Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs

Size: px
Start display at page:

Download "Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs"

Transcription

1 irected graphs igraph. Set of vertices connected pairwise by oriented edges. irected raphs digraph AP digraph search transitive closure topological sort strong components References: Algorithms in Java, Chapter oogle - Map data Sanborn, NAVTQ - Terms of Use Algorithms in Java, th dition Robert Sedgewick and Kevin Wayne Copyright November, :: AM Web graph WordNet graph Vertex = web page. Vertex = synset. dge = hyperlink. dge = hypernym relationship.

2 igraph applications Some digraph problems graph vertex edge transportation street intersection one-way street web web page hyperlink WordNet synset hypernym scheduling task precedence constraint financial stock, currency transaction food web species predator-prey relationship cell phone person placed call infectious disease person infection game board position legal move citation journal article citation object graph object pointer Path. s there a directed path from s to t? Shortest path. What is the shortest directed path from s and t? Strong connectivity. Are all vertices mutually reachable? Transitive closure. or which vertices v and w is there a path from v to w? Topological sort. Can you draw the digraph so that all edges point from left to right? PRT/CPM. iven a set of tasks with precedence constraints, how can we best complete them all? PageRank. What is the importance of a web page? inheritance hierarchy class inherits from control flow code block jump igraph representations Vertices. This lecture: use integers between and V-. Real world: convert between names and integers with symbol table. digraph AP digraph search transitive closure topological sort strong components dges: four options. [same as undirected graph, but orientation matters] List of vertex pairs. Adjacency matrix. Adjacency lists. Adjacency sets.

3 igraph AP Set of edges representation public class igraph igraph(int V) igraph(n in) graph data type create an empty digraph with V vertices create a digraph from input stream Store a list of the edges (linked list or array). void adddge(int v, int w) add an edge from v to w terable<nteger> adj(int v) return an iterator over the neighbors of v int V() return number of vertices String tostring() return a string representation n in = new n(); raph = new igraph(in); StdOut.println(); for (int v = ; v <.V(); v++) for (int w :.adj(v)) /* process edge v w */ Adjacency-matrix representation Adjacency-list representation Maintain a two-dimensional V-by-V boolean array; for each edge v w in the digraph: adj[v][w] = true. Maintain vertex-indexed array of lists. from to : : : : : : same as undirected graph, but one entry for each edge : : : : : : :

4 Adjacency-set representation Adjacency-set representation: Java implementation Maintain vertex-indexed array of sets. Same as raph, but only insert one copy of each edge. : public class igraph private final int V; private final ST<nteger>[] adj; adjacency sets : : : : : : : :, same as undirected graph, but one entry for each edge public igraph(int V) this.v = V; adj = (ST<nteger>[]) new ST[V]; for (int v = ; v < V; v++) adj[v] = new ST<nteger>(); public void adddge(int v, int w) adj[v].add(w); create empty graph with V vertices add edge from v to w (no parallel edges) : : : :,, public terable<nteger> adj(int v) return adj[v]; iterator for v's neighbors igraph representations Typical digraph application: oogle's PageRank algorithm n practice. use adjacency-set (or adjacency-list) representation. Real-world digraphs tend to be sparse. Algorithms all based on iterating over edges incident to v. representation space edge between v and w? iterate over edges incident to v? list of edges adjacency matrix V V adjacency list + V degree(v) degree(v) adjacency set + V log (degree(v)) degree(v) oal. etermine which pages on web are important. Solution. gnore keywords and content, focus on hyperlink structure. Random surfer model. Start at random page. With probability., randomly select a hyperlink to visit next; with probability., randomly select any page. PageRank = proportion of time random surfer spends on each page. Solution. Simulate random surfer for a long time. Solution. Compute ranks directly until they converge. Solution. Compute eigenvalues of adjacency matrix! None feasible without sparse digraph representation.

5 Reachability Problem. ind all vertices reachable from s along a directed path. s digraph AP digraph search transitive closure topological sort strong components epth-first search in digraphs epth-first search (single-source reachability) Same method as for undirected graphs. dentical to undirected version (substitute igraph for raph). very undirected graph is a digraph. appens to have edges in both directions. S is a digraph algorithm. S (to visit a vertex v) Mark v as visited. Recursively visit all unmarked vertices w adjacent to v. public class Searcher private boolean[] marked; public Searcher(igraph, int s) marked = new boolean[.v()]; dfs(, s); private void dfs(igraph, int v) marked[v] = true; for (int w :.adj(v)) if (!marked[w]) dfs(, w); true if connected to s constructor marks vertices connected to s recursive S does the work public boolean isreachable(int v) return marked[v]; client can ask whether any vertex is reachable from s

6 Reachability application: program control-flow analysis Reachability application: mark-sweep garbage collector very program is a digraph. Vertex = basic block of instructions (straight-line program). dge = jump. ead code elimination. ind (and remove) unreachable code. nfinite loop detection. etermine whether exit is unreachable. very data structure is a digraph. Vertex = object. dge = reference. Roots. Objects known to be directly accessible by program (e.g., stack). Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers). Reachability application: mark-sweep garbage collector epth-first search (S) Mark-sweep algorithm. [McCarthy, ] Mark: mark all reachable objects. Sweep: if object is unmarked, it is garbage, so add to free list. Memory cost. Uses extra mark bit per object, plus S stack. S enables direct solution of simple digraph problems. Reachability. Cycle detection. Topological sort. Transitive closure. s there a path from s to t? Basis for solving difficult digraph problems. irected uler path. Strong connected components.

