On the Fairness of Transport Protocols in a Multi-Path Environment

Size: px
Start display at page:

Download "On the Fairness of Transport Protocols in a Multi-Path Environment"

Transcription

1 University of Duisburg-Essen On the Fairness of Transport Protocols in a Multi-Path Environment Hakim Adhari, Martin Becke, Thomas Dreibholz Networking Technology Group Institute for Experimental Mathematics University of Duisburg-Essen

2 Introduction and motivation In the past Single-path dominated network Fairness restrictions TCP-friendly Actually Multi-path transfer is becoming more and more important Congestion Control (CC) assuring Effective use of the resources Fairness But what is fair here? Hakim Adhari, Page 2

3 Multi-Path Congestion Control Multi-Path CC Three goals are targeted [WH9] () Improve throughput (2) Do no harm (3) Balance congestion Considered mechanisms Multi-Path eno (eno-mp) CMT-esource Pooling Version 2 (P-MP-v2) [DBA] Multi-Path TCP (MPTCP) Hakim Adhari, Page 3

4 What I want to talk about today Problem statement Are these mechanisms TCP-friendly/fair? Is fair == TCP-friendly? Approach Analysis of the behavior of the CC Mechanisms Bottleneck topology Disjoint paths topology Hakim Adhari, Page 4

5 Bottleneck Topology Test Scenario F S F F ρ(α) D F S F D Hakim Adhari, Page 5

6 Bottleneck Topology Link-Centric Flow Fairness Expected behavior Goal 2 (Do no harm) [WH9] Link-Centric Flow Fairness ratio of flows to sub-flows : :x For n different flows sharing a link l ρ(l) n for each of the n flows F S F F ρ(α) D B = B + B = ρ(α) 2 F S F D B = B = ρ(α) 2 Hakim Adhari, Page 6

7 Bottleneck Topology Simulation esults ENO-MP 2/3 vs /3 P-MP-v2 and MPTCP /2 vs /2 The mechanisms behave as expected Hakim Adhari, Page 7

8 Disjoint Paths Topology Test Scenario F ρ(α) 2 F S F 3 ρ(β) 4 D F S F D ρ(α) = 2 Mbit/s Hakim Adhari, Page 8

9 Bottleneck Topology Network-Centric Flow Fairness Expected behavior Link Centric Flow Fairness Is this fair? F ρ(α) 2 Link-Centric Flow Fairness? ratio of flows to sub-flows : :x For n different flows sharing a link l ρ(l) n for each of the n flows F S F 3 ρ(β) 4 D B = ρ(α) B = ρ(β) 2 F S F D B = ρ(β) 2 Hakim Adhari, Page 9

10 Bottleneck Topology Network-Centric Flow Fairness Expected behavior Goal 3 (Balance congestion)[hw9] Network-Centric Flow Fairness The whole network is considered F ρ(α) 2 F S F 3 ρ(β) 4 D B = ρ(α) B = max {, ρ β B 2} F S F D B =ρ(β) - B Hakim Adhari, Page

11 Disjoint Paths Topology Simulation esults P-MP-v2 and MPTCP are approximating the Network- Centric Flow Fairness First converging to the fairness line For higher dissimilarity: the single-path flow acquires more bandwidth than the multi-path flow ρ(α) = 2 Mbit/s Hakim Adhari, Page

12 Disjoint Paths Topology Simulation esults Th MP_Flow < Th SP_Flow ρ(α) = 2 Mbit/s Hakim Adhari, Page 2

13 Is this fair what we actually call fair? Example A consumer S (paying for two high-speed Internet access lines) A consumer S (paying for one high-speed Internet access line) Is it really fair if S gets more resources than S? Is it really fair if S gets as much resources as S? - Consumer view - Provider view F S F F 3 ρ(α) ρ(β) 2 4 D F S F F ρ(α) D F S F D F S F D Hakim Adhari, Page 3

14 Is this fair what we actually call fair? Link-Centric Sub-Flow Fairness based on the number of the sub-flows on a link l ρ(l) m for each of the m sub-flows F S F F ρ(α) D B = B + B = 2*ρ(α) 3 F S F D B = B = ρ(α) 3 Hakim Adhari, Page 4

15 Summing up Views on fair esource Allocation We define three different views [BDA2] Link-Centric Sub-Flow Fairness based on the number of the sub-flows on a link l ρ(l) m for each of the m sub-flows Link-Centric Flow Fairness ratio of flows to sub-flows : :x For n different flows sharing a link l ρ(l) n for each of the n flows Network-Centric Flow Fairness the whole network is considered Hakim Adhari, Page 5

16 Disjoint Paths Scenario esults Until now: Dominating single-path transfer Multipath CCs Fair coexistence of multi- and single-path flows Extension of the single-path CC No relationship between the brought-in resources and the final allocation Disadvantage for Multi-Path flows More resources for single-path than multi-path flows With multi-path transfer Are the three goals defined in [WH9] enough? Is an extension / adaptation / correction of the goals needed? Hakim Adhari, Page 6

17 How Should the esources be allocated? Link Network B α F a 2 S F b B β D F c 3 4 S2 F d D2 B γ F e 5 6 S3 D4 Hakim Adhari, Page 7

