Information Retrieval. Wesley Mathew

Size: px
Start display at page:

Download "Information Retrieval. Wesley Mathew"

Transcription

1 Information Retrieval Wesley Mathew

2 Introduction and motivation Indexing methods B-Tree and the B+ Tree R-Tree IR- Tree Location-aware top-k text query 2

3 An increasing amount of trajectory data is being annotated with text descriptions to efficiently capture the semantics associated with locations; One fifth of web search queries are geographical; Find the top K results taking into account both location proximity and text relevancy for points of interest with associated text. 3

4 1. GPS-trajectory-sharing websites (e.g., Mountain Bike: GPS sharing: GPSies: and the Geolife dataset. 2. In location based social network services, each place is associated with tags and users can check in when located at such places (e.g., Four Square) 3. Trajectories with text descriptions can be extracted from travel itineraries, as well as Flickr photos 4

5 meadow waterfall, meadow, kiosk waterfall, cave meadow, kiosk waterfall, kiosk cave 5

6 B-tree is a tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in logarithmic time. The B Tree contains only data pages The B-tree is a generalization of a binary search tree, in which a node can have more than two children 6

7 B+ Tree combines features of ISAM and B Trees. (ISAM - Indexed Sequential Access Method) B+ tree represents sorted data in a way that allows for efficient insertion, retrieval and removal of records, each of which is identified by a key B+ tree contains index pages and data pages. The index pages in a B+ tree are constructed through the process of inserting and deleting records. 7

8 The data pages always appear as leaf nodes in the tree. The root node and intermediate nodes are always index pages These features are similar to ISAM. 8

9 The B -Tree provides the foundations for the R Tree R -Tree is a depth-balanced tree A spatial database consists of a collection of tuples representing spatial objects Every leaf node contains between m and M index records, unless it is the root node M is the maximum number of entries in a node m= {0, M/2} 9

10 Leaf nodes have index record entries like (I, tuple-identifier) Tuple-identifier refers to tuple in database, I refers to n-dimensional rectangle which is the bounding box of the spatial object index. Every non-leaf node has between m and M children unless it is the root The Non leaf nodes have entries like (I, child-pointer) child pointer is the address of a lower node in the R tree The I rectangle covers all rectangles in the lower nodes entries 10

11 11

12 Traverse the R-Tree top to down, starting from the root, At each level - If there is a node whose directory rectangle contains the mbb to be inserted, then search the sub tree. - Else choose the node such that the enlargement of the directory rectangle is minimal, then search the subtree - If more than one node satisfy this, choose the one with smallest area. Repeat until a leaf node is reached 12

13 If a leaf node is not full, an entry [mbb, oid] is inserted into the tree Else if the leaf node is full - Split the leaf node and inserted into the correct one - Update the directory rectangles of the ancestor nodes if necessary 13

14 14

15 15

16 Suppose a Leaf node has M entries If a new entry is to be inserted, then M+1 mbbs will be partitioned in to two nodes, such that The total area of the two nodes is minimized The overlapping of the two nodes is minimized Sometimes the two goals are conflicting Use the 1 st as the primary goal 16

17 17

18 The IR tree is essentially an R tree Each node of which is enriched with reference to an inverted file for the objects contained in the sub-tree rooted at the node. A leaf node contains entries like (O, rectangle, O.di) O is an object in database D, rectangle is the bounding rectangle of object O O.di is the identifier of the document of object O. 18

19 A leaf node also contains a pointer to an inverted file for the textual contents of the object being indexed 1) vocabulary for all distinct terms in a collection of documents 2) A set of posting lists, each of which relates to a term t. Each posting list is a sequence of pairs <d, w d,t > d is the document contain term t w d,t is the weight of term t in document d. 19

20 A non-leaf node has the form (cp, rectangle, cp.di) cp is the address of a child node rectangle is the MBR of all rectangle in entries of the child node cp.di is the identifier of a pseudo document. The pseudo document represents all documents in the entries of the child node. The pseudo document enable us to estimate a bound of the text relevancy to a query of all the documents contain the subtree rooted at cp 20