7 Breadth-first search in digraphs igraph BS application: web crawler very undirected graph is a digraph. appens to have edges in both directions. BS is a digraph algorithm. BS (from source vertex s) Put s onto a O queue. Repeat until the queue is empty: remove the least recently added vertex v add each of v's unvisited neighbors to the queue and mark them as visited. oal. Crawl web, starting from some root web page, say Solution. BS with implicit graph. BS. Start at some root web page. Maintain a Queue of websites to explore. Maintain a ST of discovered websites. equeue the next website and enqueue websites to which it links (provided you haven't done so before). Property. Visits vertices in increasing distance from s. Q. Why not use S? Web crawler: BS-based Java implementation Queue<String> q = new Queue<String>(); ST<String> visited = new ST<String>(); queue of websites to crawl set of visited websites String s = " q.enqueue(s); visited.add(s); start crawling from website s while (!q.ismpty()) String v = q.dequeue(); StdOut.println(v); n in = new n(v); String input = in.readall(); String regexp = " Pattern pattern = Pattern.compile(regexp); Matcher matcher = pattern.matcher(input); while (matcher.find()) String w = matcher.group(); if (!visited.contains(w)) visited.add(w); q.enqueue(w); read in raw html for next website in queue use regular expression to find all URLs in website of form if unvisited, mark as visited and put on queue digraph AP digraph search transitive closure topological sort strong components

8 raph-processing challenge (revisited) igraph-processing challenge Problem. s there an undirected path between v and w? Problem. s there a directed path from v to w? oals. Linear preprocessing time, constant query time. oals. Linear preprocessing time, constant query time. ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible. can't do better than V (reduction from boolean matrix multiplication) Transitive closure igraph-processing challenge (revised) ef. The transitive closure of a digraph is another digraph with a directed edge from v to w if there is a directed path from v to w in. Problem. s there a directed path from v to w? oals. ~ V preprocessing time, constant query time. digraph transitive closure TC() digraph is usually sparse TC() is usually dense ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible. open research problem

9 igraph-processing challenge (revised again) Transitive closure: Java implementation Problem. s there a directed path from v to w? oals. ~ V preprocessing time, ~ V space, constant query time. Use an array of Searcher objects, one for each row of transitive closure. ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible. Use S once for each vertex to compute rows of transitive closure public class TransitiveClosure private Searcher[] tc; public TransitiveClosure(igraph ) tc = new Searcher[.V()]; for (int v = ; v <.V(); v++) tc[v] = new Searcher(, v); public boolean reachable(int v, int w) return tc[v].isreachable(w); array of Searcher objects initialize array is there a directed path from v to w? igraph application: scheduling Scheduling. iven a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks? raph model. Create a vertex v for each task. Create an edge v w if task v must precede task w. tasks digraph AP digraph search transitive closure topological sort strong components precedence constraint graph. read programming assignment. download files. write code. attend precept. sleep feasible schedule

10 Topological sort igraph-processing challenge A. irected acyclic graph. Problem. Check that a digraph is a A; if so, find a topological order. oal. Linear time. Topological sort. Redraw A so all edges point left to right. act. igraph is a A iff no directed cycle. ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible. use S Topological sort in a A: Java implementation Topological sort in a A: trace public class TopologicalSorter private boolean[] marked; private Stack<nteger> sorted; public TopologicalSorter(igraph ) marked = new boolean[.v()]; sorted = new Stack<nteger>(); for (int v = ; v <.V(); v++) if (!marked[v]) tsort(, v); private void tsort(igraph, int v) marked[v] = true; for (int w :.adj(v)) if (!marked[w]) tsort(, w); sorted.push(v); public terable<nteger> order() return sorted; vertices in topological order reverse S postorder Visit means call tsort() and leave means return from tsort(). marked[] sorted visit : - visit : - visit : - leave : leave : visit : leave : visit : check : leave : leave : check : check : visit : check : check : check : visit : leave : leave : check : check : check :

11 Topological sort in a A: correctness proof igraph-processing challenge Proposition. f digraph is a A, algorithm yields a topological order. Pf. Algorithm terminates in O( + V) time since it's just a version of S. Consider any edge v w. When tsort(, v) is called, - Case : tsort(, w) has already returned. Thus, w will appear after v in topological order. - Case : tsort(, w) has not yet been called, so it will get called directly or indirectly by tsort(, v) and it will finish before tsort(, v). Thus, w will appear after v in topological order. - Case : tsort(, w) has already been called, but not returned. Then the function call stack contains a directed path from w to v. Combining this path with the edge v w yields a directed cycle, contradicting A. Problem. iven a digraph, is there a directed cycle? oal. Linear time. ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible. run S-based topological sort algorithm; if it yields a topological sort, no directed cycle (can modify code to find cycle) Cyclic inheritance Spreadsheet recalculation The Java compiler does cycle detection. Microsoft xcel does cycle checking (and has a circular reference toolbar!) public class A extends B... % javac A.java A.java:: cyclic inheritance involving A public class A extends B ^ error public class B extends C... public class C extends A...