18 Network-Centric / Link-Centric Sub-Flow Which factors are important to reach the Network-Centric Flow Fairness? Bandwidth? Loss rate? MTU? Delay?.. is it possible to reach the Network-Centric Flow Fairness? What is about the Link-Centric Sub-Flow Fairness? Is the bottleneck problem so important? Hakim Adhari, Page 8

19 Any Questions? Our Team Hakim Adhari Martin Becke Thomas Dreibholz Multi-path transfer project page Hakim Adhari, Page 9

20 eferences [BDA2] Martin Becke, Thomas Dreibholz, Hakim Adhari, and Erwin Paul athgeb. On the Fairness of Transport Protocols in a Multi-Path Environment. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa/Canada, June [WH9] Costin aiciu, Mark Handley, and Damon Wischik. Practical Congestion Control for Multipath Transport Protocols. Technical report, University College London, London/United Kingdom, [DBA] Thomas Dreibholz, Martin Becke, Hakim Adhari, and Erwin Paul athgeb. On the Impact of Congestion Control for Concurrent Multipath Transfer on the Transport Layer. In Proceedings of the th IEEE International Conference on Telecommunications (ConTEL). [DAB2] Thomas Dreibholz, Hakim Adhari, Martin Becke, and Erwin Paul athgeb. Simulation and Experimental Evaluation of Multipath Congestion Control Strategies. In Proceedings of the 2nd International Workshop on Protocols and Applications with Multi-Homing Support (PAMS), Fukuoka/Japan, March [ADB+] Hakim Adhari, Thomas Dreibholz, Martin Becke, Erwin Paul athgeb, and Michael Tüxen. Evaluation of Concurrent Multipath Transfer over Dissimilar Paths. In Proceedings of the st International Workshop on Protocols and Applications with Multi-Homing Support (PAMS), Singapore, March 2. [DB] Thomas Dreibholz, Martin Becke, Erwin Paul athgeb, and Michael Tüxen. On the Use of Concurrent Multipath Transfer over Asymmetric Paths. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Miami, Florida/U.S.A., December 2. [Dre2c] Thomas Dreibholz. Evaluation and Optimisation of Multi-Path Transport using the Stream Control Transmission Protocol. Habilitation treatise, University of Duisburg-Essen, Faculty of Economics, Institute for Computer Science and Business Information Systems, March Hakim Adhari, Page 2

On the Fairness of Transport Protocols in a Multi-Path Environment

On the Fairness of Transport Protocols in a Multi-Path Environment On the Fairness of Transport Protocols in a Multi-Path Environment Martin Becke, Thomas Dreibholz, Hakim Adhari, Erwin Paul Rathgeb University of Duisburg-Essen, Computer Networking Technology Group Ellernstraße

More information

On the Impact of Congestion Control for Concurrent Multipath Transfer on the Transport Layer

On the Impact of Congestion Control for Concurrent Multipath Transfer on the Transport Layer On the Impact of Congestion Control for Concurrent Multipath Transfer on the Transport Layer Thomas Dreibholz, Martin Becke, Hakim Adhari, Erwin P. Rathgeb University of Duisburg-Essen, Institute for Experimental

More information

Transport Layer Fairness Revisited

Transport Layer Fairness Revisited Transport Layer Fairness Revisited Hakim Adhari, Erwin P. Rathgeb University of Duisburg-Essen Institute for Experimental Mathematics Ellernstraße 29, 45326 Essen, Germany {hakim.adhari, rathgeb}@uni-due.de

More information

Evaluation of Concurrent Multipath Transfer over Dissimilar Paths

Evaluation of Concurrent Multipath Transfer over Dissimilar Paths Evaluation of Concurrent Multipath Transfer over Dissimilar Paths Hakim Adhari, Thomas Dreibholz, Martin Becke, Erwin P. Rathgeb University of Duisburg-Essen, Institute for Experimental Mathematics Ellernstraße

More information

IEEE ConTEL Alternative Transmission Strategies for Multipath Transport of Multimedia Streams over Wireless Networks

IEEE ConTEL Alternative Transmission Strategies for Multipath Transport of Multimedia Streams over Wireless Networks IEEE ConTEL 2013 Alternative Transmission Strategies for Multipath Transport of Multimedia Streams over Wireless Networks Thomas Dreibholz, dreibh@simula.no Simula Research Laboratory A/S 27 June 2013

More information

Effect of TCP Buffer Size on the Internet Applications

Effect of TCP Buffer Size on the Internet Applications Effect of TCP Buffer Size on the Internet Applications Imtiaz A. Halepoto 1, Nazar H. Phulpoto 2, Adnan Manzoor 2, Sohail A. Memon 3, Umair A. Qadir 2 1 Department of Computer Systems Engineering, QUEST

More information

Implementation and Evaluation of Coupled Congestion Control for Multipath TCP

Implementation and Evaluation of Coupled Congestion Control for Multipath TCP Implementation and Evaluation of Coupled Congestion Control for Multipath TCP Régel González Usach and Mirja Kühlewind Institute of Communication Networks and Computer Engineering (IKR), University of

More information

Multipath TCP. Prof. Mark Handley Dr. Damon Wischik Costin Raiciu University College London

Multipath TCP. Prof. Mark Handley Dr. Damon Wischik Costin Raiciu University College London Multipath TCP How one little change can make: Google more robust your iphone service cheaper your home broadband quicker prevent the Internet from melting down enable remote brain surgery cure hyperbole

