UNDIRECTED GRAPHS TODAY BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING. Undirected graphs. Graph applications

Size: px
Start display at page:

Download "UNDIRECTED GRAPHS TODAY BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING. Undirected graphs. Graph applications"

Transcription

1 BBM - ALGORIHMS ODAY DEP. O COMPUER ENGINEERING UNDIRECED GRAPHS Undirected Graphs Graph API Depth-first search Challenges Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. Undirected graphs Graph. Set of ertices connected pairwise by edges. Why study graph algorithms? housands of practical applications. Hundreds of graph algorithms known. Interesting and broadly useful abstraction. Challenging branch of computer science and discrete math. Graph applications graph ertex edge communication telephone, computer fiber optic cable circuit gate, register, processor wire mechanical joint rod, beam, spring financial stock, currency transactions transportation street intersection, airport highway, airway route internet class C network connection game board position legal moe social relationship person, actor friendship, moie cast neural network neuron synapse protein network protein protein-protein interaction chemical compound molecule bond

2 Graph terminology Path. Sequence of ertices connected by edges. Cycle. Path whose first and last ertices are the same. wo ertices are connected if there is a path between them. cycle of length ertex of degree edge ertex path of length connected components Some graph-processing problems Path. Is there a path between s and t? Shortest path. What is the shortest path between s and t? Cycle. Is there a cycle in the graph? Euler tour. Is there a cycle that uses each edge exactly once? Hamilton tour. Is there a cycle that uses each ertex exactly once? Connectiity. Is there a way to connect all of the ertices? MS. What is the best way to connect all of the ertices? Biconnectiity. Is there a ertex whose remoal disconnects the graph? Planarity. Can you draw the graph in the plane with no crossing edges? Graph isomorphism. Do two adjacency lists represent the same graph? Challenge. Which of these problems are easy? difficult? intractable? Graph API Depth-first search Challenges UNDIRECED GRAPHS Graph representation Graph drawing. Proides intuition about the structure of the graph. two drawings of the same graph Caeat. Intuition can be misleading.

3 Graph representation Graph API Vertex representation. his lecture: use integers between and V. Applications: conert between names and integers with symbol table. A Anomalies. B D C E self-loop G Anomalies parallel edges symbol table public class Graph Graph(int V) Graph(In in) create an empty graph with V ertices create a graph from input stream oid addedge(int, int w) add an edge -w Iterable<Integer> adj(int ) ertices adjacent to int V() int E() String tostring() In in = new In(args[]); Graph G = new Graph(in); for (int = ; < G.V(); ++) for (int w : G.adj()) StdOut.println( + "-" + w); number of ertices number of edges string representation read graph from input stream print out each edge (twice) Graph API: sample client ypical graph-processing code. n Undirected Graphs Graph input format. V tinyg.txt E Input format for G % jaa est tinyg.txt task implementation compute the degree of compute maximum degree compute aerage degree public static int degree(graph G, int ) int degree = ; for (int w : G.adj()) degree++; return degree; public static int maxdegree(graph G) int max = ; for (int = ; < G.V(); ++) if (degree(g, ) > max) max = degree(g, ); return max; public static double aeragedegree(graph G) return. * G.E() / G.V(); In in = new In(args[]); Graph G = new Graph(in); for (int = ; < G.V(); ++) for (int w : G.adj()) StdOut.println( + "-" + w); read graph from input stream print out each edge (twice) count self-loops public static int numberofselfloops(graph G) int count = ; for (int = ; < G.V(); ++) for (int w : G.adj()) if ( == w) count++; return count/; // each edge counted twice public String tostring() String s = V + " ertices, " + E + " edges\n";

4 Set-of-edges graph representation Maintain a list of the edges (linked list or array). Adjacency-matrix graph representation Maintain a two-dimensional V-by-V boolean array; for each edge w in graph: adj[][w] = adj[w][] = true. two entries for each edge Adjacency-list graph representation Adjacency-list graph representation: Jaa implementation Maintain ertex-indexed array of lists. Bag objects public class Graph priate final int V; priate Bag<Integer>[] adj; adjacency lists ( using Bag data type ) adj[] representations of the same edge public Graph(int V) this.v = V; adj = (Bag<Integer>[]) new Bag[V]; for (int = ; < V; ++) adj[] = new Bag<Integer>(); public oid addedge(int, int w) adj[].add(w); adj[w].add(); create empty graph with V ertices add edge -w (parallel edges allowed) Adjacency-lists representation (undirected graph) public Iterable<Integer> adj(int ) return adj[]; iterator for ertices adjacent to