21 N<- ChooseLeaf(MBR) Add MBR to node N, add document to the inverted file of N If N needs to be split then {O,P}<-N.split() If N is root node then initialize a new node M, Add O and P to node M, and update the inverted file of O, P, M Set M to the root node Else Ascending from N to the root, adjusting covering rectangles, updating the inverted file and propagating node splits as necessary; Else Update the covering rectangles and inverted files of the ancestor nodes of N 21

22 22

23 23

24 O1.doc O2.doc O3.doc O4.doc O5.doc O6.doc O7.doc O8.doc Chinese Spanish Restaur ant Food

25 Vocabulary Inv File4 Posting list Inv File5 Posting list Inv File6 Posting list Inv File7 Posting list Chinese <O1.doc, 5 > <O3.doc, 7 > <O5.doc, 4 > <O7.doc, 1> Spanish <O2.doc, 5 > <O8.doc, 3 > <O6.doc, 4> <O7.doc, 1 > Restaurant <O1.doc, 5 > <O2.doc, 5 > <O4.doc, 7>, <O5.doc, 4>, <O8.doc, 3> <O6.doc, 3 >, <O7.doc, 4 > food <O3.doc, 1>, <O4.doc, 1 > <O7.doc, 1 > Vocabulary Inv File 2 Posting list Inv File3 Posting list Inv File1 Posting list Chinese <R1.doc, 5 >, <R2.doc, 7 > <R3.doc, 4 >, <R4.doc, 1 > <R5.doc, 7 >, <R6.doc, 4 > Spanish <R1.doc, 5 >, <R2.doc, 3 > <R4.doc, 4 > <R5.doc, 5 >, <R6.doc, 4 > Restaurant <R1.doc, 5 >, <R2.doc, 7 > <R3.doc, 4 >, <R4.doc, 4 > <R5.doc, 7 >, <R6.doc, 4 > food <R2.doc, 1 > <R3.doc, 1> <R5.doc, 1 >, <R6.doc, 1 > 25

26 D is the spatial database, Object O is the pair (O.loc, O.doc) O.loc is the location description, O.doc is a document The value of a term in the document vector as follows tf(t,o.doc) is the number of occurrence t in the document O.doc, tf(t, Coll) is the count of term t in the document collection Coll of D. tf(t,o.doc)/ O.doc is the maximum likelihood estimate of term t in the document O.doc ft(t,coll)/ Coll is the maximum likelihood estimate of term t in the collection Coll. is the smoothing parameters 26

27 LkT query retrieves k objects in the database D locations are the closest to the location specified in query their textual descriptions are the most relevant to the keywords in query. The objects returned are ranked according to a ranking function f(d Ԑ, P(Q.keywords/O.doc)) D Ԑ is the Euclidian distance between Q and O P(Q:keywords/O.doc) is the probability of generating query Q:keywords from the language models of the documents Ranking function for query likelihood language model: 27

28 Derive a ranking function as a linear interpolation of normalized factors for ranking as a object O with regard to a query Q. α (0,1) is a parameter used to balance the location proximity and text relevancy Euclidian distance between Q and O is normalized by maxd maxp is used to normalized the probability score into the range from Spatial Keyword Search in Trajectory Database 28

29 Minimal spatial textual distance (MIND ST )offers a lower bound on the actual spatial-textual distance between query Q and objects enclosed in the rectangle of node N MIND Ԑ (Q.loc, N.rectangle) is the minimum Euclidian distance between Q.loc and N.rectangle 29

30 For retrieving the top-k objects, the best-first traversal algorithm is used. A priority queue is used to keep track of the nodes and objects that have yet to be visited. The values of D ST and MIND ST are used as the keys of objects and nodes, respectively. The algorithm picks the node N with smallest MIND ST (Q,N) value among the unvisited nodes, when deciding which node is to be visited next. The algorithm terminates when the k nearest objects (ranked according to D ST ) have been found. 30

