Object Placement in Shared Nothing Architecture Zhen He, Jeffrey Xu Yu and Stephen Blackburn Λ

Size: px
Start display at page:

Download "Object Placement in Shared Nothing Architecture Zhen He, Jeffrey Xu Yu and Stephen Blackburn Λ"

Transcription

1 45 Object Placement in Shared Nothing Architecture Zhen He, Jeffrey Xu Yu and Stephen Blackburn Λ Department of Computer Science The Australian National University Canberra, ACT fzhen.he, Jeffrey.X.Yu, Abstract Effective data placement is crucial to the performance of any parallel database system as it is an important lever for load balancing. In this paper we describe and explain a two-phased approach to the placement of objects in a shared-nothing model of a parallel object oriented database with page grain caching. The first phase is a declustering phase in which a greedy similarity graph partitioning algorithm is used to assign objects into nodes of the shared-nothing system. The aim of the first phase is to minimise internode traversals and maximise parallelism. Once assigned to nodes, the second phase attempts to cluster objects residing at each node into pages with the aim of reducing occurrence of remote page requests. Therefore, objects that are likely to be accessed by another remote node are clustered together. Both phases use query frequency distribution information to decide the placement of objects. We implemented this two phased approach on the Fujitsu AP1000 with a slightly modified OO7 benchmark data set. The results presented in this paper demonstrate that this algorithm was able to reduce remote page loads while preserving a high degree of parallelism. 1 Introduction Effective data placement is crucial to the performance of any parallel database system since it is an important lever for load balancing [Padmanadhan and Baru 92; Chen et al. 1995; Copeland et al. 1988]. In general, determining the optimal 1 placement of data across nodes of a shared nothing system 2 is a difficult problem even in relational database systems. Object-oriented database systems introduce additional complexity by supporting complex data structures which results in the object base being representable as graphs. In parallel objectoriented databases on shared-nothing architectures, the object base needs to be declustered across the nodes of the system. The manner of declustering depends on the way queries are processed. For intra-operator parallelism 3 in parallel object-oriented databases, it is important that the object placement strategy strikes a compromise between two conflicting objectives [Ghandeharizadeh et al. 1994]: a) the object placement strategy should assign all the relevant traversals by a query to a single node in order to minimise the number of inter-node object references, and b) it should distribute the workload of an application evenly across the nodes in order to maximise the processing capability of the system. These objectives are in conflict because a) argues for assigning objects to a few nodes in order to group the relevant objects together, while b) advocates the distribution of the objects across as many nodes as possible. 2 Similarity Graph Partitioning We have based our object placement strategy on a similarity graph partitioning approach. Fang, Lee, and Chang [1986] introduced similarity graph partitioning to decluster data across multiple disks of a single processor multiple disk system. Liu and Shekhar [1996] proposed a variation of Fang, Lee, and Chang [1986] s approach in which query frequency distribution information was used to define similarity. They proposed a general approach to declustering which they applied to grid files of a spatial database. Their aim was to maximise the chances that a pair of atomic Λ The authors wish to acknowledge that this work was carried out within the Cooperative Research Center for Advanced Computational Systems established under the Australian Government s Cooperative Research Centers Program. 1 optimal in terms of performance 2 each node has its own memory, disk and CPU 3 one operator is processed across all the nodes of the parallel system. Typically, each node works on its own disjoint subset of the problem and its own data set. Parallelism is dependent on the way data items are positioned.