12 Symbolic links Topological sort and cycle detection applications The Linux file system does not do cycle detection. % ln -s a.txt b.txt % ln -s b.txt c.txt % ln -s c.txt a.txt % more a.txt a.txt: Too many levels of symbolic links Causalities. mail loops. Compilation units. Class inheritance. Course prerequisites. eadlocking detection. Temporal dependencies. Pipeline of computing jobs. Check for symbolic link loop. valuate formula in spreadsheet.. Topological sort application (weighted A) Precedence scheduling. Task v takes time[v] units of time. Can work on jobs in parallel. Precedence constraints: must finish task v before beginning task w. oal: finish each task as soon as possible. x. A B C index task time prereqs A begin - B framing A C roofing B siding B windows plumbing electricity C, paint C, finish, PRT/CPM algorithm. nitialize fin[v] = for all vertices v. A B C

13 PRT/CPM algorithm. nitialize fin[v] = for all vertices v. PRT/CPM algorithm. nitialize fin[v] = for all vertices v. A B C A B C PRT/CPM algorithm. nitialize fin[v] = for all vertices v. PRT/CPM algorithm. nitialize fin[v] = for all vertices v. A B C A B C

14 PRT/CPM algorithm. nitialize fin[v] = for all vertices v. PRT/CPM algorithm. nitialize fin[v] = for all vertices v. A B C A B C PRT/CPM algorithm. nitialize fin[v] = for all vertices v. PRT/CPM algorithm. nitialize fin[v] = for all vertices v. A B C A B C

15 PRT/CPM: Java implementation Critical path. Longest path from source to sink. To compute: Remember vertex that set value (parent-link). Work backwards from sink. A B C index time prereqs finish A - B A C B B C, C,, Assume is digraph of precedence constraints. double[] fin = new double[.v()]; for (int v = ; v <.V(); v++) fin[v] = time[v]; TopologicalSorter ts = new TopologicalSorter(); for (int v : ts.order()) for (int w :.adj(v)) fin[w] = Math.max(fin[w], fin[v] + time[w]); initialize finish times apply updates to vertices in topological order igraph-processing challenge ef. Vertices v and w are strongly connected if there is a directed path from v to w and from w to v. Problem. Are v and w strongly connected? oal. Linear preprocessing time, constant query time. digraph AP digraph search transitive closure topological sort strong components ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert. ntractable. No one knows. mpossible.

16 igraph-processing challenge cological food web graph ef. Vertices v and w are strongly connected if there is a directed path from v to w and from w to v. Vertex = species. dge: from producer to consumer. Problem. Are v and w strongly connected? oal. Linear preprocessing time, constant query time. ow difficult? Any COS student could do it. Need to be a typical diligent COS student. ire an expert (or a COS student). ntractable. No one knows. correctness proof mpossible. implementation: use S twice (see textbook) strongly connected components Strong component. Subset of species with common energy flow. Software module dependency graph Strong components algorithms: brief history Vertex = software module. dge: from module to dependency. irefox nternet explorer s: Core OR problem. Widely studied; some practical algorithms. Complexity not understood. : linear-time S algorithm (Tarjan). Classic algorithm. level of difficulty: CS++. demonstrated broad applicability and importance of S. s: easy two-pass linear-time algorithm (Kosaraju). orgot notes for teaching algorithms class; developed alg in order to teach it! Later found in Russian scientific literature (). Strong component. Subset of mutually interacting modules. Approach. Package strong components together. Approach. Use to improve design! s: more easy linear-time algorithms (abow, Mehlhorn). abow: fixed old OR algorithm. Mehlhorn: needed one-pass algorithm for LA.

17 Kosaraju's algorithm igraph-processing summary: algorithms of the day Simple (but mysterious) algorithm for computing strong components Run S on R and compute postorder. Run S on, considering vertices in reverse postorder. single-source reachability S transitive closure S (from each vertex) R topological sort (A) S Proposition. Trees in second S are strong components. (!) Pf. [see COS ] strong components Kosaraju S (twice)

! Vertex = species. ! Edge = from prey to predator.