5 Graph representations In practice. Use adjacency-lists representation. Algorithms based on iterating oer ertices adjacent to. Real-world graphs tend to be sparse. huge number of ertices, small aerage ertex degree Graph representations In practice. Use adjacency-lists representation. Algorithms based on iterating oer ertices adjacent to. Real-world graphs tend to be sparse. huge number of ertices, small aerage ertex degree sparse (E = ) dense (E = ) representation space add edge edge between and w? iterate oer ertices adjacent to? list of edges E E E adjacency matrix V * V adjacency lists E + V degree() degree() wo graphs (V = ) * disallows parallel edges Graph API Depth-first search Challenges UNDIRECED GRAPHS Maze exploration Maze graphs. Vertex = intersection. Edge = passage. intersection passage Goal. Explore eery intersection in the maze.

6 rémaux maze exploration Algorithm. Unroll a ball of string behind you. Mark each isited intersection and each isited passage. Retrace steps when no unisited options. Depth-first search Goal. Systematically search through a graph. Idea. Mimic maze exploration. ypical applications. DS (to isit a ertex ) Mark as isited. Recursiely isit all unmarked ertices w adjacent to. ind all ertices connected to a gien source ertex. ind a path between two ertices. Design challenge. How to implement? Design pattern for graph processing Design pattern. Decouple graph data type from graph processing. Create a Graph object. Pass the Graph to a graph-processing routine, e.g., Paths. Query the graph-processing routine for information. Depth-first search o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. public class Paths Paths(Graph G, int s) Paths paths = new Paths(G, s); for (int = ; < G.V(); ++) if (paths.haspatho()) StdOut.println(); find paths in G from source s boolean haspatho(int ) is there a path from s to? Iterable<Integer> patho(int ) path from s to ; null if no such path print all ertices connected to s graph G V tinyg.txt E

7 Depth-first search Depth-first search o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. edgeo[] Goal. ind all ertices connected to s (and a path). Idea. Mimic maze exploration. Algorithm. Use recursion (ball of string). Mark each isited ertex (and keep track of edge taken to isit it). Return (retrace steps) when no unisited options. Data structures. boolean[] marked to mark isited ertices. int[] edgeo to keep tree of paths. (edgeo[w] == ) means that edge -w taken to isit w for first time ertices reachable from Depth-first search Depth-first search properties public class DepthirstPaths priate boolean[] marked; priate int[] edgeo; priate int s; public DepthirstSearch(Graph G, int s)... dfs(g, s); priate oid dfs(graph G, int ) = true; for (int w : G.adj()) if (!marked[w]) dfs(g, w); edgeo[w] = ; = true if connected to s edgeo[] = preious ertex on path from s to initialize data structures find ertices connected to s recursie DS does the work Proposition. DS marks all ertices connected to s in time proportional to the sum of their degrees. Pf. Correctness: - if w marked, then w connected to s (why?) - if w connected to s, then w marked (if w unmarked, then consider last edge on a path from s to w that goes from a marked ertex to an unmarked one) Running time: Each ertex connected to s is isited once. set of unmarked ertices source s x w set of marked ertices no such edge can exist

8 Depth-first search properties Proposition. After DS, can find ertices connected to s in constant time and can find a path to s (if one exists) in time proportional to its length. Pf. edgeo[] is a parent-link representation of a tree rooted at s. Graph API Depth-first search Challenges UNDIRECED GRAPHS public boolean haspatho(int ) return ; public Iterable<Integer> patho(int ) if (!haspatho()) return null; Stack<Integer> path = new Stack<Integer>(); for (int x = ; x!= s; x = edgeo[x]) path.push(x); path.push(s); return path; x path edgeo[] Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. tinycg.txt V E edgeo[] graph G add to

9 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de

10 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] done de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de

11 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] done de

12 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] done de

13 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] done de

14 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de done

15 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de de Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. edgeo[] edgeo[] de done

