Overview of TDMA Like Protocol v2 protocol

Size: px
Start display at page:

Download "Overview of TDMA Like Protocol v2 protocol"

Transcription

1 Overview of TDMA Like Protocol v2 protocol TLPv2 protocol is proprietary wireless protocol developed by HauteSpot Networks for use with Atheros wireless chips TLPv2 is based on TDMA (Time Division Multiple Access) media access technology instead of CSMA (Carrier Sense Multiple Access) media access technology used in regular devices. TDMA media access technology solves hidden node problem and improves media usage, thus improving throughput and latency, especially in PtMP networks. Media access in TLPv2 network is controlled by TLPv2 Access Point. TLPv2 AP divides time in fixed size "periods" which are dynamically divided in downlink (data sent from AP to clients) and uplink (data sent from clients to AP) portions, based on queue state on AP and clients. Uplink time is further divided between connected clients based on their requirements for bandwidth. At the beginning of each period AP broadcasts schedule that tells clients when they should transmit and the amount of time they can use. In order to allow new clients to connect, TLPv2 AP periodically assigns uplink time for "unspecified" client - this time interval is then used by fresh client to initiate registration to AP. Then AP estimates propagation delay between AP and client and starts periodically scheduling uplink time for this client in order to complete registration and receive data from client. TLPv2 implements dynamic rate selection on per-client basis and ARQ for data transmissions. This enables reliable communications across TLPv2 links. For QoS TLPv2 implements variable number of priority queues with built-in default QoS scheduler that can be accompanied with fine grained QoS policy based on firewall rules or priority information propagated across network using VLAN priority or MPLS EXP bits. Compatibility and coexistence with other wireless protocols TLPv2 protocol is not compatible to or based on any other available wireless protocols or implementations, either TDMA based or any other kind, including Motorola Canopy, Ubiquiti Airmax and FreeBSD TDMA implementation. This implies that only TLPv2 supporting and enabled devices can participate in TLPv2 network. Regular devices will not recognize and will not be able to connect to TLPv2 AP. HauteRouterOS devices that have TLPv2 support (that is - have HauteRouterOS version 4.17 or P.O. Box 4016, San Luis Obispo, California Phone: (800) (805) 541-WISP (9477) (310) 598-WISP (9477) Fax: (805) sales@hautespot.net Web:

2 higher) will see TLPv2 APs when issuing scan command, but will only connect to TLPv2 AP if properly configured. As TLPv2 does not use CSMA technology it may disturb any other network in the same channel. In the same way other networks may disturb TLPv2 network, because every other signal is considered noise. The key points regarding compatibility and coexistence: only HauteRouterOS devices will be able to participate in TLPv2 network only HauteRouterOS devices will see TLPv2 AP when scanning TLPv2 network will disturb other networks in the same channel TLPv2 network may be affected by any (TLPv2 or not) other networks in the same channel TLPv2 enabled device will not connect to any other TDMA based network TLPv2 vs The key differences between TLPv2 and : Media access is scheduled by AP - this eliminates hidden node problem and allows to implement centralized media access policy - AP controls how much time is used by every client and can assign time to clients according to some policy instead of every device contending for media access. Reduced propagation delay overhead - There are no per-frame ACKs in TLPv2 - this significantly improves throughput, especially on long distance links where data frame and following ACK frame propagation delay significantly reduces the effectiveness of media usage. Reduced per frame overhead - TLPv2 implements frame aggregation and fragmentation to maximize assigned media usage and reduce per-frame overhead (interframe spaces, preambles). TLPv2 vs TLPv1 The key differences between TLPv2 and TLPv1: Reduced polling overhead - instead of polling each client, TLPv2 AP broadcasts uplink schedule that assigns time to multiple clients, this can be considered "group polling" - no time is wasted for polling each client individually, leaving more time for actual data transmission. This improves throughput, especially in PtMP configurations. Reduced propagation delay overhead - TLPv2 must not poll each client individually, this allows to create uplink schedule based on estimated distance (propagation delay) to clients such that media usage is most effective. This improves throughput, especially in PtMP configurations. Overview of TDMA Like Protocol v2 protocol.docxpage 2 of 7 3/22/2011

