Laser readiness for all optical EUV FEL Akira Endo EUVA (Extreme Ultraviolet Lithography System Development Association) EUVL Source Workshop 19 October, 2006 Barcelona, Spain Acknowledgments This work

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

Experiment 1: Diffraction from a Single Slit

Experiment 1: Diffraction from a Single Slit 012-05880D Slit Accessory Experiment 1: Diffraction from a Single Slit Purpose Theory EQUIPMENT REQUIRED track and from the Basic Optics System (OS-8515) Diode Laser (OS-8525) Single Slit Disk (OS-8523)

More information

PRODUCT OVERVIEW. Rupert Perera President, EUV Tech

PRODUCT OVERVIEW. Rupert Perera President, EUV Tech PRODUCT OVERVIEW Rupert Perera President, EUV Tech EUV TECH OVERVIEW Started in 1997, EUV Tech has pioneered the development of EUV metrology tools: EUV Reflectometer o Measures the reflectivity and uniformity

More information

MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs*

MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs* MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs* T. Mey #, B. Schäfer and K. Mann, Laser-Laboratorium e.v., Göttingen, Germany B. Keitel, S. Kreis, M. Kuhlmann, E. Plönjes

More information

Single Photon Interference

Single Photon Interference December 19, 2006 D. Lancia P. McCarthy Classical Interference Intensity Distribution Overview Quantum Mechanical Interference Probability Distribution Which Path? The Effects of Making a Measurement Wave-Particle

More information

HANDBOOK OF THE MOIRE FRINGE TECHNIQUE

HANDBOOK OF THE MOIRE FRINGE TECHNIQUE k HANDBOOK OF THE MOIRE FRINGE TECHNIQUE K. PATORSKI Institute for Design of Precise and Optical Instruments Warsaw University of Technology Warsaw, Poland with a contribution by M. KUJAWINSKA Institute

More information

Synchronization and pump-probe experiments

Synchronization and pump-probe experiments Synchronization and pump-probe experiments by Stefan Düsterer Outline o Pump-probe probe infrastructure VUV + VUV VUV + optical o o Temporal overlap and jitter As example: the pump-probe probe chamber

More information

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators Erik Wallen and Hyun-Wook Kim 06.06.2017 Outline Introduction - Measurement systems at LBNL - Activities at LBNL - Need

More information

OPTI 513R / Optical Testing

OPTI 513R / Optical Testing OPTI 513R / Optical Testing Instructor: Dae Wook Kim Meinel Building Rm 633, University of Arizona, Tucson, AZ 85721 E-Mail: dkim@optics.arizona.edu Website: sites.google.com/site/opti513r/ Office Hours:

More information

SPIcam: an overview. Alan Diercks Institute for Systems Biology 23rd July 2002

SPIcam: an overview. Alan Diercks Institute for Systems Biology 23rd July 2002 SPIcam: an overview Alan Diercks Institute for Systems Biology diercks@systemsbiology.org 23rd July 2002 1 Outline Overview of instrument CCDs mechanics instrument control performance construction anecdotes

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Diffraction 1. Objectives. The objectives of this laboratory are a. To be able use a diffraction grating to measure the wavelength

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Fabrication of MEMS Conventional

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus Physics 42200 Waves & Oscillations Lecture 40 Review Spring 206 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 2 You can bring one double-sided pages of notes/formulas.

More information

Lab2: Single Photon Interference

Lab2: Single Photon Interference Lab2: Single Photon Interference Xiaoshu Chen* Department of Mechanical Engineering, University of Rochester, NY, 14623 ABSTRACT The wave-particle duality of light was verified by multi and single photon

More information

Analysis of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor

Analysis of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor Analysis of Cornell Electron-Positron Storage Ring Test Accelerator's Double Slit Visual Beam Size Monitor Senior Project Department of Physics California Polytechnic State University San Luis Obispo By:

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference Diffraction Diffraction integral we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference

More information

Keysight Technologies Transducer Systems. Leading the Future for Extreme Accuracy Positioning Applications

Keysight Technologies Transducer Systems. Leading the Future for Extreme Accuracy Positioning Applications Keysight Technologies Transducer Systems Leading the Future for Extreme Accuracy Positioning Applications 02 Keysight Transducer Systems Brochure Keysight Laser Interferometry Systems Highest accuracy