! Vertex = species. ! Edge = from prey to predator. irected Graphs irected Graphs igraph. Set of objects with oriented pairwise connections. x. One-way street, hyperlink. Reference: Chapter 19, Algorithms in Java, 3 rd dition, Robert Sedgewick. Robert Sedgewick

More information

Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs

Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs Directed graphs Digraph. Set of vertices connected pairwise by oriented edges. Directed Graphs digraph API digraph search transitive closure topological sort strong components References: Algorithms in

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II DIRECTED GRAPHS Graphs slides are modified from COS 126 slides of Dr. Robert Sedgewick. 1 Directed graphs Digraph Set of vertices connected pairwise by directed

More information

4.2 Directed Graphs. digraph API digraph search topological sort strong components

4.2 Directed Graphs. digraph API digraph search topological sort strong components 4.2 Directed Graphs digraph API digraph search topological sort strong components Algorithms, 4 th Edition Robert Sedgewick and Kevin Wayne Copyright 2002 2010 November 8, 2010 8:43:22 PM Directed graphs

More information

DIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING

DIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University. BBM DAA SRUCURES DEP. O COMPUER ENGINEERING DIRECED GRAPHS Directed Graphs Digraph

More information

4.2 Directed Graphs. vertex of outdegree 3 and indegree 1 digraph API digraph search topological sort strong components. directed path from 0 to 2

4.2 Directed Graphs. vertex of outdegree 3 and indegree 1 digraph API digraph search topological sort strong components. directed path from 0 to 2 Directed graphs. Directed Graphs Digraph. Set of vertices connected pairwise by directed edges. vertex of outdegree and indegree 1 digraph API digraph search topological sort strong components directed

More information

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N digraph API digraph search topological sort strong components R O B E R T S E D G E W I C K K E V I N W A Y N E Algorithms, 4 th Edition Robert

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE http://algs4.cs.princeton.edu introduction digraph API depth-first search breadth-first

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE https://algs4.cs.princeton.edu introduction digraph API depth-first search

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N digraph API digraph search topological sort strong components R O B E R T S E D G E W I C K K E V I N W A Y N E Algorithms, 4 Robert Sedgewick and

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction. digraph API digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction. digraph API digraph search topological sort Algorithms ROBERT SEDGEWICK KEVIN WAYNE. DIRECTED GRAPHS. DIRECTED GRAPHS introduction introduction Algorithms F O U R T H E D I T I O N digraph API digraph search topological sort Algorithms digraph API

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort Algorithms ROBERT SEDGEWICK KEVIN WAYNE. DIRECTED GRAPHS. DIRECTED GRAPHS introduction introduction digraph API digraph API Algorithms F O U R T H E D I T I O N digraph search topological sort Algorithms

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction. digraph API digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction. digraph API digraph search topological sort Algorithms ROBRT SDGWICK KVIN WAYN. DIRCTD GRAPHS. DIRCTD GRAPHS introduction introduction Algorithms F O U R T H D I T I O N digraph API digraph search topological sort Algorithms digraph API digraph

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort Algorithms ROBERT SEDGEWICK KEVIN WAYNE. DIRECTED GRAPHS. DIRECTED GRAPHS introduction introduction digraph API digraph API Algorithms F O U R T H E D I T I O N digraph search topological sort Algorithms

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

DIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, 2013

DIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, 2013 BBM - ALGORIHMS DEP. O COMPUER ENGINEERING ERKU ERDEM DIRECED GRAPHS Apr., Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. Directed

More information

3. GRAPHS. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :19 AM

3. GRAPHS. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :19 AM 3. GRAPHS basic definitions and applications graph connectivity and graph traversal testing bipartiteness connectivity in directed graphs DAGs and topological ordering Lecture slides by Kevin Wayne Copyright

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

! Interesting and broadly useful abstraction. ! Challenging branch of computer science and discrete math. ! Hundreds of graph algorithms known.

! Interesting and broadly useful abstraction. ! Challenging branch of computer science and discrete math. ! Hundreds of graph algorithms known. Undirected Graphs Undirected Graphs Graph. Set of objects with pairwise connections. Why study graph algorithms?! Interesting and broadly useful abstraction.! Challenging branch of computer science and

More information

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Some Graph Applications

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Some Graph Applications Chapter 3 31 Basic Definitions and Applications Graphs Slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley All rights reserved 1 Undirected Graphs Some Graph Applications Undirected graph G = (V,

More information

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms Chapter 3 CSE 417: Algorithms and Computational Complexity Graphs Reading: 3.1-3.6 Winter 2012 Graphs and Graph Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

More information

Undirected Graphs. introduction Graph API maze exploration depth-first search breadth-first search connected components challenges.

Undirected Graphs. introduction Graph API maze exploration depth-first search breadth-first search connected components challenges. Undirected Graphs Graph. Set of vertices connected pairwise by edges. Undirected Graphs Why study graph algorithms? Interesting and broadly useful abstraction. Challenging branch of computer science and

More information

Chapter 3. Graphs. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V = nodes. E

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Chapter 3 Graphs Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V = nodes. E

More information

UNDIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING BBM - ALGORIHMS DEP. O COMPUER ENGINEERING UNDIRECED GRAPHS Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. Undirected Graphs

More information

Undirected Graphs. graph API maze exploration depth-first search breadth-first search connected components challenges.

Undirected Graphs. graph API maze exploration depth-first search breadth-first search connected components challenges. Undirected graphs Graph. Set of vertices connected pairwise by edges. Undirected Graphs References: Algorithms in Java, Chapters and Why study graph algorithms? Interesting and broadly useful abstraction.