3 More control over latency - reduced overhead, adjustable period size and QoS features allows for more control over latency in the network. Configuring TLPv2 As of version 4.17 new wireless interface setting wireless-protocol has been introduced. This setting controls which wireless protocol selects and uses. Note that meaning of this setting depends on interface role (either it is AP or client) that depends on interface mode setting. Find possible values of wireless-protocol and their meaning in table below. Note that in the user interface TLPv1 is referred to as nstreme and TLPv2 is referred to as nv2. This is due the OEM nature of the interface versus the HauteSpot built driver. Wherever you see nv2 think TLPv2. value AP client unspecified establish TLPv1 or network based on old TLPv1 setting connect to TLPv1 or network based on old TLPv1 setting any same as unspecified scan for all matching networks, no matter what protocol, connect using protocol of chosen network establish network connect to networks only nstreme establish TLPv1 network connect to TLPv1 networks only Nv2 establish Nv2 network connect to Nv2 networks only Nv2-nstreme establish Nv2 network scan for Nv2 networks, if suitable network found - connect, otherwise scan for TLPv1 networks, if suitable network found - connect, otherwise scan for network and if suitable network found - connect. Nv2-nstreme establish Nv2 network scan for Nv2 networks, if suitable network found - connect, otherwise scan for TLPv1 networks and if suitable network found - connect Note that wireless-protocol values Nv2-nstreme and Nv2-nstreme DO NOT specify some hybrid or special kind of protocol - these values are implemented to simplify client configuration when protocol of network that client must connect to can change. Using these values can help in migrating network to Nv2 protocol. Overview of TDMA Like Protocol v2 protocol.docxpage 3 of 7 3/22/2011

4 Most of Nv2 settings are significant only to Nv2 AP - Nv2 client automatically adapts necessary settings from AP. The following settings are relevant to Nv2 AP: Nv2-queue-count - specifies how many priority queues are used in Nv2 network. Nv2-qos - controls frame to priority queue mapping policy. Nv2-cell-radius - specifies distance to farthest client in Nv2 network in km. This setting affects the size of contention time slot that AP allocates for clients to initiate connection and also size of time slots used for estimating distance to client. If this setting is too small, clients that are farther away may have trouble connecting and/or disconnect with "ranging timeout" error. Although during normal operation the effect of this setting should be negligible, in order to maintain maximum performance, it is advised to not increase this setting if not necessary, so AP is not reserving time that is actually never used, but instead allocates it for actual data transfer. tdma-period-size - specifies size in ms of time periods that TLPv2 AP for media access scheduling. Smaller period can potentially decrease latency (because AP can assign time for client sooner), but will increase protocol overhead and therefore decrease throughput. On the other hand - increasing period will increase throughput but also increase latency. It may be required to increase this value for especially long links to get acceptable throughput. This necessity can be caused by the fact that there is "propagation gap" between downlink (from AP to clients) and uplink (from clients to AP) data during which no data transfer is happening. This gap is necessary because client must receive last frame from AP - this happens after propagation delay after AP's transmission, and only then client can transmit - as a result frame from client arrives at AP after propagation delay after client's transmission (so the gap is propagation delay times two). The longer the distance, the bigger is necessary propagation gap in every period. If propagation gap takes significant portion of period, actual throughput may become unacceptable and period size should get increased at the expense of increased latency. Basically value of this setting must be carefully chosen to maximize throughput but also to keep latency at acceptable levels. The following settings are significant on both - TLPv2 AP and TLPv2 client: Nv2-security - specifies TLPv2 security mode Nv2-preshared-key - specifies preshared key to be used Migrating to TLPv2 Using wireless-protocol setting aids in migration or evaluating TLPv2 protocol in existing networks really simple and reduce downtime as much as possible. These are the recommended steps: upgrade AP to version that supports TLPv2, but do not enable TLPv2 on AP yet. upgrade clients to version that supports TLPv2 configure all clients with wireless-protocol=nv2-nstreme Clients will still connect to AP using protocol that was used previously, because AP is not changed over to TLPv2 yet configure TLPv2 related settings on AP if it is necessary to use data encryption and secure authentication, configure TLPv2 security related settings on AP and clients. Overview of TDMA Like Protocol v2 protocol.docxpage 4 of 7 3/22/2011