16 Remoe ertex from. Add to all unmarked ertices adjacent to and mark them. Depth-first search. Put unisited ertices on a stack.. Put unisited ertices on a. Shortest path. ind path from s to t that uses fewest number of edges. edgeo[] BS (from source ertex s) Put s onto a IO, and mark s as isited. Repeat until the is empty: - remoe the least recently added ertex - add each of 's unisited neighbors to the, and mark them as isited. done Intuition. BS examines ertices in increasing distance from s. properties Proposition. BS computes shortest path (number of edges) from s in a connected graph in time proportional to E + V. Pf. [correctness] Queue always consists of zero or more ertices of distance k from s, followed by zero or more ertices of distance k +. Pf. [running time] Each ertex connected to s is isited once. standard drawing dist = dist = dist = public class BreadthirstPaths priate boolean[] marked; priate boolean[] edgeo[]; priate final int s; priate oid bfs(graph G, int s) Queue<Integer> q = new Queue<Integer>(); q.en(s); marked[s] = true; while (!q.isempty()) int = q.de(); for (int w : G.adj()) if (!marked[w]) q.en(w); marked[w] = true; edgeo[w] = ;

17 Graph API Depth-first search Challenges UNDIRECED GRAPHS Connectiity queries Def. Vertices and w are connected if there is a path between them. Goal. Preprocess graph to answer queries: is connected to w? in constant time. public class CC CC(Graph G) Depth-first search. [next few slides] find connected components in G boolean connected(int, int w) are and w connected? int count() number of connected components int id(int ) component identifier for he relation "is connected to" is an equialence relation: Reflexie: is connected to. Symmetric: if is connected to w, then w is connected to. ransitie: if connected to w and w connected to x, then connected to x. Def. A connected component is a maximal set of connected ertices. connected components id[] Remark. Gien connected components, can answer queries in constant time. Def. A connected component is a maximal set of connected ertices. connected components

18 Goal. Partition ertices into connected components. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. Initialize all ertices as unmarked. or each unmarked ertex, run DS to identify all ertices discoered as part of the same component. V tinyg.txt E V mediumg.txt E... ( additional lines) Input format for Graph constructor graph (two G examples) o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit

19 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit

20 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit done o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit

21 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. done isit o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit done

22 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. done isit o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit done

23 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. done done

24 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. connected component connected component: check o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit

25 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. done done o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. connected component: check

26 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit isit

27 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit done o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. done isit

28 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. isit done o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. done connected component:

29 o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. o isit a ertex : Mark ertex as isited. Recursiely isit all unmarked ertices adjacent to. check done inding connected components with DS inding connected components with DS (continued) public class CC priate boolean ; priate int[] id; priate int count; id[] = id of component containing number of components public int count() return count; number of components public CC(Graph G) marked = new boolean[g.v()]; id = new int[g.v()]; for (int = ; < G.V(); ++) if (!) dfs(g, ); count++; run DS from one ertex in each component public int id(int ) return id[]; priate oid dfs(graph G, int ) = true; id[] = count; for (int w : G.adj()) if (!marked[w]) dfs(g, w); id of component containing all ertices discoered in same call of dfs hae same id public int count() public int id(int ) priate oid dfs(graph G, int ) see next slide

30 UNDIRECED GRAPHS Graph-processing challenge Graph API Depth-first search Challenges Problem. Is a graph bipartite? How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible Graph-processing challenge Graph-processing challenge Problem. Is a graph bipartite? How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible. simple DS-based solution (see textbook) Problem. ind a cycle. How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible

31 Graph-processing challenge Bridges of Königsberg Problem. ind a cycle. he Seen Bridges of Königsberg. [Leonhard Euler ] How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. (see textbook) No one knows. Impossible. simple DS-based solution in Königsberg in Prussia, there is an island A, called the Kneiphof; the rier which surrounds it is diided into two branches... and these branches are crossed by seen bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once. Euler tour. Is there a (general) cycle that uses each edge exactly once? Answer. Yes iff connected and all ertices hae een degree. o find path. DS-based algorithm (see textbook). Graph-processing challenge Graph-processing challenge Problem. ind a cycle that uses eery edge. Assumption. Need to use each edge exactly once. Problem. ind a cycle that uses eery edge. Assumption. Need to use each edge exactly once. How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. Eulerian tour No one knows. Impossible. (classic graph-processing problem)