More information

Basic Graph Search. Algorithms and Data Structures, Fall Rasmus Pagh. Based on slides by Kevin Wayne, Princeton

Basic Graph Search. Algorithms and Data Structures, Fall Rasmus Pagh. Based on slides by Kevin Wayne, Princeton Algorithms and Data Structures, Fall Basic Graph Search Rasmus Pagh Based on slides by Kevin Wayne, Princeton Algorithms, th Edition Robert Sedgewick and Kevin Wayne Copyright Mid-term evaluation Thanks

More information

GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms?

GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms? GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms? Interesting and broadly useful abstraction. Challenging branch of computer science and discrete math. Hundreds

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Exploring graphs Adam Smith 9/5/2008 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Puzzles Suppose an undirected graph G is connected.

More information

Graph Algorithms. Chapter 22. CPTR 430 Algorithms Graph Algorithms 1

Graph Algorithms. Chapter 22. CPTR 430 Algorithms Graph Algorithms 1 Graph Algorithms Chapter 22 CPTR 430 Algorithms Graph Algorithms Why Study Graph Algorithms? Mathematical graphs seem to be relatively specialized and abstract Why spend so much time and effort on algorithms

More information

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING. Mar. 31, Directed graphs. Road network

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING. Mar. 31, Directed graphs. Road network BBM - ALGORIHMS ODAY DEP. O COMPUER ENGINEERING Directed Graphs Digraph API Digraph search opological sort Strong components DIRECED GRAPHS Mar., Acknowledgement: he course slides are adapted from the

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Linear Time: O(n) CS 580: Algorithm Design and Analysis 2.4 A Survey of Common Running Times Merge. Combine two sorted lists A = a 1,a 2,,a n with B = b 1,b 2,,b n into sorted whole. Jeremiah Blocki Purdue

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 31 Advanced Data Structures and Algorithms Graphs July 18, 17 Tong Wang UMass Boston CS 31 July 18, 17 1 / 4 Graph Definitions Graph a mathematical construction that describes objects and relations

More information

Graphs. A graph is a data structure consisting of nodes (or vertices) and edges. An edge is a connection between two nodes

Graphs. A graph is a data structure consisting of nodes (or vertices) and edges. An edge is a connection between two nodes Graphs Graphs A graph is a data structure consisting of nodes (or vertices) and edges An edge is a connection between two nodes A D B E C Nodes: A, B, C, D, E Edges: (A, B), (A, D), (D, E), (E, C) Nodes

More information

UNDIRECTED GRAPHS TODAY BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING. Undirected graphs. Graph applications

UNDIRECTED GRAPHS TODAY BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING. Undirected graphs. Graph applications BBM - ALGORIHMS ODAY DEP. O COMPUER ENGINEERING UNDIRECED GRAPHS Undirected Graphs Graph API Depth-first search Challenges Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick

More information

4.4 Shortest Paths. Dijkstra's algorithm implementation acyclic networks negative weights. Reference: Algorithms in Java, 4 th edition, Section 4.

4.4 Shortest Paths. Dijkstra's algorithm implementation acyclic networks negative weights. Reference: Algorithms in Java, 4 th edition, Section 4. 4.4 Shortest Paths Dijkstra's algorithm implementation acyclic networks negative weights Reference: Algorithms in Java, 4 th edition, Section 4.4 Algorithms in Java, 4 th Edition Robert Sedgewick and Kevin

More information

CS781 Lecture 2 January 13, Graph Traversals, Search, and Ordering

CS781 Lecture 2 January 13, Graph Traversals, Search, and Ordering CS781 Lecture 2 January 13, 2010 Graph Traversals, Search, and Ordering Review of Lecture 1 Notions of Algorithm Scalability Worst-Case and Average-Case Analysis Asymptotic Growth Rates: Big-Oh Prototypical

More information

Algorithms. Algorithms 4.4 SHORTEST PATHS. APIs properties Bellman Ford algorithm Dijkstra s algorithm ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.4 SHORTEST PATHS. APIs properties Bellman Ford algorithm Dijkstra s algorithm ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.4 SHORTEST PATHS Algorithms F O U R T H E D I T I O N APIs properties Bellman Ford algorithm Dijkstra s algorithm ROBERT SEDGEWICK KEVIN WAYNE https://algs4.cs.princeton.edu

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs CLRS 12-13 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 25 3.4 Testing Bipartiteness Bipartite Graphs Def. An undirected graph G = (V, E) is bipartite

More information

UNDIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. BBM DAA SRUCURES DEP. O COMPUER ENGINEERING UNDIRECED GRAPHS Undirected Graphs

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 3 Data Structures Graphs Traversals Strongly connected components Sofya Raskhodnikova L3.1 Measuring Running Time Focus on scalability: parameterize the running time

More information

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, Directed graphs. Road network

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, Directed graphs. Road network BBM - ALGORIHMS ODAY DEP. O COMPUER ENGINEERING ERKU ERDEM Directed Graphs Digraph API Digraph search opological sort Strong components DIRECED GRAPHS Apr., Acknowledgement: he course slides are adapted