31 C. Gao and J. Christian S. and W. Dingming, Efficient retrieval of the top-k most relevant spatial web objects. Proceedings of. Very Large Database Endowment, C. Gao and L. Hua and O. B. Chin and Z. Dongxiang and Z. Meihui, Efficient Spatial Keyword Search in Trajectory Databases, Published in Computing Research Repository,

32 Thank you Questions? 32

RASIM: a rank-aware separate index method for answering top-k spatial keyword queries

RASIM: a rank-aware separate index method for answering top-k spatial keyword queries World Wide Web (2013) 16:111 139 DOI 10.1007/s11280-012-0159-3 RASIM: a rank-aware separate index method for answering top-k spatial keyword queries Hyuk-Yoon Kwon Kyu-Young Whang Il-Yeol Song Haixun Wang

More information

Batch processing of Top-k Spatial-textual Queries

Batch processing of Top-k Spatial-textual Queries processing of Top-k Spatial-textual Queries Farhana M. Choudhury J. Shane Culpepper Timos Sellis School of CSIT, RMIT University, Melbourne, Australia {farhana.choudhury,shane.culpepper,timos.sellis}@rmit.edu.au

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

G-Index Model: A generic model of index schemes for top-k spatial-keyword queries

G-Index Model: A generic model of index schemes for top-k spatial-keyword queries World Wide Web (2015) 18:969 995 DOI 10.1007/s11280-014-0294-0 G-Index Model: A generic model of index schemes for top-k spatial-keyword queries Hyuk-Yoon Kwon Haixun Wang Kyu-Young Whang Received: 26

More information

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25 Multi-way Search Trees (Multi-way Search Trees) Data Structures and Programming Spring 2017 1 / 25 Multi-way Search Trees Each internal node of a multi-way search tree T: has at least two children contains

More information

Introduction to Indexing R-trees. Hong Kong University of Science and Technology

Introduction to Indexing R-trees. Hong Kong University of Science and Technology Introduction to Indexing R-trees Dimitris Papadias Hong Kong University of Science and Technology 1 Introduction to Indexing 1. Assume that you work in a government office, and you maintain the records

More information

arxiv: v1 [cs.db] 13 May 2012

arxiv: v1 [cs.db] 13 May 2012 Efficient Spatial Keyword Search in Trajectory Databases Gao Cong Hua Lu Beng Chin Ooi Dongxiang Zhang Meihui Zhang School of Computer Engineering, Nanyang Technological University Department of Computer

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

EE 368. Weeks 5 (Notes)

EE 368. Weeks 5 (Notes) EE 368 Weeks 5 (Notes) 1 Chapter 5: Trees Skip pages 273-281, Section 5.6 - If A is the root of a tree and B is the root of a subtree of that tree, then A is B s parent (or father or mother) and B is A

More information

Multidimensional Indexing The R Tree

Multidimensional Indexing The R Tree Multidimensional Indexing The R Tree Module 7, Lecture 1 Database Management Systems, R. Ramakrishnan 1 Single-Dimensional Indexes B+ trees are fundamentally single-dimensional indexes. When we create

More information

Physical Level of Databases: B+-Trees

Physical Level of Databases: B+-Trees Physical Level of Databases: B+-Trees Adnan YAZICI Computer Engineering Department METU (Fall 2005) 1 B + -Tree Index Files l Disadvantage of indexed-sequential files: performance degrades as file grows,

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department

ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department ICOM 6005 Database Management Systems Design Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department Tree-based Indexing Read Chapter 10. Idea: Tree-based Data structure is used to

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Storing data on disk The traditional storage hierarchy for DBMSs is: 1. main memory (primary storage) for data currently

More information

Batch processing of Top-k Spatial-textual Queries

Batch processing of Top-k Spatial-textual Queries Batch processing of Top-k Spatial-textual Queries FARHANA M. CHOUDHURY, School of Science, RMIT University, Australia J. SHANE CULPEPPER, School of Science, RMIT University, Australia ZHIFENG BAO, School