32 Graph-processing challenge Problem. ind a cycle that isits eery ertex exactly once. Graph-processing challenge Problem. ind a cycle that isits eery ertex. Assumption. Need to isit each ertex exactly once. How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. Hamiltonian cycle No one knows. (classical NP-complete problem) Impossible Graph-processing challenge Graph-processing challenge Problem. Are two graphs identical except for ertex names? How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible Problem. Are two graphs identical except for ertex names? How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible. graph isomorphism is longstanding open problem ,,,,,,,,,,,,

33 Graph-processing challenge Graph-processing challenge Problem. Lay out a graph in the plane without crossing edges? How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible Problem. Lay out a graph in the plane without crossing edges? How difficult? Any programmer could do it. ypical diligent algorithms student could do it. Hire an expert. Intractable. No one knows. Impossible. linear-time DS-based planarity algorithm discoered by arjan in s (too complicated for practitioners)

UNDIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING BBM - ALGORIHMS DEP. O COMPUER ENGINEERING UNDIRECED GRAPHS Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. Undirected Graphs

More information

UNDIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING

UNDIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. BBM DAA SRUCURES DEP. O COMPUER ENGINEERING UNDIRECED GRAPHS Undirected Graphs

More information

Undirected Graphs. graph API maze exploration depth-first search breadth-first search connected components challenges.

Undirected Graphs. graph API maze exploration depth-first search breadth-first search connected components challenges. Undirected graphs Graph. Set of vertices connected pairwise by edges. Undirected Graphs References: Algorithms in Java, Chapters and Why study graph algorithms? Interesting and broadly useful abstraction.

More information

Undirected Graphs. introduction Graph API maze exploration depth-first search breadth-first search connected components challenges.

Undirected Graphs. introduction Graph API maze exploration depth-first search breadth-first search connected components challenges. Undirected Graphs Graph. Set of vertices connected pairwise by edges. Undirected Graphs Why study graph algorithms? Interesting and broadly useful abstraction. Challenging branch of computer science and

More information

! Interesting and broadly useful abstraction. ! Challenging branch of computer science and discrete math. ! Hundreds of graph algorithms known.

! Interesting and broadly useful abstraction. ! Challenging branch of computer science and discrete math. ! Hundreds of graph algorithms known. Undirected Graphs Undirected Graphs Graph. Set of objects with pairwise connections. Why study graph algorithms?! Interesting and broadly useful abstraction.! Challenging branch of computer science and

More information

DIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, 2013

DIRECTED GRAPHS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, 2013 BBM - ALGORIHMS DEP. O COMPUER ENGINEERING ERKU ERDEM DIRECED GRAPHS Apr., Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton Uniersity. Directed

More information

GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms?

GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms? GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms? Interesting and broadly useful abstraction. Challenging branch of computer science and discrete math. Hundreds

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II DIRECTED GRAPHS Graphs slides are modified from COS 126 slides of Dr. Robert Sedgewick. 1 Directed graphs Digraph Set of vertices connected pairwise by directed

More information

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING. Mar. 31, Directed graphs. Road network

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING. Mar. 31, Directed graphs. Road network BBM - ALGORIHMS ODAY DEP. O COMPUER ENGINEERING Directed Graphs Digraph API Digraph search opological sort Strong components DIRECED GRAPHS Mar., Acknowledgement: he course slides are adapted from the

More information

DIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING

DIRECTED GRAPHS BBM 201 DATA STRUCTURES DEPT. OF COMPUTER ENGINEERING Acknowledgement: he course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University. BBM DAA SRUCURES DEP. O COMPUER ENGINEERING DIRECED GRAPHS Directed Graphs Digraph

More information

Basic Graph Search. Algorithms and Data Structures, Fall Rasmus Pagh. Based on slides by Kevin Wayne, Princeton

Basic Graph Search. Algorithms and Data Structures, Fall Rasmus Pagh. Based on slides by Kevin Wayne, Princeton Algorithms and Data Structures, Fall Basic Graph Search Rasmus Pagh Based on slides by Kevin Wayne, Princeton Algorithms, th Edition Robert Sedgewick and Kevin Wayne Copyright Mid-term evaluation Thanks

More information

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, Directed graphs. Road network