More information

G3 TWO-SOURCE INTERFERENCE OF WAVES

G3 TWO-SOURCE INTERFERENCE OF WAVES G3 TWO-SOURCE INTERFERENCE OF WAVES G4 DIFFRACTION GRATINGS HW/Study Packet Required: READ Tsokos, pp 624-631 SL/HL Supplemental: Hamper, pp 424-428 DO Questions pp 631-632 #1,3,8,9,10 REMEMBER TO. Work

More information

MEASUREMENT OF SMALL TRANSVERSE BEAM SIZE USING INTERFEROMETRY

MEASUREMENT OF SMALL TRANSVERSE BEAM SIZE USING INTERFEROMETRY MEASUREMENT OF SMALL TRANSVERSE BEAM SIZE USING INTERFEROMETRY T. Mitsuhashi High Energy Accelerator Research Organisation, Oho, Tsukuba, Ibaraki, 35-81 Japan Abstract The principle of measurement of the

More information

PHYS 3410/6750: Modern Optics Midterm #2

PHYS 3410/6750: Modern Optics Midterm #2 Name: PHYS 3410/6750: Modern Optics Midterm #2 Wednesday 16 November 2011 Prof. Bolton Only pen or pencil are allowed. No calculators or additional materials. PHYS 3410/6750 Fall 2011 Midterm #2 2 Problem

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography

Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography Jianming Zhou *, Yongfa Fan, Bruce W. Smith Microelectronics Engineering Department, Rochester Institute of Technology,

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Lecture 03 January 2018 Lasers sources Some operating characteristics: laser modes Schematic

More information

Wave Particle Duality with Single Photon Interference

Wave Particle Duality with Single Photon Interference Wave Particle Duality with Single Photon Interference Gerardo I. Viza 1, 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 In the experiments of the Mach-Zehnder Interferometer

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Formulas of possible interest

Formulas of possible interest Name: PHYS 3410/6750: Modern Optics Final Exam Thursday 15 December 2011 Prof. Bolton No books, calculators, notes, etc. Formulas of possible interest I = ɛ 0 c E 2 T = 1 2 ɛ 0cE 2 0 E γ = hν γ n = c/v

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Unit-22 Interference and Diffraction

Unit-22 Interference and Diffraction Unit-22 Interference and iffraction Objective: In this experiment, we used single-slit, double-slit, circular hole and grating to measure the wavelength of laser. Apparatus: Optical track, diode laser,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Laser Diagnostic for High-Energy, Laser Fusion Drivers

Laser Diagnostic for High-Energy, Laser Fusion Drivers UCRL-JC-119065 PREPRINT Laser Diagnostic for High-Energy, Laser Fusion Drivers D S. C. Burkhart Wm. Behrendt Ian Smith This paper was prepared for submittal to the Conference on Lasers and Electro-Optics

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

PROBLEM #1: INTERFERENCE DUE TO A DOUBLE SLIT

PROBLEM #1: INTERFERENCE DUE TO A DOUBLE SLIT PROBLEM #1: INTERFERENCE DUE TO A DOUBLE SLIT Objective: determine the slit width and the slit spacing for the double-slit from the interference pattern produced by light passing through it. You are interested

More information

Null test for a highly paraboloidal mirror

Null test for a highly paraboloidal mirror Null test for a highly paraboloidal mirror Taehee Kim, James H. Burge, Yunwoo Lee, and Sungsik Kim A circular null computer-generated hologram CGH was used to test a highly paraboloidal mirror diameter,

More information

Past Paper Questions Waves

Past Paper Questions Waves Past Paper Questions Waves Name 1. Explain the differences between an undamped progressive transverse wave and a stationary transverse wave, in terms of amplitude, (ii) phase and (iii) energy transfer.