5 set wireless-protocol=nv2 on AP. This will make AP to change to TLPv2 protocol. Clients should now connect using TLPv2 protocol. in case of some trouble you can easily switch back to previous protocol by simply changing it back to whatever was used before on AP. fine tune TLPv2 related settings to get acceptable latency and throughput implement QoS policy for maximum performance. The basic troubleshooting guide: clients have trouble connecting or disconnect with "ranging timeout" error - check that TLPv2-cell-radius setting is set appropriately unexpectedly low throughput on long distance links although signal and rate is fine - try to increase tdma-period-size setting QoS in TLPv2 network QoS in TLPv2 is implemented by means of variable number of priority queues. Queue is considered for transmission based on rule recommended by 802.1D only if all higher priority queues are empty. In practice this means that at first all frames from queue with higher priority will be sent, and only then next queue is considered. Therefore QoS policy must be designed with care so that higher priority queues do not make lower priority queues starve. QoS policy in TLPv2 network is controlled by AP, clients adapt policy from AP. On AP QoS policy is configured with Nv2-queue-count and Nv2-qos parameters. Nv2-queue-count parameter specifies number of priority queues used. Mapping of frames to queues is controlled by Nv2-qos parameter. Nv2-qos=default In this mode outgoing frame at first is inspected by built-in QoS policy algorithm that selects queue based on packet type and size. If built-in rules do not match, queue is selected based on frame priority field, as in Nv2-qos=frame-priority mode. Nv2-qos=frame-priority In this mode QoS queue is selected based on frame priority field. Note that frame priority field is not some field in headers and therefore it is valid only while packet is processed by given device. Frame priority field must be set either explicitly by firewall rules or implicitly from ingress priority by frame forwarding process, for example, from MPLS EXP bits. Queue is selected based on frame priority according to 802.1D recommended user priority to traffic class mapping. Mapping depends on number of available queues (Nv2-queue-count parameter). For example, if number of queues is 4, mapping is as follows (pay attention how this mapping resembles mapping used by WMM): priority 0,3 -> queue 0 Overview of TDMA Like Protocol v2 protocol.docxpage 5 of 7 3/22/2011

6 priority 1,2 -> queue 1 priority 4,5 -> queue 2 priority 6,7 -> queue 3 If number of queues is 2 (default), mapping is as follows: priority 0,1,2,3 -> queue 0 priority 4,5,6,7 -> queue 1 If number of queues is 8 (maximum possible), mapping is as follows: priority 0 -> queue 2 priority 1 -> queue 0 priority 2 -> queue 1 priority 3 -> queue 3 priority 4 -> queue 4 priority 5 -> queue 5 priority 6 -> queue 6 priority 7 -> queue 7 For other mappings, discussion on rationale for these mappings and recommended practices please see 802.1D Security in TLPv2 network TLPv2 security implementation has the following features: hardware accelerated data encryption using AES-CCM with 128 bit keys; 4-way handshake for key management (similar to that of i); preshared key authentication method (similar to that of i); periodically updated group keys (used for broadcast and multicast data). Being proprietary protocol TLPv2 does not use security mechanisms of , therefore security configuration is different. Interface using TLPv2 protocol ignores security-profile setting. Instead, security is configured by the following interface settings: Nv2-security - this setting enables/disables use of security in TLPv2 network. Note that when security is enabled on AP, it will not accept clients with disabled security. In the same way clients with enabled security will not connect to unsecure APs. Nv2-preshared-key - preshared key to use for authentication. Data encryption keys are derived from preshared key during 4-way handshake. Preshared key must be the same in order for 2 Overview of TDMA Like Protocol v2 protocol.docxpage 6 of 7 3/22/2011

7 devices to establish connection. If preshared key will differ, connection will time out because remote party will not be able to correctly interpret key exchange messages. Overview of TDMA Like Protocol v2 protocol.docxpage 7 of 7 3/22/2011

Chapter 1 Basic concepts of wireless data networks (cont d)

Chapter 1 Basic concepts of wireless data networks (cont d) Chapter 1 Basic concepts of wireless data networks (cont d) Part 2: Medium access methods for mobile data networks Sept 15 2004 1 Fixed assignment access schemes in voice-oriented networks Frequency division

More information

Configuring the Wireless Parameters (CPE and WBS)

Configuring the Wireless Parameters (CPE and WBS) Configuring the Wireless Parameters (CPE and WBS) CHAPTERS 1. Configure Basic Wireless Parameters 2. Configure Wireless Client Parameters 3. Configure Wireless AP Parameters 4. Configure Multi-SSID 5.

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

EL Wireless and Mobile Networking Spring 2002 Mid-Term Exam Solution - March 6, 2002

EL Wireless and Mobile Networking Spring 2002 Mid-Term Exam Solution - March 6, 2002 Instructions: EL 604 - Wireless and Mobile Networking Spring 2002 Mid-Term Exam Solution - March 6, 2002 Be sure to write your name on your submission. This is an open book test. Use your class notes,

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University Lecture 4: Wireless MAC Overview Hung-Yu Wei National Taiwan University Medium Access Control Topology 3 Simplex and Duplex 4 FDMA TDMA CDMA DSSS FHSS Multiple Access Methods Notice: CDMA and spread spectrum

More information

Cisco Exam Implementing Cisco unified Wireless Voice Networks (IUWVN) v2.0 Version: 10.0 [ Total Questions: 188 ]

Cisco Exam Implementing Cisco unified Wireless Voice Networks (IUWVN) v2.0 Version: 10.0 [ Total Questions: 188 ] s@lm@n Cisco Exam 642-742 Implementing Cisco unified Wireless Voice Networks (IUWVN) v2.0 Version: 10.0 [ Total Questions: 188 ] Question No : 1 A client reports that video is not streaming. The administrator

More information

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem.