DIRECTED GRAPHS BBM ALGORITHMS TODAY DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Apr. 3, Directed graphs. Road network BBM - ALGORIHMS ODAY DEP. O COMPUER ENGINEERING ERKU ERDEM Directed Graphs Digraph API Digraph search opological sort Strong components DIRECED GRAPHS Apr., Acknowledgement: he course slides are adapted

More information

CS 4407 Algorithms Lecture 5: Graphs an Introduction

CS 4407 Algorithms Lecture 5: Graphs an Introduction CS 4407 Algorithms Lecture 5: Graphs an Introduction Prof. Gregory Provan Department of Computer Science University College Cork 1 Outline Motivation Importance of graphs for algorithm design applications

More information

Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs

Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs Directed graphs Digraph. Set of vertices connected pairwise by oriented edges. Directed Graphs digraph API digraph search transitive closure topological sort strong components References: Algorithms in

More information

Graphs. Ric Glassey

Graphs. Ric Glassey Graphs Ric Glassey glassey@kth.se Overview Graphs Aim: Introduce graphs as a fundamental data structure that can be applied in many real-world problems Applications of graphs Definition and types of graphs

More information

Graph Algorithms. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

Graph Algorithms. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. Graph Algorithms Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May, 0 CPD (DEI / IST) Parallel and Distributed Computing 0-0-0 / Outline

More information

Graph Traversals. Ric Glassey

Graph Traversals. Ric Glassey Graph Traversals Ric Glassey glassey@kth.se Overview Graph Traversals Aim: Develop alternative strategies to moving through a graph by visiting vertices and travelling along edges Maze example Depth-first

More information

4.2 Directed Graphs. digraph API digraph search topological sort strong components

4.2 Directed Graphs. digraph API digraph search topological sort strong components 4.2 Directed Graphs digraph API digraph search topological sort strong components Algorithms, 4 th Edition Robert Sedgewick and Kevin Wayne Copyright 2002 2010 November 8, 2010 8:43:22 PM Directed graphs

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

! Vertex = species. ! Edge = from prey to predator.

! Vertex = species. ! Edge = from prey to predator. irected Graphs irected Graphs igraph. Set of objects with oriented pairwise connections. x. One-way street, hyperlink. Reference: Chapter 19, Algorithms in Java, 3 rd dition, Robert Sedgewick. Robert Sedgewick

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

4.2 Directed Graphs. vertex of outdegree 3 and indegree 1 digraph API digraph search topological sort strong components. directed path from 0 to 2

4.2 Directed Graphs. vertex of outdegree 3 and indegree 1 digraph API digraph search topological sort strong components. directed path from 0 to 2 Directed graphs. Directed Graphs Digraph. Set of vertices connected pairwise by directed edges. vertex of outdegree and indegree 1 digraph API digraph search topological sort strong components directed

More information

Algorithms: Lecture 10. Chalmers University of Technology

Algorithms: Lecture 10. Chalmers University of Technology Algorithms: Lecture 10 Chalmers University of Technology Today s Topics Basic Definitions Path, Cycle, Tree, Connectivity, etc. Graph Traversal Depth First Search Breadth First Search Testing Bipartatiness

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE http://algs4.cs.princeton.edu introduction digraph API depth-first search breadth-first

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API depth-first search breadth-first search topological sort strong components Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE https://algs4.cs.princeton.edu introduction digraph API depth-first search

More information

Algorithms FOURTH EDITION PART II

Algorithms FOURTH EDITION PART II Algorithms FOURTH EDITION PART II This page intentionally left blank Algorithms FOURTH EDITION PART II Robert Sedgewick and Kevin Wayne Princeton University Upper Saddle River, NJ Boston Indianapolis San

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N digraph API digraph search topological sort strong components R O B E R T S E D G E W I C K K E V I N W A Y N E Algorithms, 4 Robert Sedgewick and

More information

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs CLRS 12-13 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

3. GRAPHS. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :19 AM

3. GRAPHS. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :19 AM 3. GRAPHS basic definitions and applications graph connectivity and graph traversal testing bipartiteness connectivity in directed graphs DAGs and topological ordering Lecture slides by Kevin Wayne Copyright

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP Complexity & Analysis of Data Structures & Algorithms Overview of Graphs Breadth irst Search, and Depth irst Search hanks to several people who contributed to these slides including Piyush Kumar and

More information

Graph theory: basic concepts

Graph theory: basic concepts Graph theory: basic concepts Graphs and networks allow modelling many different decision problems Graphs permit to represent relationships among different kinds of entities: Cities connected by roads Computers