More information

Optics Wave Behavior in Optics Diffraction

Optics Wave Behavior in Optics Diffraction Optics Wave Behavior in Optics Diffraction Lana Sheridan De Anza College June 15, 2018 Last time Interference of light: the Double-Slit experiment multiple slit interference diffraction gratings Overview

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Single Photon Interference

Single Photon Interference University of Rochester OPT253 Lab 2 Report Single Photon Interference Author: Nicholas Cothard Peter Heuer Professor: Dr. Svetlana Lukishova September 25th 2013 1 Abstract Wave-particle duality can be

More information

L 32 Light and Optics [3]

L 32 Light and Optics [3] L 32 Light and Optics [3] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky red sunsets Light and

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Jiang, Xiang, Tang, Dawei and Gao, Feng In Situ Surface Inspection Using White Light Channelled Spectrum Interferometer Original Citation Jiang, Xiang, Tang, Dawei

More information

Freeform metrology using subaperture stitching interferometry

Freeform metrology using subaperture stitching interferometry Freeform metrology using subaperture stitching interferometry APOMA November 10-11, 2016 Presented By: Christopher Hall QED Optics Sr. Engineer, QED Technologies Copyright QED Technologies 2016 Interferometry

More information

Diffraction and Interference

Diffraction and Interference Experiment #32 Diffraction and Interference Goals: Perform a quantitative investigation of two-slit interference Explore use of a photodiode to measure light intensity References 1. I. G. Main, Vibrations

More information

2.) An overhead projector forms an image of a transparency on a screen:

2.) An overhead projector forms an image of a transparency on a screen: 1.) You have measured the wavelength λ of a spectral lamp using a diffraction grating and the relation λ = d sin Θ. Your uncertainty in the grating spacing d is 0.5% and your uncertainty in your angle

More information

Southern African Large Telescope. PFIS Distortion and Alignment Model

Southern African Large Telescope. PFIS Distortion and Alignment Model Southern African Large Telescope PFIS Distortion and Alignment Model Kenneth Nordsieck University of Wisconsin Document Number: SALT-3120AS0023 Revision 2.0 31 May 2006 Change History Rev Date Description

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

Measurement of period difference in grating pair based on analysis of grating phase shift

Measurement of period difference in grating pair based on analysis of grating phase shift Measurement of period difference in grating pair based on analysis of grating phase shift Chao Guo, Lijiang Zeng State Key Laboratory of Precision Measurement Technology and Instruments Department of Precision

More information

Defect Repair for EUVL Mask Blanks

Defect Repair for EUVL Mask Blanks Defect Repair for EUVL Mask Blanks A.Barty, S.Hau-Riege, P.B.Mirkarimi, D.G.Stearns, H.Chapman, D.Sweeney Lawrence Livermore National Laboratory M.Clift Sandia National Laboratory E.Gullikson, M.Yi Lawrence

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Which correctly compares the de roglie wavelength λ e of the electrons with

More information

Application-Specific Optical Design

Application-Specific Optical Design Application-Specific Optical Design Introduction Optical design software capabilities have advanced considerably from the late 1950s and early 1960s when computer tools first became available. Initially,

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

Testing spherical surfaces: a fast, quasi-absolute technique

Testing spherical surfaces: a fast, quasi-absolute technique Testing spherical surfaces: a fast, quasi-absolute technique Katherine Creath and James C. Wyant A technique for measuring the quality of spherical surfaces that provides a quasi-absolute result is presented.

More information

axis, and wavelength tuning is achieved by translating the grating along a scan direction parallel to the x

axis, and wavelength tuning is achieved by translating the grating along a scan direction parallel to the x Exponential-Grating Monochromator Kenneth C. Johnson, October 0, 08 Abstract A monochromator optical design is described, which comprises a grazing-incidence reflection and two grazing-incidence mirrors,

More information

COHERENCE AND INTERFERENCE

COHERENCE AND INTERFERENCE COHERENCE AND INTERFERENCE - An interference experiment makes use of coherent waves. The phase shift (Δφ tot ) between the two coherent waves that interfere at any point of screen (where one observes the

More information

Chapter 9. Coherence

Chapter 9. Coherence Chapter 9. Coherence Last Lecture Michelson Interferometer Variations of the Michelson Interferometer Fabry-Perot interferometer This Lecture Fourier analysis Temporal coherence and line width Partial

More information

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

PROPAGATING PARTIAL COHERENCE HYBRID AND MORE

PROPAGATING PARTIAL COHERENCE HYBRID AND MORE rhgfdjhngngfmhgmghmghjmghfmf PROPAGATING PARTIAL COHERENCE HYBRID AND MORE XIANBO SHI X-ray Science Division Advanced Photon Source Argonne National Laboratory The Advanced Photon Source is a U.S. Department

More information

MEMS SENSOR FOR MEMS METROLOGY

MEMS SENSOR FOR MEMS METROLOGY MEMS SENSOR FOR MEMS METROLOGY IAB Presentation Byungki Kim, H Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess 9/24/24 OUTLINE INTRODUCTION Motivation Contact/Noncontact measurement Optical interferometer