More information

Multipath TCP. Prof. Mark Handley Dr. Damon Wischik Costin Raiciu University College London

Multipath TCP. Prof. Mark Handley Dr. Damon Wischik Costin Raiciu University College London Multipath TCP How one little change can make: YouTube more robust your iphone service cheaper your home broadband quicker prevent the Internet from melting down enable remote brain surgery cure hyperbole

More information

On the use of Multipath Transmission using SCTP

On the use of Multipath Transmission using SCTP 58 On the use of Multipath Transmission using SCTP Imtiaz Ali Halepoto, Muhammad Sulleman Memon, Nazar Hussain Phulpoto, Ubaidullah Rajput, Muhammad Yaqoob Junejo,, Department of Computer Systems Engineering,

More information

Multipath Networking at Transport Layer. Babil (Golam Sarwar), Roksana Boreli (NICTA) Emmanuel Lochin (ISAE)

Multipath Networking at Transport Layer. Babil (Golam Sarwar), Roksana Boreli (NICTA) Emmanuel Lochin (ISAE) Multipath Networking at Transport Layer Babil (Golam Sarwar), Roksana Boreli (NICTA) Emmanuel Lochin (ISAE) Background New generation devices with multiple interfaces: e.g. iphone, Android, Various technologies

More information

A Scalable QoS Device for Broadband Access to Multimedia Services

A Scalable QoS Device for Broadband Access to Multimedia Services University of Duisburg-Essen, Institute for Experimental Mathematics A Scalable QoS Device for Broadband Access to Multimedia Services Dr. University of Duisburg-Essen, Germany dreibh@iem.uni-due.de http://www.iem.uni-due.de/~dreibh

More information

Urban dashboardistics Damon Wischik Dept. of Computer Science and Technology

Urban dashboardistics Damon Wischik Dept. of Computer Science and Technology Urban dashboardistics Damon Wischik Dept. of Computer Science and Technology UNIVERSITY OF CAMBRIDGE Wardrop modelled route choice by drivers in a traffic network. Braess discovered paradoxical outcomes

More information

Receive Buffer Pre-division Based Flow Control for MPTCP

Receive Buffer Pre-division Based Flow Control for MPTCP Receive Buffer Pre-division Based Flow Control for MPTCP Jiangping Han 1,2, Kaiping Xue 1,2(B),HaoYue 3, Peilin Hong 1, Nenghai Yu 1, and Fenghua Li 4 1 Department of EEIS, University of Science and Technology

More information

Stream Control Transmission Protocol: Past, Current, and Future Standardization Activities

Stream Control Transmission Protocol: Past, Current, and Future Standardization Activities IETF STANDARDS UPDATE Stream Control Transmission Protocol: Past, Current, and Future Standardization Activities Thomas Dreibholz and Erwin P. Rathgeb, University of Duisburg-Essen Irene Rüngeler, Robin

More information

Analysis on MPTCP combining Congestion Window Adaptation and Packet Scheduling for Multi-Homed Device

Analysis on MPTCP combining Congestion Window Adaptation and Packet Scheduling for Multi-Homed Device * RESEARCH ARTICLE Analysis on MPTCP combining Congestion Window Adaptation and Packet Scheduling for Multi-Homed Device Mr. Prathmesh A. Bhat, Prof. Girish Talmale Dept. of Computer Science and Technology,

More information

Developing Multipath TCP. Damon Wischik, Mark Handley, Costin Raiciu

Developing Multipath TCP. Damon Wischik, Mark Handley, Costin Raiciu Developing Multipath TCP Damon Wischik, Mark Handley, Costin Raiciu 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2 * * 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

More information

Reducing Data Transmission Time in SCTP-CMT Protocol using Particle Swarm Optimization Algorithm

Reducing Data Transmission Time in SCTP-CMT Protocol using Particle Swarm Optimization Algorithm Reducing Data Transmission Time in SCTP-CMT Protocol using Particle Swarm Optimization Algorithm Nabiollah Kiani Kori 1, Mohammad reza Soltan Aghaei 2 1- Department of Computer Engineering, Najafabad Branch,

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

Using Concurrent Multipath Transmission for Transport Virtualization: Analyzing Path Selection

Using Concurrent Multipath Transmission for Transport Virtualization: Analyzing Path Selection Institute of Computer Science Department of Distributed Systems Prof. Dr.-Ing. P. Tran-Gia Using Concurrent Multipath Transmission for Transport Virtualization: Analyzing Path Selection T. Zinner (Uni

More information

M. Subramaniam and D. Manjula Department of Computer Science and Engineering, CEG, Anna University, Chennai, India

M. Subramaniam and D. Manjula Department of Computer Science and Engineering, CEG, Anna University, Chennai, India Journal of Computer Science 7 (12): 1859-1866, 2011 ISSN 1549-3636 2011 Science Publications Performance Metrics of Multipath State Aware Concurrent Multipath Transfer using Redundant Transfer in Stream

More information

A Scheduler for Multipath TCP

A Scheduler for Multipath TCP A Scheduler for Multipath TCP Fan Yang CIS Department University of Delaware Newark, Delaware, USA 19716 yangfan@udel.edu Paul Amer CIS Department University of Delaware Newark, Delaware, USA 19716 amer@udel.edu