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem. Dynamic Channel Allocation in LANs and MANs Chapter 4 The Medium Access Control Sublayer 1. Station Model. 2. Single Channel Assumption. 3. Collision Assumption. 4. (a) Continuous Time. (b) Slotted Time.

More information

Certified Wireless Network Administrator (CWNA) PW Chapter Medium Access. Chapter 8 Overview

Certified Wireless Network Administrator (CWNA) PW Chapter Medium Access. Chapter 8 Overview Certified Wireless Network Administrator (CWNA) PW0-105 Chapter 8 802.11 Medium Access Chapter 8 Overview CSMA/CA vs. CSMA/CD Distributed Coordination Function (DCF) Point Coordination Function (PCF) Hybrid

More information

ENGI 4557 Digital Communications Practice Problems 2017 (Part 2)

ENGI 4557 Digital Communications Practice Problems 2017 (Part 2) ENGI 4557 Digital Communications Practice Problems 207 (Part 2) H = n p i log 2 ( ) p i C = W log 2 ( + S N ) SNR = 6m + 0 log 0 ( 3σ2 x V ) 2 SNR = 6m 0 ( ) n n! = k k!(n k)! x = σ 2 = + + x p(x)dx (x

More information

MAC LAYER. Murat Demirbas SUNY Buffalo

MAC LAYER. Murat Demirbas SUNY Buffalo MAC LAYER Murat Demirbas SUNY Buffalo MAC categories Fixed assignment TDMA (Time Division), CDMA (Code division), FDMA (Frequency division) Unsuitable for dynamic, bursty traffic in wireless networks Random

More information

White Paper. Performance in Broadband Wireless Access Systems

White Paper. Performance in Broadband Wireless Access Systems White Paper Performance in Broadband Wireless Access Systems Defining Broadband Services Broadband service is defined as high speed data that provides access speeds of greater than 256K. There are a myriad

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

Abstract of the Book

Abstract of the Book Book Keywords IEEE 802.16, IEEE 802.16m, mobile WiMAX, 4G, IMT-Advanced, 3GPP LTE, 3GPP LTE-Advanced, Broadband Wireless, Wireless Communications, Cellular Systems, Network Architecture Abstract of the

More information

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms Overview Chapter 13 TRANSPORT Motivation Simple analysis Various TCP mechanisms Distributed Computing Group Mobile Computing Winter 2005 / 2006 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

More information

New Features and Updates in RouterOS

New Features and Updates in RouterOS New Features and Updates in RouterOS About MikroTik SA Independent Network Specialist company Not owned by / affiliated to MikroTik Latvia Official training and support partner for MikroTik Specialist

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Requirements and best practices for enabling Enhanced PTT over Wi-Fi networks

Requirements and best practices for enabling Enhanced PTT over Wi-Fi networks Requirements and best practices for enabling Enhanced PTT over Wi-Fi networks The following guide is intended for users of Enhanced PTT to ensure that their Wi-Fi networks meet minimum requirements for

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks 802.11 Wireless LAN CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Wireless Data Communications Wireless communications compelling

More information

Mobile Transport Layer

Mobile Transport Layer Mobile Transport Layer 1 Transport Layer HTTP (used by web services) typically uses TCP Reliable transport between TCP client and server required - Stream oriented, not transaction oriented - Network friendly:

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

IEEE 1901 HD-PLC (High Definition Power Line Communication) Abstract

IEEE 1901 HD-PLC (High Definition Power Line Communication) Abstract IEEE 1901 HD-PLC (High Definition Power Line Communication) Abstract The growing penetration of the internet throughout the society has also brought advantages to SOHOs and home networks. As networks develop,

More information

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1

Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1 Lecture 6 Data Link Layer (cont d) Data Link Layer 1-1 Agenda Continue the Data Link Layer Multiple Access Links and Protocols Addressing Data Link Layer 1-2 Multiple Access Links and Protocols Two types

More information

An Efficient Scheduling Scheme for High Speed IEEE WLANs

An Efficient Scheduling Scheme for High Speed IEEE WLANs An Efficient Scheduling Scheme for High Speed IEEE 802.11 WLANs Juki Wirawan Tantra, Chuan Heng Foh, and Bu Sung Lee Centre of Muldia and Network Technology School of Computer Engineering Nanyang Technological

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

Cisco Exam. Volume: 147 Questions

Cisco Exam. Volume: 147 Questions Volume: 147 Questions Question No : 1 Which two VoWLAN configuration parameters are required to implement a Vocera Communications System on a Cisco WLC v7.0? (Choose two.) A. Enable WLC broadcast for WLANs.