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

Indexing the Positions of Continuously Moving Objects

Indexing the Positions of Continuously Moving Objects Indexing the Positions of Continuously Moving Objects Simonas Šaltenis Christian S. Jensen Aalborg University, Denmark Scott T. Leutenegger Mario A. Lopez Denver University, USA SIGMOD 2000 presented by

More information

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009 CS 5633 -- Spring 2009 Orthogonal range searching Range Trees Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Input: n points in d dimensions

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Using Natural Clusters Information to Build Fuzzy Indexing Structure

Using Natural Clusters Information to Build Fuzzy Indexing Structure Using Natural Clusters Information to Build Fuzzy Indexing Structure H.Y. Yue, I. King and K.S. Leung Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin, New Territories,

More information

Trees. Eric McCreath

Trees. Eric McCreath Trees Eric McCreath 2 Overview In this lecture we will explore: general trees, binary trees, binary search trees, and AVL and B-Trees. 3 Trees Trees are recursive data structures. They are useful for:

More information

Spatial Queries. Nearest Neighbor Queries

Spatial Queries. Nearest Neighbor Queries Spatial Queries Nearest Neighbor Queries Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently point queries range queries k-nn

More information

Ranking Spatial Data by Quality Preferences

Ranking Spatial Data by Quality Preferences International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 7 (July 2014), PP.68-75 Ranking Spatial Data by Quality Preferences Satyanarayana

More information

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b simas@cs.aau.dk Range Searching in 2D Main goals of the lecture: to understand and to be able to analyze the kd-trees

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

R-Trees. Accessing Spatial Data

R-Trees. Accessing Spatial Data R-Trees Accessing Spatial Data In the beginning The B-Tree provided a foundation for R- Trees. But what s a B-Tree? A data structure for storing sorted data with amortized run times for insertion and deletion

More information

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Chap4: Spatial Storage and Indexing 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Learning Objectives Learning Objectives (LO) LO1: Understand concept of a physical data model

More information

CS 171: Introduction to Computer Science II. Binary Search Trees

CS 171: Introduction to Computer Science II. Binary Search Trees CS 171: Introduction to Computer Science II Binary Search Trees Binary Search Trees Symbol table applications BST definitions and terminologies Search and insert Traversal Ordered operations Delete Symbol

More information

CSIT5300: Advanced Database Systems

CSIT5300: Advanced Database Systems CSIT5300: Advanced Database Systems L08: B + -trees and Dynamic Hashing Dr. Kenneth LEUNG Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong SAR,

More information

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

Spatiotemporal Access to Moving Objects. Hao LIU, Xu GENG 17/04/2018

Spatiotemporal Access to Moving Objects. Hao LIU, Xu GENG 17/04/2018 Spatiotemporal Access to Moving Objects Hao LIU, Xu GENG 17/04/2018 Contents Overview & applications Spatiotemporal queries Movingobjects modeling Sampled locations Linear function of time Indexing structure

More information

Answering Why-Not Spatial Keyword Top-k Queries via Keyword Adaption

Answering Why-Not Spatial Keyword Top-k Queries via Keyword Adaption Answering Why-Not Spatial Keyword Top-k Queries via Keyword Adaption Lei Chen Jianliang Xu Xin Lin Christian S. Jensen Haibo Hu Department of Computer Science, Hong Kong Baptist University, Hong Kong,

More information

3 Competitive Dynamic BSTs (January 31 and February 2)

3 Competitive Dynamic BSTs (January 31 and February 2) 3 Competitive Dynamic BSTs (January 31 and February ) In their original paper on splay trees [3], Danny Sleator and Bob Tarjan conjectured that the cost of sequence of searches in a splay tree is within

More information

Range Searching and Windowing

Range Searching and Windowing CS 6463 -- Fall 2010 Range Searching and Windowing Carola Wenk 1 Orthogonal range searching Input: n points in d dimensions E.g., representing a database of n records each with d numeric fields Query:

More information

B-Trees and External Memory

B-Trees and External Memory Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 and External Memory 1 1 (2, 4) Trees: Generalization of BSTs Each internal node

More information

Binary Search Trees. Analysis of Algorithms

Binary Search Trees. Analysis of Algorithms Binary Search Trees Analysis of Algorithms Binary Search Trees A BST is a binary tree in symmetric order 31 Each node has a key and every node s key is: 19 23 25 35 38 40 larger than all keys in its left

More information

Algorithms for GIS:! Quadtrees

Algorithms for GIS:! Quadtrees Algorithms for GIS: Quadtrees Quadtree A data structure that corresponds to a hierarchical subdivision of the plane Start with a square (containing inside input data) Divide into 4 equal squares (quadrants)

More information

Computer Science Engineering Sample Papers

Computer Science Engineering Sample Papers See fro more Material www.computetech-dovari.blogspot.com Computer Science Engineering Sample Papers 1 The order of an internal node in a B+ tree index is the maximum number of children it can have. Suppose

More information

arxiv: v1 [cs.db] 29 Jul 2016

arxiv: v1 [cs.db] 29 Jul 2016 A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters arxiv:1607.08681v1 [cs.db] 29 Jul 2016 ABSTRACT Dingming Wu College of Computer Science & Software Engineering, Shenzhen University

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

B-Trees and External Memory

B-Trees and External Memory Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 B-Trees and External Memory 1 (2, 4) Trees: Generalization of BSTs Each internal

More information

Multi-way Search Trees

Multi-way Search Trees Multi-way Search Trees Kuan-Yu Chen ( 陳冠宇 ) 2018/10/24 @ TR-212, NTUST Review Red-Black Trees Splay Trees Huffman Trees 2 Multi-way Search Trees. Every node in a binary search tree contains one value and

More information

Balanced Search Trees

Balanced Search Trees Balanced Search Trees Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Review: Balanced Trees A tree is balanced if, for each node, the node s subtrees have the same height or have

More information

Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR

Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR Query Processing and Advanced Queries Advanced Queries (2): R-TreeR Review: PAM Given a point set and a rectangular query, find the points enclosed in the query We allow insertions/deletions online Query

More information

The B-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The B-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yufei Tao ITEE University of Queensland Before ascending into d-dimensional space R d with d > 1, this lecture will focus on one-dimensional space, i.e., d = 1. We will review the B-tree, which is a fundamental

More information

Spatial Data Management

Spatial Data Management Spatial Data Management [R&G] Chapter 28 CS432 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite imagery, where each pixel stores a measured value

More information

Binary Heaps in Dynamic Arrays

Binary Heaps in Dynamic Arrays Yufei Tao ITEE University of Queensland We have already learned that the binary heap serves as an efficient implementation of a priority queue. Our previous discussion was based on pointers (for getting

More information

A Survey on Efficient Location Tracker Using Keyword Search

A Survey on Efficient Location Tracker Using Keyword Search A Survey on Efficient Location Tracker Using Keyword Search Prasad Prabhakar Joshi, Anand Bone ME Student, Smt. Kashibai Navale Sinhgad Institute of Technology and Science Kusgaon (Budruk), Lonavala, Pune,

More information

Spatial Data Management

Spatial Data Management Spatial Data Management Chapter 28 Database management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite

More information

Problem. Indexing with B-trees. Indexing. Primary Key Indexing. B-trees: Example. B-trees. primary key indexing

Problem. Indexing with B-trees. Indexing. Primary Key Indexing. B-trees: Example. B-trees. primary key indexing 15-82 Advanced Topics in Database Systems Performance Problem Given a large collection of records, Indexing with B-trees find similar/interesting things, i.e., allow fast, approximate queries 2 Indexing