More information

Comparison of different congestion control mechanisms: TFRC and TCP(a, b) ENSC835 and CMPT885 project team 15 Jian(Jason) Wen and Yi Zheng

Comparison of different congestion control mechanisms: TFRC and TCP(a, b) ENSC835 and CMPT885 project team 15 Jian(Jason) Wen and Yi Zheng Comparison of different congestion control mechanisms: TFRC and TCP(a, b) ENSC835 and CMPT885 project team 15 Jian(Jason) Wen and Yi Zheng Motivation Congestion control in packet networks has been proven

More information

Analysis of Retransmission Policies for Parallel Data Transmission

Analysis of Retransmission Policies for Parallel Data Transmission Engineering, Technology & Applied Science Research Vol. 8, No. 3, 208, 3079-3083 3079 Analysis of Retransmission Policies for Parallel Data Transmission Imtiaz Ali Halepoto Department of Computer Systems

More information

PACC: A Path Associativity Congestion Control and Throughput Model For Multi-path TCP

PACC: A Path Associativity Congestion Control and Throughput Model For Multi-path TCP Available online at www.sciencedirect.com Procedia Computer Science 4 (211) 1278 1287 International Conference on Computational Science, ICCS 211 PACC: A Path Associativity Congestion Control and Throughput

More information

Congestion Control of MPTCP: Performance Issues and a Possible Solution

Congestion Control of MPTCP: Performance Issues and a Possible Solution Congestion Control of MPTCP: Performance Issues and a Possible Solution Ramin Khalili, T-Labs/TU-Berlin, Germany R.khalili, N. Gast, M. Popovic, J.-Y Le Boudec, draft-khalili-mptcp-performance-issues-02

More information

MultiPath TCP : Linux Kernel Implementation

MultiPath TCP : Linux Kernel Implementation MultiPath : Linux Kernel Implementation Presenter: Christoph Paasch IP Networking Lab Université catholique de Louvain February 3, 2012 http://mptcp.info.ucl.ac.be Presenter: Christoph Paasch - IP Networking

More information

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks Communication Networks Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks Michael Menth and Nikolas Zeitler http://kn.inf.uni-tuebingen.de Outline The problem Definition

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Amin Vahdat, Dina Katabi Lecture 14 Overview" TCP congestion control review XCP Overview 2 Congestion Control

More information

Member Selection Policies for the Reliable Server Pooling Protocol Suite

Member Selection Policies for the Reliable Server Pooling Protocol Suite University of Duisburg-Essen, Institute for Experimental Mathematics Member Selection Policies for the Reliable Server Pooling Protocol Suite Thomas Dreibholz Institute for Experimental Mathematics University

More information

CONGA: Distributed Congestion-Aware Load Balancing for Datacenters

CONGA: Distributed Congestion-Aware Load Balancing for Datacenters CONGA: Distributed Congestion-Aware Load Balancing for Datacenters By Alizadeh,M et al. Motivation Distributed datacenter applications require large bisection bandwidth Spine Presented by Andrew and Jack

More information

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov.

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. Lecture 21 Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. 7 http://money.cnn.com/2011/11/07/technology/juniper_internet_outage/

More information

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long 6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long Please read Chapter 19 of the 6.02 book for background, especially on acknowledgments (ACKs), timers,

More information

arxiv: v1 [cs.ni] 28 Sep 2015

arxiv: v1 [cs.ni] 28 Sep 2015 Stream-based aggregation of unreliable heterogeneous network links arxiv:19.8222v1 [cs.ni] 28 Sep 21 Abstract Last mile link is often a bottleneck for end user. However, users typically have multiple ways

More information

Performance and Evaluation of Integrated Video Transmission and Quality of Service for internet and Satellite Communication Traffic of ATM Networks

Performance and Evaluation of Integrated Video Transmission and Quality of Service for internet and Satellite Communication Traffic of ATM Networks Performance and Evaluation of Integrated Video Transmission and Quality of Service for internet and Satellite Communication Traffic of ATM Networks P. Rajan Dr. K.L.Shanmuganathan Research Scholar Prof.

More information

The Modified Mobile Concurrent Multipath Transfer for Joint Resource Management

The Modified Mobile Concurrent Multipath Transfer for Joint Resource Management Available online at www.sciencedirect.com Procedia Engineering 30 (2012) 963 969 International Conference on Communication Technology and System Design 2011 The Modified Mobile Concurrent Multipath Transfer

More information

Transport Layer (Congestion Control)

Transport Layer (Congestion Control) Transport Layer (Congestion Control) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 TCP to date: We can set

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

Utilizing Datacenter Networks: Centralized or Distributed Solutions?