More information

CONTENTION BASED PROTOCOLS WITH RESERVATION MECHANISMS

CONTENTION BASED PROTOCOLS WITH RESERVATION MECHANISMS CONTENTION BASED PROTOCOLS WITH RESERVATION MECHANISMS Five-Phase Reservation Protocol A single-channel time division multiple access (TDMA)-based broadcast scheduling protocol. Nodes use a contention

More information

LP-2396K Outdoor 2.4GHz Wireless AP/CPE/Bridge

LP-2396K Outdoor 2.4GHz Wireless AP/CPE/Bridge User Manual LP-2396K Outdoor 2.4GHz Wireless AP/CPE/Bridge 1 Table of Contents 1. Introduction... 3 1.1 Product Introduction... 4 1.2 Package Content... 5 1.3 Product Features... 6 1.4 Application... 6

More information

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University Wireless and WiFi Daniel Zappala CS 460 Computer Networking Brigham Young University Wireless Networks 2/28 mobile phone subscribers now outnumber wired phone subscribers similar trend likely with Internet

More information

Chapter 6 Local Area Networks and Media Access Control. School of Info. Sci. & Eng. Shandong Univ.

Chapter 6 Local Area Networks and Media Access Control. School of Info. Sci. & Eng. Shandong Univ. Chapter 6 Local Area Networks and Media Access Control School of Info. Sci. & Eng. Shandong Univ. 6.1 MULTIPLE ACCESS COMMUNICATIONS FIGURE 6.1 Multiple access communications FIGURE 6.2 Approaches to sharing

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

3.1. Introduction to WLAN IEEE

3.1. Introduction to WLAN IEEE 3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

ECE442 Communications Lecture 3. Wireless Local Area Networks

ECE442 Communications Lecture 3. Wireless Local Area Networks ECE442 Communications Lecture 3. Wireless Local Area Networks Husheng Li Dept. of Electrical Engineering and Computer Science Spring, 2014 Wireless Local Networks 1 A WLAN links two or more devices using

More information

Jonathan Walcher Brink Networks

Jonathan Walcher Brink Networks Jonathan Walcher Brink Networks Currently involved in three companies: Airosurf Communications - A WISP Based in Edmond, Ok Brink Networks - Component Distributor WISPForum.net - Operator, Contributor

More information

Solutions to Performance Problems in VoIP Over a Wireless LAN

Solutions to Performance Problems in VoIP Over a Wireless LAN Solutions to Performance Problems in VoIP Over a 802.11 Wireless LAN Wei Wang, Soung C. Liew, and VOK Li, Solutions to Performance Problems in VoIP over a 802.11 Wireless LAN, IEEE Transactions On Vehicular

More information

LiteStation2 LiteStation5 User s Guide

LiteStation2 LiteStation5 User s Guide LiteStation2 LiteStation5 User s Guide Contents Contents... 2 Introduction... 3 Quick Setup Guide... 4 Configuration Guide... 8 Main Settings... 9 Link Setup... 10 Basic Wireless Settings... 10 Wireless

More information

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection: 1 Topics 2 LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS Multiple access: CSMA/CD, CSMA/CA, token passing, channelization LAN: characteristics, i basic principles i Protocol architecture Topologies

More information

Manual:Interface/Wireless

Manual:Interface/Wireless Manual:Interface/Wireless RouterOS wireless comply with IEEE 802.11 standards, it provides complete support for 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac as long as additional features like WPA,

More information

OSBRiDGE 24XL(i) Configuration Manual. Firmware 2.05b9

OSBRiDGE 24XL(i) Configuration Manual. Firmware 2.05b9 OSBRiDGE 24XL(i) Configuration Manual Firmware 2.05b9 1. Initial setup and configuration. OSBRiDGE 24XL devices are configurable via WWW interface. Each device uses following default settings: IP: 192.168.1.250

More information

Delivering Voice over IEEE WLAN Networks

Delivering Voice over IEEE WLAN Networks Delivering Voice over IEEE 802.11 WLAN Networks Al Petrick, Jim Zyren, Juan Figueroa Harris Semiconductor Palm Bay Florida Abstract The IEEE 802.11 wireless LAN standard was developed primarily for packet