More information

Graph Algorithms. Andreas Klappenecker

Graph Algorithms. Andreas Klappenecker Graph Algorithms Andreas Klappenecker Graphs A graph is a set of vertices that are pairwise connected by edges. We distinguish between directed and undirected graphs. Why are we interested in graphs? Graphs

More information

Konigsberg Bridge Problem

Konigsberg Bridge Problem Graphs Konigsberg Bridge Problem c C d g A Kneiphof e D a B b f c A C d e g D a b f B Euler s Graph Degree of a vertex: the number of edges incident to it Euler showed that there is a walk starting at

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Exploring graphs Adam Smith 9/5/2008 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Puzzles Suppose an undirected graph G is connected.

More information

6.2. Paths and Cycles

6.2. Paths and Cycles 6.2. PATHS AND CYCLES 85 6.2. Paths and Cycles 6.2.1. Paths. A path from v 0 to v n of length n is a sequence of n+1 vertices (v k ) and n edges (e k ) of the form v 0, e 1, v 1, e 2, v 2,..., e n, v n,

More information

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Some Graph Applications

3.1 Basic Definitions and Applications. Chapter 3. Graphs. Undirected Graphs. Some Graph Applications Chapter 3 31 Basic Definitions and Applications Graphs Slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley All rights reserved 1 Undirected Graphs Some Graph Applications Undirected graph G = (V,

More information

implementing the breadth-first search algorithm implementing the depth-first search algorithm

implementing the breadth-first search algorithm implementing the depth-first search algorithm Graph Traversals 1 Graph Traversals representing graphs adjacency matrices and adjacency lists 2 Implementing the Breadth-First and Depth-First Search Algorithms implementing the breadth-first search algorithm

More information

Chapter 3. Graphs. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V = nodes. E

More information

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction digraph API digraph search topological sort strong components ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE introduction digraph API digraph search topological sort strong components

More information

Algorithms COMBINATORIAL SEARCH. permutations backtracking counting subsets paths in a graph

Algorithms COMBINATORIAL SEARCH. permutations backtracking counting subsets paths in a graph COMBINATORIAL SEARCH Algorithms F O U R T H E D I T I O N permutations backtracking counting subsets paths in a graph R O B E R T S E D G E W I C K K E V I N W A Y N E Algorithms, 4 th Edition Robert Sedgewick

More information

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia) 15-251 Great Ideas in Theoretical Computer Science Lecture 12: Graphs I: The Basics February 22nd, 2018 Crossing bridges Königsberg (Prussia) Now Kaliningrad (Russia) Is there a way to walk through the

More information

Understand graph terminology Implement graphs using

Understand graph terminology Implement graphs using raphs Understand graph terminology Implement graphs using djacency lists and djacency matrices Perform graph searches Depth first search Breadth first search Perform shortest-path algorithms Disjkstra

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Combinatorial Search. permutations backtracking counting subsets paths in a graph. Overview

Combinatorial Search. permutations backtracking counting subsets paths in a graph. Overview Overview Exhaustive search. Iterate through all elements of a search space. Combinatorial Search Backtracking. Systematic method for examining feasible solutions to a problem, by systematically eliminating

More information

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components

Algorithms 4.2 DIRECTED GRAPHS. digraph API digraph search topological sort strong components 4.2 DIRECTED GRAPHS Algorithms F O U R T H E D I T I O N digraph API digraph search topological sort strong components R O B E R T S E D G E W I C K K E V I N W A Y N E Algorithms, 4 th Edition Robert

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Chapter 3 Graphs Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 3.1 Basic Definitions and Applications Undirected Graphs Undirected graph. G = (V, E) V = nodes. E

More information

Chapter 14. Graphs Pearson Addison-Wesley. All rights reserved 14 A-1

Chapter 14. Graphs Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs 2011 Pearson Addison-Wesley. All rights reserved 14 A-1 Terminology G = {V, E} A graph G consists of two sets A set V of vertices, or nodes A set E of edges A subgraph Consists of a subset

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction. digraph API digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction. digraph API digraph search topological sort Algorithms ROBERT SEDGEWICK KEVIN WAYNE. DIRECTED GRAPHS. DIRECTED GRAPHS introduction introduction Algorithms F O U R T H E D I T I O N digraph API digraph search topological sort Algorithms digraph API