Utilizing Datacenter Networks: Centralized or Distributed Solutions? Utilizing Datacenter Networks: Centralized or Distributed Solutions? Costin Raiciu Department of Computer Science University Politehnica of Bucharest We ve gotten used to great applications Enabling Such

More information

Increase-Decrease Congestion Control for Real-time Streaming: Scalability

Increase-Decrease Congestion Control for Real-time Streaming: Scalability Increase-Decrease Congestion Control for Real-time Streaming: Scalability Dmitri Loguinov City University of New York Hayder Radha Michigan State University 1 Motivation Current Internet video streaming

More information

Multipath Transport, Resource Pooling, and implications for Routing

Multipath Transport, Resource Pooling, and implications for Routing Multipath Transport, Resource Pooling, and implications for Routing Mark Handley, UCL and XORP, Inc Also: Damon Wischik, UCL Marcelo Bagnulo Braun, UC3M The members of Trilogy project: www.trilogy-project.org

More information

Making Multipath TCP friendlier to Load Balancers and Anycast

Making Multipath TCP friendlier to Load Balancers and Anycast Making Multipath TCP friendlier to Load Balancers and Anycast Fabien Duchêne Olivier Bonaventure Université Catholique de Louvain ICNP 2017

More information

Balancing Transport and Physical Layers in Wireless Ad Hoc Networks: Jointly Optimal Congestion Control and Power Control

Balancing Transport and Physical Layers in Wireless Ad Hoc Networks: Jointly Optimal Congestion Control and Power Control Balancing Transport and Physical Layers in Wireless Ad Hoc Networks: Jointly Optimal Congestion Control and Power Control Mung Chiang Electrical Engineering Department, Princeton University NRL/NATO Workshop

More information

LISA: A Linked Slow-Start Algorithm for MPTCP draft-barik-mptcp-lisa-01

LISA: A Linked Slow-Start Algorithm for MPTCP draft-barik-mptcp-lisa-01 LISA: A Linked Slow-Start Algorithm for draft-barik-mptcp-lisa-1 Runa Barik (UiO), Simone Ferlin (SRL), Michael Welzl (UiO) Multipath TCP @96th IETF Meeting Berlin, Germany th July 16 IETF96 LISA: A Linked

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

CONCURRENT MULTIPATH TRANSFER USING TRANSPORT LAYER MULTIHOMING: PERFORMANCE UNDER VARYING BANDWIDTH PROPORTIONS

CONCURRENT MULTIPATH TRANSFER USING TRANSPORT LAYER MULTIHOMING: PERFORMANCE UNDER VARYING BANDWIDTH PROPORTIONS CONCURRENT MULTIPATH TRANSFER USING TRANSPORT LAYER MULTIHOMING: PERFORMANCE UNDER VARYING BANDWIDTH PROPORTIONS Janardhan R. Iyengar, Paul D. Amer Protocol Engineering Lab, Computer and Information Sciences,

More information

Xiaoqing Zhu, Sangeun Han and Bernd Girod Information Systems Laboratory Department of Electrical Engineering Stanford University

Xiaoqing Zhu, Sangeun Han and Bernd Girod Information Systems Laboratory Department of Electrical Engineering Stanford University Congestion-aware Rate Allocation For Multipath Video Streaming Over Ad Hoc Wireless Networks Xiaoqing Zhu, Sangeun Han and Bernd Girod Information Systems Laboratory Department of Electrical Engineering

More information

Performance Comparison of TFRC and TCP

Performance Comparison of TFRC and TCP ENSC 833-3: NETWORK PROTOCOLS AND PERFORMANCE CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS FINAL PROJECT Performance Comparison of TFRC and TCP Spring 2002 Yi Zheng and Jian Wen {zyi,jwena}@cs.sfu.ca

More information

QoE-Driven Video Streaming and Video Content Caching

QoE-Driven Video Streaming and Video Content Caching CommNet2 & IcoreJoint Workshop on Content Caching & Distributed Storage for Future Communication Networks QoE-Driven Video Streaming and Video Content Caching Xiaohong Peng Adaptive Communications Networks

More information

Multipath QUIC: Design and Evaluation

Multipath QUIC: Design and Evaluation Multipath QUIC: Design and Evaluation Quentin De Coninck, Olivier Bonaventure quentin.deconinck@uclouvain.be multipath-quic.org Outline The QUIC protocol Designing Multipath for QUIC Experimental Design

More information

Jellyfish: Networking Data Centers Randomly

Jellyfish: Networking Data Centers Randomly Jellyfish: Networking Data Centers Randomly Ankit Singla Chi-Yao Hong Lucian Popa Brighten Godfrey DIMACS Workshop on Systems and Networking Advances in Cloud Computing December 8 2011 The real stars...

More information

A Practical Introduction to NEAT at Hainan University. Thomas Dreibholz ( 托马斯博士 )

A Practical Introduction to NEAT at Hainan University. Thomas Dreibholz ( 托马斯博士 ) A Practical Introduction to NEAT at Hainan University Thomas Dreibholz ( 托马斯博士 ) dreibh@simula.no 1 Contents Disclaimer Motivation The NEAT Project The NEAT APIs An Example with the NEAT Sockets API Literature

More information

Multipath TCP: Overview, Design, and Use-Cases

Multipath TCP: Overview, Design, and Use-Cases Multipath TCP: Overview, Design, and Use-Cases Benno Overeinder FOR MULTIPATH TCP MPTCP slides by courtesy of Olivier Bonaventure (UCL) The TCP Byte Stream Model Client ABCDEF...111232 0988989... XYZZ

More information

Exercises TCP/IP Networking With Solutions

Exercises TCP/IP Networking With Solutions Exercises TCP/IP Networking With Solutions Jean-Yves Le Boudec Fall 2009 3 Module 3: Congestion Control Exercise 3.2 1. Assume that a TCP sender, called S, does not implement fast retransmit, but does