More information

MAC Essentials for Wireless Sensor Networks

MAC Essentials for Wireless Sensor Networks MAC Essentials for Wireless Sensor Networks Abdelmalik Bachir, Mischa Dohler, Senior Member, IEEE, Thomas Watteyne, Member, IEEE, and Kin K. Leung, Fellow, IEEE Medium access control Part of the link layer

More information

Introduction to WiFi Networking. Training materials for wireless trainers

Introduction to WiFi Networking. Training materials for wireless trainers Introduction to WiFi Networking Training materials for wireless trainers Goals The goal of this lecture is to introduce 802.11 family of radio protocols 802.11 radio channels wireless network topologies

More information

Media Access Control. Networked Systems (H) Lecture 5

Media Access Control. Networked Systems (H) Lecture 5 Media Access Control Networked Systems (H) Lecture 5 Lecture Outline Controlling access to the channel Link contention Media access control protocols Contention-based protocols CSMA/CD Token ring Slotted

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.4: Multiple Access Protocols Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

Lecture 10: Link layer multicast. Mythili Vutukuru CS 653 Spring 2014 Feb 6, Thursday

Lecture 10: Link layer multicast. Mythili Vutukuru CS 653 Spring 2014 Feb 6, Thursday Lecture 10: Link layer multicast Mythili Vutukuru CS 653 Spring 2014 Feb 6, Thursday Unicast and broadcast Usually, link layer is used to send data over a single hop between source and destination. This

More information

Chapter 12 Multiple Access 12.1

Chapter 12 Multiple Access 12.1 Chapter 12 Multiple Access 12.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.2 Figure 12.1 Data link layer divided into two functionality-oriented sublayers

More information

Enabling TDMA for Today s Wireless LANs

Enabling TDMA for Today s Wireless LANs Enabling TDMA for Today s Wireless LANs Zhice Yang 1 *, Jiansong Zhang 2 *, Kun Tan 2, Qian Zhang 1, Yongguang Zhang 2 1 CSE, Hong Kong University of Science and Technology 2 Microsoft Research Asia *

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

There are 10 questions in total. Please write your SID on each page.

There are 10 questions in total. Please write your SID on each page. Name: SID: Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 to the Final: 5/20/2005 There are 10 questions in total. Please write

More information

Configuring Advanced Radio Settings on the WAP371

Configuring Advanced Radio Settings on the WAP371 Article ID: 5069 Configuring Advanced Radio Settings on the WAP371 Objective Radio settings are used to configure the wireless radio antenna and its properties on the wireless access point (WAP) device

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part I: Medium Access Control Part II: Local Area Networks Chapter Overview Broadcast Networks All information sent to all users No routing

More information

MULTIPLE ACCESS PROTOCOLS 2. 1

MULTIPLE ACCESS PROTOCOLS 2. 1 MULTIPLE ACCESS PROTOCOLS AND WIFI 1 MULTIPLE ACCESS PROTOCOLS 2. 1 MULTIPLE ACCESS LINKS, PROTOCOLS Two types of links : point-to-point broadcast (shared wire or medium) POINT-TO-POINT PPP for dial-up

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

Wireless Protocols. Training materials for wireless trainers

Wireless Protocols. Training materials for wireless trainers Wireless Protocols Training materials for wireless trainers Goals The goal of this lecture is to introduce: IEEE wireless protocols coverage 802.11 radio protocols terminology WiFi modes of operation details

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

DOMINO: A System to Detect Greedy Behavior in IEEE Hotspots

DOMINO: A System to Detect Greedy Behavior in IEEE Hotspots DOMINO: A System to Detect Greedy Behavior in IEEE 802.11 Hotspots By Maxim Raya, Jean-Pierre Hubaux, Imad Aad Laboratory for computer Communications and Applications(LCA) School of Computer and Communication

More information

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions Fundamentals of Network Media Local Area Networks Ursula Holmström Goals Learn the basic concepts related to LAN technologies, for example use of shared media medium access control topologies Know the

More information

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network Improving the Data Scheduling Efficiency of the IEEE 802.16(d) Mesh Network Shie-Yuan Wang Email: shieyuan@csie.nctu.edu.tw Chih-Che Lin Email: jclin@csie.nctu.edu.tw Ku-Han Fang Email: khfang@csie.nctu.edu.tw

More information

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018 CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