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

CSI 604 Elementary Graph Algorithms

CSI 604 Elementary Graph Algorithms CSI 604 Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. (Second edition) 1 / 25 Graphs: Basic Definitions Undirected Graph G(V, E): V is set of nodes (or vertices) and E is the

More information

Graphs and Genetics. Outline. Computational Biology IST. Ana Teresa Freitas 2015/2016. Slides source: AED (MEEC/IST); Jones and Pevzner (book)

Graphs and Genetics. Outline. Computational Biology IST. Ana Teresa Freitas 2015/2016. Slides source: AED (MEEC/IST); Jones and Pevzner (book) raphs and enetics Computational Biology IST Ana Teresa Freitas / Slides source: AED (MEEC/IST); Jones and Pevzner (book) Outline l Motivacion l Introduction to raph Theory l Eulerian & Hamiltonian Cycle

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs

Directed Graphs. digraph API digraph search transitive closure topological sort strong components. Directed graphs irected graphs igraph. Set of vertices connected pairwise by oriented edges. irected raphs digraph AP digraph search transitive closure topological sort strong components References: Algorithms in Java,

More information

Graph Algorithms. A Brief Introduction. 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ.

Graph Algorithms. A Brief Introduction. 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ. Graph Algorithms A Brief Introduction 高晓沨 (Xiaofeng Gao) Department of Computer Science Shanghai Jiao Tong Univ. 目录 2015/5/7 1 Graph and Its Applications 2 Introduction to Graph Algorithms 3 References

More information

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1

CS200: Graphs. Prichard Ch. 14 Rosen Ch. 10. CS200 - Graphs 1 CS200: Graphs Prichard Ch. 14 Rosen Ch. 10 CS200 - Graphs 1 Graphs A collection of nodes and edges What can this represent? n A computer network n Abstraction of a map n Social network CS200 - Graphs 2

More information

CS2 Algorithms and Data Structures Note 9

CS2 Algorithms and Data Structures Note 9 CS2 Algorithms and Data Structures Note 9 Graphs The remaining three lectures of the Algorithms and Data Structures thread will be devoted to graph algorithms. 9.1 Directed and Undirected Graphs A graph

More information

Multidimensional Arrays & Graphs. CMSC 420: Lecture 3

Multidimensional Arrays & Graphs. CMSC 420: Lecture 3 Multidimensional Arrays & Graphs CMSC 420: Lecture 3 Mini-Review Abstract Data Types: List Stack Queue Deque Dictionary Set Implementations: Linked Lists Circularly linked lists Doubly linked lists XOR

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

BIL694-Lecture 1: Introduction to Graphs

BIL694-Lecture 1: Introduction to Graphs BIL694-Lecture 1: Introduction to Graphs Lecturer: Lale Özkahya Resources for the presentation: http://www.math.ucsd.edu/ gptesler/184a/calendar.html http://www.inf.ed.ac.uk/teaching/courses/dmmr/ Outline

More information

Algorithms. Algorithms 4.4 SHORTEST PATHS. APIs properties Bellman Ford algorithm Dijkstra s algorithm ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 4.4 SHORTEST PATHS. APIs properties Bellman Ford algorithm Dijkstra s algorithm ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 4.4 SHORTEST PATHS Algorithms F O U R T H E D I T I O N APIs properties Bellman Ford algorithm Dijkstra s algorithm ROBERT SEDGEWICK KEVIN WAYNE https://algs4.cs.princeton.edu

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort Algorithms ROBERT SEDGEWICK KEVIN WAYNE. DIRECTED GRAPHS. DIRECTED GRAPHS introduction introduction digraph API digraph API Algorithms F O U R T H E D I T I O N digraph search topological sort Algorithms

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

6.4 Maximum Flow. overview Ford-Fulkerson implementations applications

6.4 Maximum Flow. overview Ford-Fulkerson implementations applications 6.4 Maximum Flow overview Ford-Fulkerson implementations applications Algorithms, 4 th Edition Robert Sedgewick and Kevin Wayne Copyright 2002 2010 April 18, 2011 11:02:27 AM Mincut problem Given. A weighted

More information

To list all vertices connected to a vertex u in graph G we can use the following loop:

To list all vertices connected to a vertex u in graph G we can use the following loop: Using nextdjacent() To list all vertices connected to a vertex u in graph we can use the following loop: for (int v=.nextdjacent(u,-1); v>=0; v=.nextdjacent(u,v)) { System.out.print(v); djacency Lists

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

4.4 Shortest Paths. Dijkstra's algorithm implementation acyclic networks negative weights. Reference: Algorithms in Java, 4 th edition, Section 4.