More information

An Evaluation of Adaptive Multimedia Communication from a QoS Perspective

An Evaluation of Adaptive Multimedia Communication from a QoS Perspective U Linz Telekooperation - 1 An Evaluation of Adaptive Multimedia Communication from a QoS Perspective Michael Welzl Johannes Kepler University Linz / Austria Max Mühlhäuser TU Darmstadt Germany U Linz Telekooperation

More information

Reliability and Availability in Stream Control Transport Protocol (SCTP)

Reliability and Availability in Stream Control Transport Protocol (SCTP) Reliability and Availability in Stream Control Transport Protocol (SCTP) Research Seminar on Real Time and High Availability Autumn 2001 by Laila Daniel on 21 st Nov. 2001 Stream Control Transmission Protocol

More information

Stability Analysis of a Window-based Flow Control Mechanism for TCP Connections with Different Propagation Delays

Stability Analysis of a Window-based Flow Control Mechanism for TCP Connections with Different Propagation Delays Stability Analysis of a Window-based Flow Control Mechanism for TCP Connections with Different Propagation Delays Keiichi Takagaki Hiroyuki Ohsaki Masayuki Murata Graduate School of Engineering Science,

More information

Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks

Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks Zongsheng Zhang Go Hasegawa Masayuki Murata Osaka University Contents Introduction Analysis of parallel TCP mechanism Numerical

More information

Dynamic Traffic Engineering for Future IP Networks

Dynamic Traffic Engineering for Future IP Networks Forschungszentrum Telekommunikation Wien [Telecommunications Research Center Vienna] Dynamic Traffic Engineering for Future IP Networks Ivan Gojmerac, Thomas Ziegler, Fabio Ricciato, Peter Reichl Telecommunications

More information

Transport layer issues

Transport layer issues Transport layer issues Dmitrij Lagutin, dlagutin@cc.hut.fi T-79.5401 Special Course in Mobility Management: Ad hoc networks, 28.3.2007 Contents Issues in designing a transport layer protocol for ad hoc

More information

Pricing Intra-Datacenter Networks with

Pricing Intra-Datacenter Networks with Pricing Intra-Datacenter Networks with Over-Committed Bandwidth Guarantee Jian Guo 1, Fangming Liu 1, Tao Wang 1, and John C.S. Lui 2 1 Cloud Datacenter & Green Computing/Communications Research Group

More information

QUIC evaluation. HTTP Workshop. 28 July 2015 Münster - Germany. G. Carlucci, L. De Cicco, S. Mascolo. Politecnico di Bari, Italy

QUIC evaluation. HTTP Workshop. 28 July 2015 Münster - Germany. G. Carlucci, L. De Cicco, S. Mascolo. Politecnico di Bari, Italy QUIC evaluation HTTP Workshop 28 July 2015 Münster - Germany G. Carlucci, L. De Cicco, S. Mascolo Politecnico di Bari, Italy Goal FOCUS OF THE TALK We want to answer to these questions: Can QUIC be safely

More information

TCP on High-Speed Networks

TCP on High-Speed Networks TCP on High-Speed Networks from New Internet and Networking Technologies for Grids and High-Performance Computing, tutorial given at HiPC 04, Bangalore, India December 22nd, 2004 C. Pham University Lyon,

More information

Multipath Transport for Virtual Private Networks

Multipath Transport for Virtual Private Networks Multipath Transport for Virtual Private Networks Daniel Lukaszewski 1 Geoffrey Xie 2 1 U.S. Department of Defense 2 Department of Computer Science Naval Postgraduate School USENIX Security 2017 Computer

More information

QoS of High Speed Congestion Control Protocols

QoS of High Speed Congestion Control Protocols International Journal of Computer Science and Telecommunications [Volume 3, Issue 11, November 2012] 1 QoS of High Speed Congestion Control Protocols ISSN 2047-3338 M. A. Mani, J. B. Abed, S. Laârif and

More information

1 Energy Efficient Protocols in Self-Aware Networks

1 Energy Efficient Protocols in Self-Aware Networks Energy Efficient Protocols in Self-Aware Networks Toktam Mahmoodi Centre for Telecommunications Research King s College London, London WC2R 2LS, UK Stanford NetSeminar 13 December 2011 1 Energy Efficient

More information

XCo: Explicit Coordination for Preventing Congestion in Data Center Ethernet

XCo: Explicit Coordination for Preventing Congestion in Data Center Ethernet XCo: Explicit Coordination for Preventing Congestion in Data Center Ethernet Vijay Shankar Rajanna, Smit Shah, Anand Jahagirdar and Kartik Gopalan Computer Science, State University of New York at Binghamton

More information

Congestion Control In the Network

Congestion Control In the Network Congestion Control In the Network Brighten Godfrey cs598pbg September 9 2010 Slides courtesy Ion Stoica with adaptation by Brighten Today Fair queueing XCP Announcements Problem: no isolation between flows

More information

Video Streaming Over the Internet

Video Streaming Over the Internet Video Streaming Over the Internet 1. Research Team Project Leader: Graduate Students: Prof. Leana Golubchik, Computer Science Department Bassem Abdouni, Adam W.-J. Lee 2. Statement of Project Goals Quality