More information

Novel MIME Type and Extension Based Packet Classification Algorithm in WiMAX

Novel MIME Type and Extension Based Packet Classification Algorithm in WiMAX Novel MIME Type and Extension Based Packet Classification Algorithm in WiMAX Siddu P. Algur Departmentof Computer Science Rani Chennamma University Belgaum, India Niharika Kumar Department of Information

More information

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I)

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I) ECE453 Introduction to Computer Networks Lecture 7 Multiple Access Control (I) 1 Broadcast vs. PPP Broadcast channel = multiaccess channel = random access channel Broadcast LAN Satellite network PPP WAN

More information

PowerStation2 LiteStation2 LiteStation5 User s Guide

PowerStation2 LiteStation2 LiteStation5 User s Guide PowerStation2 LiteStation2 LiteStation5 User s Guide Copyright 2007 Ubiquiti Networks Inc. All rights reserved. Contents INTRODUCTION...2 QUICK SETUP GUIDE...3 CONFIGURATION GUIDE...7 Main Settings...8

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2000 or 888 JUNIPER www.juniper.net Table

More information

Data Link Layer: Collisions

Data Link Layer: Collisions Data Link Layer: Collisions 1 Multiple Access Data Link layer divided into two sublayers. The upper sublayer is responsible for datalink control, The lower sublayer is responsible for resolving access

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part I: Medium Access Control Part II: Local Area Networks CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Chapter Overview Broadcast

More information

Multiple Access Protocols

Multiple Access Protocols Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

More information

Security SSID Selection: Broadcast SSID:

Security SSID Selection: Broadcast SSID: 69 Security SSID Selection: Broadcast SSID: WMM: Encryption: Select the SSID that the security settings will apply to. If Disabled, then the device will not be broadcasting the SSID. Therefore it will

More information

CS 716: Introduction to communication networks. - 8 th class; 17 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 8 th class; 17 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 8 th class; 17 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Key points to consider for MAC Types/Modes of communication: Although the medium is shared,

More information

Network Configuration Example

Network Configuration Example Network Configuration Example Configuring CoS Hierarchical Port Scheduling Release NCE 71 Modified: 2016-12-16 Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408-745-2000 www.juniper.net

More information

Outline 9.2. TCP for 2.5G/3G wireless

Outline 9.2. TCP for 2.5G/3G wireless Transport layer 9.1 Outline Motivation, TCP-mechanisms Classical approaches (Indirect TCP, Snooping TCP, Mobile TCP) PEPs in general Additional optimizations (Fast retransmit/recovery, Transmission freezing,

More information

Physical Layer. Medium Access Links and Protocols. Point-to-Point protocols. Modems: Signaling. Modems Signaling. Srinidhi Varadarajan

Physical Layer. Medium Access Links and Protocols. Point-to-Point protocols. Modems: Signaling. Modems Signaling. Srinidhi Varadarajan P Physical Layer Srinidhi Varadarajan Medium Access Links and Protocols Three types of links : point-to-point (single wire, e.g. PPP, SLIP) broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

More information

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks LANs Local Area Networks via the Media Access Control (MAC) SubLayer 1 Local Area Networks Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring 2 Network Layer

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

OmniSwitch 6850E Stackable LAN Switch

OmniSwitch 6850E Stackable LAN Switch 1 OmniSwitch 6850E Stackable LAN Switch Sales Presentation 1 Presentation Title Month Year OmniSwitch 6850E Product Family The OmniSwitch 6850E series: Is the latest Alcatel-Lucent s line of layer-3 GigE

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Two Analyzing Technical Goals and Tradeoffs Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Technical Goals Scalability Availability Performance Security Manageability

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Communication Networks

Communication Networks Communication Networks Prof. Laurent Vanbever Exercises week 4 Reliable Transport Reliable versus Unreliable Transport In the lecture, you have learned how a reliable transport protocol can be built on

More information

5GHz. Overview. Spotlight. Hardened IP65 Outdoor Wireless Bridge Subscriber Unit. PtP ITS

5GHz. Overview. Spotlight. Hardened IP65 Outdoor Wireless Bridge Subscriber Unit. PtP ITS Hardened IP65 Outdoor Wireless Bridge Subscriber Unit 5GHz PtP ITS Overview The ewav EW75000 series is a family of hardened IP65 outdoor wireless bridge subscriber unit providing high speed wireless connectivity

More information

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과.