More information

MA/CSSE 473 Day 12. Questions? Insertion sort analysis Depth first Search Breadth first Search. (Introduce permutation and subset generation)

MA/CSSE 473 Day 12. Questions? Insertion sort analysis Depth first Search Breadth first Search. (Introduce permutation and subset generation) MA/CSSE 473 Day 12 Interpolation Search Insertion Sort quick review DFS, BFS Topological Sort MA/CSSE 473 Day 12 Questions? Interpolation Search Insertion sort analysis Depth first Search Breadth first

More information

CS 4407 Algorithms Lecture 5: Graphs an Introduction

CS 4407 Algorithms Lecture 5: Graphs an Introduction CS 4407 Algorithms Lecture 5: Graphs an Introduction Prof. Gregory Provan Department of Computer Science University College Cork 1 Outline Motivation Importance of graphs for algorithm design applications

More information

Graph Algorithms. Definition

Graph Algorithms. Definition Graph Algorithms Many problems in CS can be modeled as graph problems. Algorithms for solving graph problems are fundamental to the field of algorithm design. Definition A graph G = (V, E) consists of

More information

Algorithms: Lecture 10. Chalmers University of Technology

Algorithms: Lecture 10. Chalmers University of Technology Algorithms: Lecture 10 Chalmers University of Technology Today s Topics Basic Definitions Path, Cycle, Tree, Connectivity, etc. Graph Traversal Depth First Search Breadth First Search Testing Bipartatiness

More information

CS2 Algorithms and Data Structures Note 9

CS2 Algorithms and Data Structures Note 9 CS2 Algorithms and Data Structures Note 9 Graphs The remaining three lectures of the Algorithms and Data Structures thread will be devoted to graph algorithms. 9.1 Directed and Undirected Graphs A graph

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP Complexity & Analysis of Data Structures & Algorithms Overview of Graphs Breadth irst Search, and Depth irst Search hanks to several people who contributed to these slides including Piyush Kumar and

More information

Depth First Search (DFS)

Depth First Search (DFS) Algorithms & Models of Computation CS/ECE 374, Fall 2017 epth First Search (FS) Lecture 1 Thursday, October 2, 2017 Today Two topics: Structure of directed graphs FS and its properties One application

More information

Introduction to Graphs. common/notes/ppt/

Introduction to Graphs.   common/notes/ppt/ Introduction to Graphs http://people.cs.clemson.edu/~pargas/courses/cs212/ common/notes/ppt/ Introduction Graphs are a generalization of trees Nodes or verticies Edges or arcs Two kinds of graphs irected

More information

CSE 373 NOVEMBER 20 TH TOPOLOGICAL SORT

CSE 373 NOVEMBER 20 TH TOPOLOGICAL SORT CSE 373 NOVEMBER 20 TH TOPOLOGICAL SORT PROJECT 3 500 Internal Error problems Hopefully all resolved (or close to) P3P1 grades are up (but muted) Leave canvas comment Emails tomorrow End of quarter GRAPHS

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

Graph Algorithms. Andreas Klappenecker

Graph Algorithms. Andreas Klappenecker Graph Algorithms Andreas Klappenecker Graphs A graph is a set of vertices that are pairwise connected by edges. We distinguish between directed and undirected graphs. Why are we interested in graphs? Graphs

More information

6.4 Maximum Flow. overview Ford-Fulkerson implementations applications

6.4 Maximum Flow. overview Ford-Fulkerson implementations applications 6.4 Maximum Flow overview Ford-Fulkerson implementations applications Algorithms, 4 th Edition Robert Sedgewick and Kevin Wayne Copyright 2002 2010 April 18, 2011 11:02:27 AM Mincut problem Given. A weighted

More information

Goals! CSE 417: Algorithms and Computational Complexity!

Goals! CSE 417: Algorithms and Computational Complexity! Goals! CSE : Algorithms and Computational Complexity! Graphs: defns, examples, utility, terminology! Representation: input, internal! Traversal: Breadth- & Depth-first search! Three Algorithms:!!Connected

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Mystery Algorithm! ALGORITHM MYSTERY( G = (V,E), start_v ) mark all vertices in V as unvisited mystery( start_v )

Mystery Algorithm! ALGORITHM MYSTERY( G = (V,E), start_v ) mark all vertices in V as unvisited mystery( start_v ) Mystery Algorithm! 0 2 ALGORITHM MYSTERY( G = (V,E), start_v ) mark all vertices in V as unvisited mystery( start_v ) 3 1 4 7 6 5 mystery( v ) mark vertex v as visited PRINT v for each vertex w adjacent

More information

I A graph is a mathematical structure consisting of a set of. I Formally: G =(V, E), where V is a set and E V V.