More information

Passive Aggressive Measurements with MGRP

Passive Aggressive Measurements with MGRP Passive Aggressive Measurements with MGRP Pavlos Papageorge, Justin McCann and Michael Hicks ACM SIGCOMM 2009 {University of Maryland, College Park} Vaibhav Bajpai NDS Seminar 2011 Outline Introduction

More information

PCC: Performance-oriented Congestion Control

PCC: Performance-oriented Congestion Control PCC: Performance-oriented Congestion Control Michael Schapira Hebrew University of Jerusalem and Compira Labs (co-founder and chief scientist) Performance-oriented Congestion Control PCC: Re-architecting

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Stefano Vissicchio UCL Computer Science COMP0023 Recap: Last Lecture Transport Concepts Layering context Transport goals Transport mechanisms and design

More information

OASIS: Self-tuning Storage for Applications

OASIS: Self-tuning Storage for Applications OASIS: Self-tuning Storage for Applications Kostas Magoutis, Prasenjit Sarkar, Gauri Shah 14 th NASA Goddard- 23 rd IEEE Mass Storage Systems Technologies, College Park, MD, May 17, 2006 Outline Motivation

More information

Consumer driven Adaptive Rate Control for Real-time Video Streaming in CCN/NDN

Consumer driven Adaptive Rate Control for Real-time Video Streaming in CCN/NDN Consumer driven Adaptive Rate Control for Real-time Video Streaming in CCN/NDN Takahiro YONEDA, Ryota OHNISHI, Eiichi MURAMOTO(Presenter),, Panasonic Corporation Jeff Burke, UCLA Contact: muramoto.eiichi@jp.panasonic.com

More information

TFRC and RTT Thresholds Interdependence in a Selective Retransmission Scheme

TFRC and RTT Thresholds Interdependence in a Selective Retransmission Scheme TFRC and RTT s Interdependence in a Selective Retransmission Scheme Árpád Huszák, Sándor Imre Budapest University of Technology and Economics, Department of Telecommunications Budapest, Hungary Email:

More information

PERFORMANCE COMPARISON OF TCP VARIANTS FOR WIRELESS SENSOR NETWORKS

PERFORMANCE COMPARISON OF TCP VARIANTS FOR WIRELESS SENSOR NETWORKS PERFORMANCE COMPARISON OF TCP VARIANTS FOR WIRELESS SENSOR NETWORKS Nutan Bhati, Dr. Ashish Bansal Abstract: Mobile Ad hoc Networks (MANETs) are a collection of mobile nodes forming a dynamic autonomous

More information

TCPeer: Rate Control in P2P over IP Networks

TCPeer: Rate Control in P2P over IP Networks TCPeer: Rate Control in P2P over IP Networks Kolja Eger and Ulrich Killat Institute of Communication Networks Hamburg University of Technology (TUHH) 21071 Hamburg, Germany {eger, killat}@tu-harburg.de

More information

One More Bit Is Enough

One More Bit Is Enough One More Bit Is Enough Yong Xia, RPI Lakshmi Subramanian, UCB Ion Stoica, UCB Shiv Kalyanaraman, RPI SIGCOMM 05, Philadelphia, PA 08 / 23 / 2005 Motivation #1: TCP doesn t work well in high b/w or delay

More information

Multimedia-unfriendly TCP Congestion Control and Home Gateway Queue Management

Multimedia-unfriendly TCP Congestion Control and Home Gateway Queue Management Multimedia-unfriendly TCP Congestion Control and Home Gateway Queue Management Lawrence Stewart α, David Hayes α, Grenville Armitage α, Michael Welzl β, Andreas Petlund β α Centre for Advanced Internet

More information

Moving Beyond Sockets

Moving Beyond Sockets Moving Beyond Sockets Architecture and Observations Tommy Pauly (tpauly@apple.com) TAPS IETF 97, November 2016, Seoul 1 Context TAPS is about providing easier ways to use various transport protocols, and

More information

Streaming Video and TCP-Friendly Congestion Control

Streaming Video and TCP-Friendly Congestion Control Streaming Video and TCP-Friendly Congestion Control Sugih Jamin Department of EECS University of Michigan jamin@eecs.umich.edu Joint work with: Zhiheng Wang (UofM), Sujata Banerjee (HP Labs) Video Application

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

SARA: Segment Aware Rate Adaptation for DASH Video Services

SARA: Segment Aware Rate Adaptation for DASH Video Services SARA: Segment Aware Rate Adaptation for DASH Video Services, Venkatesh Tamarapalli*, Deep Medhi University of Missouri Kansas City * Indian Institute of Technology-Guwahati, India Overview Introduction

More information

List of measurements in rural area

List of measurements in rural area List of measurements in rural area Network Distance / Delay / HOP! Tool " ICMP Ping and UDP Ping (traceroute)! Targets / Tests " VSAT Gateways / Earth Station # Testing distance to VSAT FTP server at the

More information

Sally Floyd, Mark Handley, and Jitendra Padhye. Sept. 4-6, 2000

Sally Floyd, Mark Handley, and Jitendra Padhye. Sept. 4-6, 2000 A Comparison of Equation-Based and AIMD Congestion Control Sally Floyd, Mark Handley, and Jitendra Padhye Sept. 4-6, 2 Workshop on the Modeling of Congestion Control Algorithms Paris 1 Why look at non-tcp