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Introduction: Wave Optics January 2018 Wave optics: coherence Temporal coherence Review interference

More information

Single Photon Interference Christopher Marsh Jaime Vela

Single Photon Interference Christopher Marsh Jaime Vela Single Photon Interference Christopher Marsh Jaime Vela Abstract The purpose of this experiment was to study the dual wave-particle nature of light. Using a Mach-Zehnder and double slit interferometer,

More information

STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION

STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION C. Schwalm, DESY, Hamburg, Germany Abstract For the Alignment of the European XFEL, a Straight Line Reference System will be used

More information

Soft X-Ray Reflectivity: from quasi-perfect mirrors to accelerator walls. Franz Schäfers Institute for Nanometre Optics and Technology (INT)

Soft X-Ray Reflectivity: from quasi-perfect mirrors to accelerator walls. Franz Schäfers Institute for Nanometre Optics and Technology (INT) Soft X-Ray Reflectivity: from quasi-perfect mirrors to accelerator walls Franz Schäfers Institute for Nanometre Optics and Technology (INT) Synchrotron Radiation in all colours Charged particles, moving

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

Optics and Photonics: An Introduction

Optics and Photonics: An Introduction Optics and Photonics: An Introduction Second Edition F. Graham Smith University of Manchester, UK Terry A. King University of Manchester, UK Dan Wilkins University of Nebraska at Omaha, USA \ WILEY\ \

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 5: Interferometry and Coherence SUMMARY: In this lab you will use interference of a temporally coherent (very narrow temporal frequency bandwidth) laser beam to

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 4: Fringe projection 2016-11-08 Herbert Gross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction,

More information

SUSS MJB4. Manual Aligner For Research, Development and Operator Assisted Production October, 2009

SUSS MJB4. Manual Aligner For Research, Development and Operator Assisted Production October, 2009 SUSS MJB4 Manual Aligner For Research, Development and Operator Assisted Production October, 2009 Overview Product Portfolio Aligner MA/BA 8 MA200Compact LithoFab200 MJB4 MA300Plus MA/BA 6 MA150e LithoPack300

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

Application of Photopolymer Holographic Gratings

Application of Photopolymer Holographic Gratings Dublin Institute of Technology ARROW@DIT Conference Papers Centre for Industrial and Engineering Optics 2004-2 Application of Photopolymer Holographic Gratings Emilia Mihaylova Dublin Institute of Technology,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 42 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

The sources must be coherent. This means they emit waves with a constant phase with respect to each other. CH. 24 Wave Optics The sources must be coherent. This means they emit waves with a constant phase with respect to each other. The waves need to have identical wavelengths. Can t be coherent without this.

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS Chandra Sekhar Roychoudhuri and Tariq Manzur Photonics Research Center & Electrical & Systems

More information

Lab 2 Report. Carlin Gettliffe

Lab 2 Report. Carlin Gettliffe Lab 2 Report Carlin Gettliffe Abstract: In this lab we investigated the wave-particle duality of light. We verified light s wave properties by conducting both a double slit experiment and constructing

More information

SWING ARM OPTICAL CMM

SWING ARM OPTICAL CMM SWING ARM OPTICAL CMM Peng Su, Chang Jin Oh, Robert E. Parks, James H. Burge College of Optical Sciences University of Arizona, Tucson, AZ 85721 OVERVIEW The swing arm profilometer described in reference

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

Calibration of a portable interferometer for fiber optic connector endface measurements

Calibration of a portable interferometer for fiber optic connector endface measurements Calibration of a portable interferometer for fiber optic connector endface measurements E. Lindmark Ph.D Light Source Reference Mirror Beamsplitter Camera Calibrated parameters Interferometer Interferometer

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter The Wave Nature of Light - Interference and Di raction Name: Lab Partner: Section:. Purpose This experiment will demonstrate that light can be considered as a wave. If light is a wave, then interference

More information

Calibration of the LIGO Interferometer Using the Recoil of Photons

Calibration of the LIGO Interferometer Using the Recoil of Photons Calibration of the LIGO Interferometer Using the Recoil of Photons Justice Bruursema Mentor: Daniel Sigg Motivation The Photon Calibrator has been developed to provide a physically independent means of

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 74-188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information