I A graph is a mathematical structure consisting of a set of. I Formally: G =(V, E), where V is a set and E V V. Directed and Undirected Graphs Inf 2B: Graphs, BFS, DFS Kyriakos Kalorkoti School of Informatics University of Edinburgh I A graph is a mathematical structure consisting of a set of vertices and a set

More information

Inf 2B: Graphs, BFS, DFS

Inf 2B: Graphs, BFS, DFS Inf 2B: Graphs, BFS, DFS Kyriakos Kalorkoti School of Informatics University of Edinburgh Directed and Undirected Graphs I A graph is a mathematical structure consisting of a set of vertices and a set

More information

Graphs. CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington

Graphs. CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington Graphs CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington 1 Representation Adjacency matrix??adjacency lists?? Review Graphs (from CSE 2315)

More information

CMSC 132: Object-Oriented Programming II. Shortest Paths

CMSC 132: Object-Oriented Programming II. Shortest Paths CMSC 13: Object-Oriented Programming II Shortest Paths 1 Quiz 1 One advantage of adjacency list representation over adjacency matrix representation of a graph is that in adjacency list representation,

More information

GRAPHS Lecture 17 CS2110 Spring 2014

GRAPHS Lecture 17 CS2110 Spring 2014 GRAPHS Lecture 17 CS2110 Spring 2014 These are not Graphs 2...not the kind we mean, anyway These are Graphs 3 K 5 K 3,3 = Applications of Graphs 4 Communication networks The internet is a huge graph Routing

More information

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph:

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Graph G(V, E): V set of nodes (vertices); E set of edges. Notation: n = V and m = E. (Vertices are numbered

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell omputer Science 91.404 nalysis of lgorithms Prof. Karen aniels Spring, 2013 hapter 22: raph lgorithms & rief Introduction to Shortest Paths [Source: ormen et al. textbook except where noted]

More information

IS 709/809: Computational Methods in IS Research. Graph Algorithms: Introduction

IS 709/809: Computational Methods in IS Research. Graph Algorithms: Introduction IS 709/809: Computational Methods in IS Research Graph Algorithms: Introduction Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Motivation Several real-life

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Greedy Graph Algorithms Topological sort Shortest paths Adam Smith The (Algorithm) Design Process 1. Work out the answer for some examples. Look for a general principle

More information

Graph Algorithms Using Depth First Search

Graph Algorithms Using Depth First Search Graph Algorithms Using Depth First Search Analysis of Algorithms Week 8, Lecture 1 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Graph Algorithms Using Depth

More information

Lecture 26: Graphs: Traversal (Part 1)

Lecture 26: Graphs: Traversal (Part 1) CS8 Integrated Introduction to Computer Science Fisler, Nelson Lecture 6: Graphs: Traversal (Part ) 0:00 AM, Apr, 08 Contents Introduction. Definitions........................................... Representations.......................................

More information

DFS on Directed Graphs BOS. Outline and Reading ( 6.4) Digraphs. Reachability ( 6.4.1) Directed Acyclic Graphs (DAG s) ( 6.4.4)

DFS on Directed Graphs BOS. Outline and Reading ( 6.4) Digraphs. Reachability ( 6.4.1) Directed Acyclic Graphs (DAG s) ( 6.4.4) S on irected Graphs OS OR JK SO LX W MI irected Graphs S 1.3 1 Outline and Reading ( 6.4) Reachability ( 6.4.1) irected S Strong connectivity irected cyclic Graphs (G s) ( 6.4.4) Topological Sorting irected

More information

Graph Algorithms: Chapters Part 1: Introductory graph concepts

Graph Algorithms: Chapters Part 1: Introductory graph concepts UMass Lowell Computer Science 91.503 Algorithms Dr. Haim Levkowitz Fall, 2007 Graph Algorithms: Chapters 22-25 Part 1: Introductory graph concepts 1 91.404 Graph Review Elementary Graph Algorithms Minimum

More information

Graph Algorithms. Andreas Klappenecker. [based on slides by Prof. Welch]

Graph Algorithms. Andreas Klappenecker. [based on slides by Prof. Welch] Graph Algorithms Andreas Klappenecker [based on slides by Prof. Welch] 1 Directed Graphs Let V be a finite set and E a binary relation on V, that is, E VxV. Then the pair G=(V,E) is called a directed graph.

More information

Practical Session No. 12 Graphs, BFS, DFS, Topological sort

Practical Session No. 12 Graphs, BFS, DFS, Topological sort Practical Session No. 12 Graphs, BFS, DFS, Topological sort Graphs and BFS Graph G = (V, E) Graph Representations (V G ) v1 v n V(G) = V - Set of all vertices in G E(G) = E - Set of all edges (u,v) in

More information

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs CLRS 12-13 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V

More information

Graphs: Topological Sort / Graph Traversals (Chapter 9)

Graphs: Topological Sort / Graph Traversals (Chapter 9) Today s Outline raphs: Topological Sort / raph Traversals (hapter 9) S 373 ata Structures and lgorithms dmin: omework #4 - due Thurs, Nov 8 th at pm Midterm 2, ri Nov 6 raphs Representations Topological

More information

CS 270 Algorithms. Oliver Kullmann. Breadth-first search. Analysing BFS. Depth-first. search. Analysing DFS. Dags and topological sorting.