More information

A Efficient Processing of Spatial Group Keyword Queries

A Efficient Processing of Spatial Group Keyword Queries A Efficient Processing of Spatial Group Keyword Queries Xin Cao, Queen s University Belfast, United Kingdom Gao Cong, Nanyang Technological University, Singapore Tao Guo, Nanyang Technological University,

More information

Motivation for B-Trees

Motivation for B-Trees 1 Motivation for Assume that we use an AVL tree to store about 20 million records We end up with a very deep binary tree with lots of different disk accesses; log2 20,000,000 is about 24, so this takes

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

More information

Dictionaries. Priority Queues

Dictionaries. Priority Queues Red-Black-Trees.1 Dictionaries Sets and Multisets; Opers: (Ins., Del., Mem.) Sequential sorted or unsorted lists. Linked sorted or unsorted lists. Tries and Hash Tables. Binary Search Trees. Priority Queues

More information

Priority Queues and Binary Heaps

Priority Queues and Binary Heaps Yufei Tao ITEE University of Queensland In this lecture, we will learn our first tree data structure called the binary heap which serves as an implementation of the priority queue. Priority Queue A priority

More information

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text)

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text) Lec 17 April 8 Topics: binary Trees expression trees Binary Search Trees (Chapter 5 of text) Trees Linear access time of linked lists is prohibitive Heap can t support search in O(log N) time. (takes O(N)

More information

CSE 5095 Topics in Big Data Analytics Spring 2014; Homework 1 Solutions

CSE 5095 Topics in Big Data Analytics Spring 2014; Homework 1 Solutions CSE 5095 Topics in Big Data Analytics Spring 2014; Homework 1 Solutions Note: Solutions to problems 4, 5, and 6 are due to Marius Nicolae. 1. Consider the following algorithm: for i := 1 to α n log e n

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

Priority Queues. T. M. Murali. January 29, 2009

Priority Queues. T. M. Murali. January 29, 2009 Priority Queues T. M. Murali January 29, 2009 Motivation: Sort a List of Numbers Sort INSTANCE: Nonempty list x 1, x 2,..., x n of integers. SOLUTION: A permutation y 1, y 2,..., y n of x 1, x 2,..., x

More information

Introduction to Indexing 2. Acknowledgements: Eamonn Keogh and Chotirat Ann Ratanamahatana

Introduction to Indexing 2. Acknowledgements: Eamonn Keogh and Chotirat Ann Ratanamahatana Introduction to Indexing 2 Acknowledgements: Eamonn Keogh and Chotirat Ann Ratanamahatana Indexed Sequential Access Method We have seen that too small or too large an index (in other words too few or too

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

(2,4) Trees Goodrich, Tamassia. (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia. (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 (2,4) Trees 1 Multi-Way Search Tree ( 9.4.1) A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d 1 key-element items

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Clustering Billions of Images with Large Scale Nearest Neighbor Search Clustering Billions of Images with Large Scale Nearest Neighbor Search Ting Liu, Charles Rosenberg, Henry A. Rowley IEEE Workshop on Applications of Computer Vision February 2007 Presented by Dafna Bitton

More information

Recall: Properties of B-Trees

Recall: Properties of B-Trees CSE 326 Lecture 10: B-Trees and Heaps It s lunch time what s cookin? B-Trees Insert/Delete Examples and Run Time Analysis Summary of Search Trees Introduction to Heaps and Priority Queues Covered in Chapters

More information

Orthogonal Range Search and its Relatives

Orthogonal Range Search and its Relatives Orthogonal Range Search and its Relatives Coordinate-wise dominance and minima Definition: dominates Say that point (x,y) dominates (x', y') if x

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 6 - Storage and Indexing

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 6 - Storage and Indexing CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 6 - Storage and Indexing References Generalized Search Trees for Database Systems. J. M. Hellerstein, J. F. Naughton

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES CONFERENCES Short Name SIGMOD Full Name Special Interest Group on Management Of Data CONTINUOUS NEAREST NEIGHBOR SEARCH Yufei Tao, Dimitris Papadias, Qiongmao Shen Hong Kong University of Science and Technology