More information

TCP and UDP Fairness in Vehicular Ad hoc Networks

TCP and UDP Fairness in Vehicular Ad hoc Networks TCP and UDP Fairness in Vehicular Ad hoc Networks Forouzan Pirmohammadi 1, Mahmood Fathy 2, Hossein Ghaffarian 3 1 Islamic Azad University, Science and Research Branch, Tehran, Iran 2,3 School of Computer

More information

Adaptive RTP Rate Control Method

Adaptive RTP Rate Control Method 2011 35th IEEE Annual Computer Software and Applications Conference Workshops Adaptive RTP Rate Control Method Uras Tos Department of Computer Engineering Izmir Institute of Technology Izmir, Turkey urastos@iyte.edu.tr

More information

Reliable Server Pooling Implementations. Aron Silverton & Michael Tüxen

Reliable Server Pooling Implementations. Aron Silverton & Michael Tüxen Reliable Server Pooling Implementations Aron Silverton (Aron.J.Silverton@Motorola.com) & Michael Tüxen (tuexen@fh-muenster.de) Agenda Protocol Implementations University of Essen-Duisburg & University

More information

TM ALGORITHM TO IMPROVE PERFORMANCE OF OPTICAL BURST SWITCHING (OBS) NETWORKS

TM ALGORITHM TO IMPROVE PERFORMANCE OF OPTICAL BURST SWITCHING (OBS) NETWORKS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 232-7345 TM ALGORITHM TO IMPROVE PERFORMANCE OF OPTICAL BURST SWITCHING (OBS) NETWORKS Reza Poorzare 1 Young Researchers Club,

More information

Achieving Distributed Buffering in Multi-path Routing using Fair Allocation

Achieving Distributed Buffering in Multi-path Routing using Fair Allocation Achieving Distributed Buffering in Multi-path Routing using Fair Allocation Ali Al-Dhaher, Tricha Anjali Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago, Illinois

More information

CS 126 Lecture S5: Networking

CS 126 Lecture S5: Networking CS 126 Lecture S5: Networking Outline Introductions Connectivity Naming and addressing Abstractions and layering Example: socket programming Conclusions CS126 24-1 Randy Wang Review: Technology Advances

More information

CS 126 Lecture S5: Networking

CS 126 Lecture S5: Networking CS 126 Lecture S5: Networking Outline Introductions Connectivity Naming and addressing Abstractions and layering Example: socket programming Conclusions CS126 24-1 Randy Wang Review: Technology Advances

More information

perform well on paths including satellite links. It is important to verify how the two ATM data services perform on satellite links. TCP is the most p

perform well on paths including satellite links. It is important to verify how the two ATM data services perform on satellite links. TCP is the most p Performance of TCP/IP Using ATM ABR and UBR Services over Satellite Networks 1 Shiv Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy Department of Computer and Information Science The Ohio State University

More information

Transport, Network, and Data-Link Layer Protocol Design Specifications that improve Near-Earth Data Communication Performance.

Transport, Network, and Data-Link Layer Protocol Design Specifications that improve Near-Earth Data Communication Performance. Transport, Network, and Data-Link Layer Protocol Design Specifications that improve Near-Earth Data Communication Performance Paul D. Wiedemeier Computer Science Department University of Missouri Columbia

More information

Deploying MPLS & DiffServ

Deploying MPLS & DiffServ Deploying MPLS & DiffServ Thomas Telkamp Director, Data Architecture & Technology Global Crossing Telecommunications, Inc. telkamp@gblx.net MPLS and DiffServ technologies are getting a lot of attention

More information

GRIN: Utilizing the Empty Half of Full Bisection Networks

GRIN: Utilizing the Empty Half of Full Bisection Networks GRIN: Utilizing the Empty Half of Full Bisection Networks Alexandru Agache University Politehnica of Bucharest Costin Raiciu University Politehnica of Bucharest Abstract Various full bisection designs

More information

QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered Control Technique

QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered Control Technique 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered

More information

A Relative Bandwidth Allocation Method Enabling Fast Convergence in XCP

A Relative Bandwidth Allocation Method Enabling Fast Convergence in XCP A Relative Bandwidth Allocation Method Enabling Fast Convergence in XCP Hanh Le Hieu,KenjiMasui 2, and Katsuyoshi Iida 2 Graduate School of Science and Engineering, Tokyo Institute of Technology 2 Global

More information

Design and Development of Carrier Assignment and Packet Scheduling in LTE-A and Wi-Fi

Design and Development of Carrier Assignment and Packet Scheduling in LTE-A and Wi-Fi PhD Defense Design and Development of Carrier Assignment and Packet Scheduling in LTE-A and Wi-Fi Husnu S. Narman Outline Introduction Objective Multi-band in LTE-A Multi-band in Wi-Fi Conclusion Husnu

More information

CS CS COMPUTER NETWORKS CS CS CHAPTER 6. CHAPTER 6 Congestion Control

CS CS COMPUTER NETWORKS CS CS CHAPTER 6. CHAPTER 6 Congestion Control COMPUTER NETWORKS CS 45201 CS 55201 CHAPTER 6 Congestion Control COMPUTER NETWORKS CS 45201 CS 55201 CHAPTER 6 Congestion Control P. Farrell and H. Peyravi Department of Computer Science Kent State University

More information