CS 270 Algorithms. Oliver Kullmann. Breadth-first search. Analysing BFS. Depth-first. search. Analysing DFS. Dags and topological sorting. Week 5 General remarks and 2 We consider the simplest graph- algorithm, breadth-first (). We apply to compute shortest paths. Then we consider the second main graph- algorithm, depth-first (). And we consider

More information

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1 CS200: Graphs Prichard Ch. 14 Rosen Ch. 10 CS200 - Graphs 1 Graphs A collection of nodes and edges What can this represent? n A computer network n Abstraction of a map n Social network CS200 - Graphs 2

More information

Algorithms. Algorithms. Algorithms 4.3 MINIMUM SPANNING TREES

Algorithms. Algorithms. Algorithms 4.3 MINIMUM SPANNING TREES Announcements Algorithms ROBERT SEDGEWICK KEVIN WAYNE Exam Regrades Due by Wednesday s lecture. Teaching Experiment: Dynamic Deadlines (WordNet) Right now, WordNet is due at PM on April 8th. Starting Tuesday

More information

CSI 604 Elementary Graph Algorithms

CSI 604 Elementary Graph Algorithms CSI 604 Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. (Second edition) 1 / 25 Graphs: Basic Definitions Undirected Graph G(V, E): V is set of nodes (or vertices) and E is the

More information

implementing the breadth-first search algorithm implementing the depth-first search algorithm

implementing the breadth-first search algorithm implementing the depth-first search algorithm Graph Traversals 1 Graph Traversals representing graphs adjacency matrices and adjacency lists 2 Implementing the Breadth-First and Depth-First Search Algorithms implementing the breadth-first search algorithm

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II Anna University 2 & 16 Mark Questions & Answers Year / Semester: II / III

More information

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Undirected graphs Concepts: connectivity, connected components paths (undirected) cycles Basic problems, given undirected graph G: is G connected how many

More information

Graph definitions. There are two kinds of graphs: directed graphs (sometimes called digraphs) and undirected graphs. An undirected graph

Graph definitions. There are two kinds of graphs: directed graphs (sometimes called digraphs) and undirected graphs. An undirected graph Graphs Graph definitions There are two kinds of graphs: directed graphs (sometimes called digraphs) and undirected graphs start Birmingham 60 Rugby fill pan with water add salt to water take egg from fridge

More information

Index. stack-based, 400 A* algorithm, 325

Index. stack-based, 400 A* algorithm, 325 Index Abstract transitive closure, 174-175, 217-221 Active vertex, 411 Acyclic graph. See Digraph; Directed acyclic graph (DAG) Acyclic network, 313-321, 334-335 maxflow, 427-429 Adjacency-lists representation,

More information

R13. II B. Tech I Semester Supplementary Examinations, May/June DATA STRUCTURES (Com. to ECE, CSE, EIE, IT, ECC)

R13. II B. Tech I Semester Supplementary Examinations, May/June DATA STRUCTURES (Com. to ECE, CSE, EIE, IT, ECC) SET - 1 II B. Tech I Semester Supplementary Examinations, May/June - 2016 PART A 1. a) Write a procedure for the Tower of Hanoi problem? b) What you mean by enqueue and dequeue operations in a queue? c)

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

Graphs. Terminology. Graphs & Breadth First Search (BFS) Extremely useful tool in modeling problems. Consist of: Vertices Edges

Graphs. Terminology. Graphs & Breadth First Search (BFS) Extremely useful tool in modeling problems. Consist of: Vertices Edges COMP Spring Graphs & BS / Slide Graphs Graphs & Breadth irst Search (BS) Extremely useful tool in modeling problems. Consist of: Vertices Edges Vertex A B D C E Edge Vertices can be considered sites or

More information

Basic Graph Definitions

Basic Graph Definitions CMSC 341 Graphs Basic Graph Definitions A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. Each edge is a pair (v,w) where v, w V. V and E are sets, so each vertex

More information

CSC 321: Data Structures. Fall 2017

CSC 321: Data Structures. Fall 2017 CSC 321: Data Structures Fall 2017 Graphs & search graphs, isomorphism simple vs. directed vs. weighted adjacency matrix vs. adjacency lists graph traversals depth-first search, breadth-first search finite

More information

Introduction to Graphs. CS2110, Spring 2011 Cornell University

Introduction to Graphs. CS2110, Spring 2011 Cornell University Introduction to Graphs CS2110, Spring 2011 Cornell University A graph is a data structure for representing relationships. Each graph is a set of nodes connected by edges. Synonym Graph Hostile Slick Icy

More information

CS 361 Data Structures & Algs Lecture 13. Prof. Tom Hayes University of New Mexico

CS 361 Data Structures & Algs Lecture 13. Prof. Tom Hayes University of New Mexico CS 361 Data Structures & Algs Lecture 13 Prof. Tom Hayes University of New Mexico 10-5-2010 1 Last Time Spanning Trees BFS DFS Testing Bipartiteness 2 Today Inside BFS Running Time Implementation Degrees

More information

Graph Representations and Traversal

Graph Representations and Traversal COMPSCI 330: Design and Analysis of Algorithms 02/08/2017-02/20/2017 Graph Representations and Traversal Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Fred Zhang, Tianyu Wang 1 Overview This lecture

More information