More information

Notes on Project 1. version September 01, 2014

Notes on Project 1. version September 01, 2014 Notes on Project 1 version 1.44 September 01, 2014 1 Definitions Your program will keep a collection of rectangles which we refer to by C and a rectangle-quadtree which we refer to by T. The collection

More information

Chapter 12: Indexing and Hashing. Basic Concepts

Chapter 12: Indexing and Hashing. Basic Concepts Chapter 12: Indexing and Hashing! Basic Concepts! Ordered Indices! B+-Tree Index Files! B-Tree Index Files! Static Hashing! Dynamic Hashing! Comparison of Ordered Indexing and Hashing! Index Definition

More information

Data Structure and Algorithm Homework #3 Due: 2:20pm, Tuesday, April 9, 2013 TA === Homework submission instructions ===

Data Structure and Algorithm Homework #3 Due: 2:20pm, Tuesday, April 9, 2013 TA   === Homework submission instructions === Data Structure and Algorithm Homework #3 Due: 2:20pm, Tuesday, April 9, 2013 TA email: dsa1@csientuedutw === Homework submission instructions === For Problem 1, submit your source code, a Makefile to compile

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 10: Search and Heaps MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Search and Heaps 2 Linear Search Binary Search Introduction to trees Priority Queues Heaps Linear Search

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

Spatial Keyword Search. Presented by KWOK Chung Hin, WONG Kam Kwai

Spatial Keyword Search. Presented by KWOK Chung Hin, WONG Kam Kwai Spatial Keyword Search Presented by KWOK Chung Hin, WONG Kam Kwai Outline Background/ Motivations Spatial Keyword Search Applications Two types of spatial keyword query Individual Object Object Sets Background

More information

Efficient Adjacent Neighbor Expansion Search Keyword

Efficient Adjacent Neighbor Expansion Search Keyword International Journal for Modern Trends in Science and Technology Volume: 03, Special Issue No: 01, February 2017 ISSN: 2455-3778 http://www.ijmtst.com Efficient Adjacent Neighbor Expansion Search Keyword

More information

Spring 2017 B-TREES (LOOSELY BASED ON THE COW BOOK: CH. 10) 1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 1

Spring 2017 B-TREES (LOOSELY BASED ON THE COW BOOK: CH. 10) 1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 1 Spring 2017 B-TREES (LOOSELY BASED ON THE COW BOOK: CH. 10) 1/29/17 CS 564: Database Management Systems, Jignesh M. Patel 1 Consider the following table: Motivation CREATE TABLE Tweets ( uniquemsgid INTEGER,

More information

Chapter 12: Indexing and Hashing

Chapter 12: Indexing and Hashing Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree Index Files Static Hashing Dynamic Hashing Comparison of Ordered Indexing and Hashing Index Definition in SQL

More information

CS350: Data Structures B-Trees

CS350: Data Structures B-Trees B-Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Introduction All of the data structures that we ve looked at thus far have been memory-based

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

Data Organization B trees

Data Organization B trees Data Organization B trees Data organization and retrieval File organization can improve data retrieval time SELECT * FROM depositors WHERE bname= Downtown 100 blocks 200 recs/block Query returns 150 records

More information

Cpt S 122 Data Structures. Data Structures Trees

Cpt S 122 Data Structures. Data Structures Trees Cpt S 122 Data Structures Data Structures Trees Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Motivation Trees are one of the most important and extensively

More information

CS127: B-Trees. B-Trees

CS127: B-Trees. B-Trees CS127: B-Trees B-Trees 1 Data Layout on Disk Track: one ring Sector: one pie-shaped piece. Block: intersection of a track and a sector. Disk Based Dictionary Structures Use a disk-based method when the

More information

Trees. A tree is a directed graph with the property

Trees. A tree is a directed graph with the property 2: Trees Trees A tree is a directed graph with the property There is one node (the root) from which all other nodes can be reached by exactly one path. Seen lots of examples. Parse Trees Decision Trees