4.4 Shortest Paths. Dijkstra's algorithm implementation acyclic networks negative weights. Reference: Algorithms in Java, 4 th edition, Section 4. 4.4 Shortest Paths Dijkstra's algorithm implementation acyclic networks negative weights Reference: Algorithms in Java, 4 th edition, Section 4.4 Algorithms in Java, 4 th Edition Robert Sedgewick and Kevin

More information

Graph: representation and traversal

Graph: representation and traversal Graph: representation and traversal CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Acknowledgement The set of slides have use materials from the following resources Slides for textbook

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort

Algorithms. Algorithms. Algorithms 4.2 DIRECTED GRAPHS. introduction. introduction digraph API. digraph API. digraph search topological sort Algorithms ROBERT SEDGEWICK KEVIN WAYNE. DIRECTED GRAPHS. DIRECTED GRAPHS introduction introduction digraph API digraph API Algorithms F O U R T H E D I T I O N digraph search topological sort Algorithms

More information

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph:

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Graph G(V, E): V set of nodes (vertices); E set of edges. Notation: n = V and m = E. (Vertices are numbered

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MH 1301 DISCRETE MATHEMATICS TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MH 1301 DISCRETE MATHEMATICS TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2015-2016 MH 1301 DISCRETE MATHEMATICS May 2016 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FIVE (5) questions

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Breadth First Search. cse2011 section 13.3 of textbook

Breadth First Search. cse2011 section 13.3 of textbook Breadth irst Search cse section. of textbook Graph raversal (.) Application example Given a graph representation and a vertex s in the graph, find all paths from s to the other vertices. wo common graph

More information

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!!

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Konigsberg bridges problem. Can you make a tour visiting each bridge exactly once? Konigsberg bridges

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Keys to Success: CAR Theorem CHAPTER 3 GRAPHS. Outline. Basics. Definitions and applications. Iris Hui-Ru Jiang Fall 2014.

Keys to Success: CAR Theorem CHAPTER 3 GRAPHS. Outline. Basics. Definitions and applications. Iris Hui-Ru Jiang Fall 2014. Keys to Success: CAR Theorem Prof. Chang s CAR Theorem Iris: Recap stable matching Criticality Extract the essence Identify the clean core Remoe extraneous detail CHAPTER GRAPHS Iris Hui-Ru Jiang Fall

More information

Graphs. Data Structures 1 Graphs

Graphs. Data Structures 1 Graphs Graphs Graph Applications Definitions Graph Representations(adjacency matrix/list) Graph ADT Graph Traversals: BFS, DFS Shortest Path Algorithms Minimum Spanning Tree Algorithms Data Structures Graphs

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Computational Optimization ISE 407. Lecture 19. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 19. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 19 Dr. Ted Ralphs ISE 407 Lecture 19 1 Search Algorithms Search algorithms are fundamental techniques applied to solve a wide range of optimization problems.

More information

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph Graphs and Trees Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) who is connected to whom Web search views web pages as a graph Who points to whom Niche graphs (Ecology):

More information

CSE 373: Data Structures and Algorithms

CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms Lecture 15: Graph Data Structures, Topological Sort, and Traversals (DFS, BFS) Instructor: Lilian de Greef Quarter: Summer 2017 Today: Announcements Graph data structures

More information

GRAPHICAL ALGORITHMS. UNIT _II Lecture-12 Slides No. 3-7 Lecture Slides No Lecture Slides No

GRAPHICAL ALGORITHMS. UNIT _II Lecture-12 Slides No. 3-7 Lecture Slides No Lecture Slides No GRAPHICAL ALGORITHMS UNIT _II Lecture-12 Slides No. 3-7 Lecture-13-16 Slides No. 8-26 Lecture-17-19 Slides No. 27-42 Topics Covered Graphs & Trees ( Some Basic Terminologies) Spanning Trees (BFS & DFS)

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information