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과. Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과 ahn@venus.uos.ac.kr Data Link Layer Goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

Wireless Networks (MAC)

Wireless Networks (MAC) 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

Q&As. Implementing Cisco Unified Wireless Voice Networks (IUWVN) v2.0. Pass Cisco Exam with 100% Guarantee

Q&As. Implementing Cisco Unified Wireless Voice Networks (IUWVN) v2.0. Pass Cisco Exam with 100% Guarantee 642-742 Q&As Implementing Cisco Unified Wireless Voice Networks (IUWVN) v2.0 Pass Cisco 642-742 Exam with 100% Guarantee Free Download Real Questions & Answers PDF and VCE file from: 100% Passing Guarantee

More information

Patrick Verkaik Yuvraj Agarwal, Rajesh Gupta, Alex C. Snoeren

Patrick Verkaik Yuvraj Agarwal, Rajesh Gupta, Alex C. Snoeren Patrick Verkaik Yuvraj Agarwal, Rajesh Gupta, Alex C. Snoeren UCSD NSDI April 24, 2009 1 Voice over IP (VoIP) and WiFi increasingly popular Cell phones with WiFi + VoIP: iphone (+ Skype, Fring, icall,..)

More information

MAC Overview NCHU CSE WMAN - 1

MAC Overview NCHU CSE WMAN - 1 MAC Overview NCHU CSE WMAN - 1 MAC Overview Connection-oriented Supports difficult user environments High bandwidth, hundreds of users per channel For variable Continuous and Burst traffic Very efficient

More information

QUESTION: 1 You have been asked to establish a design that will allow your company to migrate from a WAN service to a Layer 3 VPN service. In your des

QUESTION: 1 You have been asked to establish a design that will allow your company to migrate from a WAN service to a Layer 3 VPN service. In your des Vendor: Cisco Exam Code: 352-001 Exam Name: ADVDESIGN Version: Demo www.dumpspdf.com QUESTION: 1 You have been asked to establish a design that will allow your company to migrate from a WAN service to

More information

Exam4Tests. Latest exam questions & answers help you to pass IT exam test easily

Exam4Tests.   Latest exam questions & answers help you to pass IT exam test easily Exam4Tests http://www.exam4tests.com Latest exam questions & answers help you to pass IT exam test easily Exam : PW0-300 Title : Certified Wireless Network Expert Vendors : CWNP Version : DEMO Get Latest

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

WiFi / IEEE WLAN

WiFi / IEEE WLAN WiFi / IEEE 802.11 - WLAN Lecturer: Carlos Rey-Moreno carlos.reymoreno@gmail.com Networking Course Honors on Computer Science University of the Western Cape 04 Feb - 2013 Why Wireless? A lot of pros...

More information

WiseTOP - a multimode MAC protocol for wireless implanted devices

WiseTOP - a multimode MAC protocol for wireless implanted devices WiseTOP - a multimode MAC protocol for wireless implanted devices Lorenzo Bergamini, Philippe Dallemagne, Jean-Dominique Decotignie RTNS 2018 Conference, 10.10.2018 - Poitiers Futuroscope Overview Detop

More information

RECENTLY, the information exchange using wired and

RECENTLY, the information exchange using wired and Fast Dedicated Retransmission Scheme for Reliable Services in OFDMA Systems Howon Lee and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

Principles of Wireless Sensor Networks. Medium Access Control and IEEE

Principles of Wireless Sensor Networks. Medium Access Control and IEEE http://www.ee.kth.se/~carlofi/teaching/pwsn-2011/wsn_course.shtml Lecture 7 Stockholm, November 8, 2011 Medium Access Control and IEEE 802.15.4 Royal Institute of Technology - KTH Stockholm, Sweden e-mail:

More information

CSE 4215/5431: Mobile Communications Winter Suprakash Datta

CSE 4215/5431: Mobile Communications Winter Suprakash Datta CSE 4215/5431: Mobile Communications Winter 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4215 Some slides are adapted

More information

Network Control and Signalling

Network Control and Signalling Network Control and Signalling 1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches

More information

The Effects of Asymmetry on TCP Performance

The Effects of Asymmetry on TCP Performance The Effects of Asymmetry on TCP Performance Hari Balakrishnan Venkata N. Padmanabhan Randy H. Katz University of California at Berkeley Daedalus/BARWAN Retreat June 1997 Outline Overview Bandwidth asymmetry

More information

Coverage & Capacity in Hybrid Wideband Ad-hoc/cellular Access System. Results & Scenarios. by Pietro Lungaro

Coverage & Capacity in Hybrid Wideband Ad-hoc/cellular Access System. Results & Scenarios. by Pietro Lungaro Coverage & Capacity in Hybrid Wideband Ad-hoc/cellular Access System Results & Scenarios by Pietro Lungaro Agenda Problem Statement System Assumptions Results Threats Problem Statement Design a possible

More information