More information

ST-HBase: A Scalable Data Management System for Massive Geo-tagged Objects

ST-HBase: A Scalable Data Management System for Massive Geo-tagged Objects ST-HBase: A Scalable Data Management System for Massive Geo-tagged Objects Youzhong Ma, Yu Zhang, and Xiaofeng Meng School of Information, Renmin University of China, Beijing, China {mayouzhong,zhangyu199,xfmeng}@ruc.edu.cn

More information

Datenbanksysteme II: Multidimensional Index Structures 2. Ulf Leser

Datenbanksysteme II: Multidimensional Index Structures 2. Ulf Leser Datenbanksysteme II: Multidimensional Index Structures 2 Ulf Leser Content of this Lecture Introduction Partitioned Hashing Grid Files kdb Trees kd Tree kdb Tree R Trees Example: Nearest neighbor image

More information

Brute Force: Selection Sort

Brute Force: Selection Sort Brute Force: Intro Brute force means straightforward approach Usually based directly on problem s specs Force refers to computational power Usually not as efficient as elegant solutions Advantages: Applicable

More information

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Indexing Week 14, Spring 2005 Edited by M. Naci Akkøk, 5.3.2004, 3.3.2005 Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Overview Conventional indexes B-trees Hashing schemes

More information

Text Analytics. Index-Structures for Information Retrieval. Ulf Leser

Text Analytics. Index-Structures for Information Retrieval. Ulf Leser Text Analytics Index-Structures for Information Retrieval Ulf Leser Content of this Lecture Inverted files Storage structures Phrase and proximity search Building and updating the index Using a RDBMS Ulf

More information

Balanced Binary Search Trees. Victor Gao

Balanced Binary Search Trees. Victor Gao Balanced Binary Search Trees Victor Gao OUTLINE Binary Heap Revisited BST Revisited Balanced Binary Search Trees Rotation Treap Splay Tree BINARY HEAP: REVIEW A binary heap is a complete binary tree such

More information

CSCI2100B Data Structures Heaps

CSCI2100B Data Structures Heaps CSCI2100B Data Structures Heaps Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction In some applications,

More information

Principles of Data Management. Lecture #14 (Spatial Data Management)

Principles of Data Management. Lecture #14 (Spatial Data Management) Principles of Data Management Lecture #14 (Spatial Data Management) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Notable News v Project

More information

CARNEGIE MELLON UNIVERSITY DEPT. OF COMPUTER SCIENCE DATABASE APPLICATIONS

CARNEGIE MELLON UNIVERSITY DEPT. OF COMPUTER SCIENCE DATABASE APPLICATIONS CARNEGIE MELLON UNIVERSITY DEPT. OF COMPUTER SCIENCE 15-415 DATABASE APPLICATIONS C. Faloutsos Indexing and Hashing 15-415 Database Applications http://www.cs.cmu.edu/~christos/courses/dbms.s00/ general

More information

CS301 - Data Structures Glossary By

CS301 - Data Structures Glossary By CS301 - Data Structures Glossary By Abstract Data Type : A set of data values and associated operations that are precisely specified independent of any particular implementation. Also known as ADT Algorithm

More information

What we have covered?

What we have covered? What we have covered? Indexing and Hashing Data warehouse and OLAP Data Mining Information Retrieval and Web Mining XML and XQuery Spatial Databases Transaction Management 1 Lecture 6: Spatial Data Management

More information

M-ary Search Tree. B-Trees. B-Trees. Solution: B-Trees. B-Tree: Example. B-Tree Properties. Maximum branching factor of M Complete tree has height =

M-ary Search Tree. B-Trees. B-Trees. Solution: B-Trees. B-Tree: Example. B-Tree Properties. Maximum branching factor of M Complete tree has height = M-ary Search Tree B-Trees Section 4.7 in Weiss Maximum branching factor of M Complete tree has height = # disk accesses for find: Runtime of find: 2 Solution: B-Trees specialized M-ary search trees Each

More information