2 46 data-items that are frequently accessed together by queries, are allocated to distinct disks. They defined similarity between two items as the weight of the edge joining two data items. The weight is assigned as the likelihood that the pair of data items will be accessed together by queries in the query set of interest. Therefore they place data items which are more similar into distinct nodes. 3 Preliminaries In this paper, we consider intra-operator parallelism for a parallel object-oriented database system on a shared-nothing architecture where each node has its own memory, disk and CPU. Page grain caching is also incorporated into the model. We focus on fully declustering which declusters objects across multiple nodes where each object only has a single copy in the object base. In addition to reduced cache misses for requests by other nodes, we cluster onto the same page objects held at each node which have, similar remote access characteristics. The paper is concerned with offline object placement methods. Therefore the objects are placed while the database in not in operation. In such an environment we seek to find the object placement method which minimises the total execution time of an arbitrary set of queries. 4 Declustering We used a variation on the similarity based approach proposed by Liu and Shekhar [1996] to decluster the objects in the data set. Our algorithm differs from Liu and Shekhar [1996] in that we attempt to place objects that have a higher degree of similarity together in the disk of the same node in contrast to their goal of placing similar data items on different disks. Our definition of similarity states that two objects are more similar if they are accessed together in a navigational manner but less similar if the two objects can be accessed together in a parallel manner. This enables the algorithm to preserve a degree of parallelism while decreasing internode object references. The degree of declustering similarity of an object o i with a partition P j of objects is defined as follows: S d (o i ;P j )=α w link (o i ;o k )+w link (o k ;o i ) (1 α) w p (o i ;o k ) (1) o k 2P j o k 2P j where α is a user defined weight that is assigned based on the relative importance of internode object references in reducing response time as compared to parallelism. The term w link (o i, o j ) is used to denote the frequency of traversal of the pointer link from o i to o j. w p (o i, o j ) denotes the frequency with which the two objects o i and o j can be processed on different nodes in parallel. Two approaches were used to decluster the database, the first is a greedy approach and the second is a window approach. The greedy approach first sorts all objects to be placed into an array based on non-increasing frequency of reference. Then each object o i is placed one at a time into the partition P j which has the largest declustering similarity value with the object o i. In the case where a tie occurs, the object is placed in the partition on which the least number of ties have been assigned. The window approach differs from the greedy approach only in the order in which objects are considered for placement. In the window approach objects are considered in order of reachability. Two hash tables were used to efficiently calculate the similarity between an object and a partition. 5 Clustering The clustering phase is composed of two steps. The first step clusters objects of the same type together. This benefits intra-operator parallelism since each node iterates through the portion of objects that reside in its own disk. Once clustered together based on type, the second step reduces remote page loads by clustering objects which are likely to be accessed by another node together. The implementation of the first step is straight forward but the second is not as obvious. Our approach is to partition the objects to be clustered at a particular node into N partitions where each partition is reserved for a node. Each object is assigned to the partition which has the largest similarity value with respect to the node that the partition is clustered for. This requires a slightly different definition of similarity. The degree of clustering similarity of an object o i with a partition P j of objects is defined as follows: S c (o i ;P j )= w link (o i ;o k )+w link (o k ;o i ) (2) o k 2P j

3 47 We reuse the two hash table technique developed for the declustering process to calculate the clustering equation efficiently. 6 Query Processing Four different queries were tested on the objects of a varying sized OO7 benchmark [Carey et al. 1993]. Varying the size of the OO7 benchmark allowed us to test the scalability of our algorithm by observing response time as the number of processors increase in proportion to problem size. As a base case a slightly modified medium sized OO7 benchmark was used for 32 nodes. ffl Query-1 (a range query): The first query is a set based query which counts the number of atomic parts with build date above ffl Query-2 (a value-based join query): The second query is based on query 8 of the OO7 benchmark. The query involves finding all pairs of documents and atomic parts where the document ID in the atomic part matches the ID of the document [Carey et al. 1993]. The query is processed by performing a value based hash join. ffl Query-3 (a navigational query with sharing): The third query is based on query 5 of the OO7 benchmark. Query 5 of the OO7 benchmark involves finding all base assemblies that use a composite part with a build date later than the build date of the base assembly. ffl Query-4 (a navigational query without sharing): The final query involves finding all composite parts with build dates earlier than its atomic parts build date. We call Query-1 and Query-2 set queries, and call Query-3 and Query-4 navigational queries. An important point to note is that there exists conflicts between the different queries. For Query-1 and Query-2, atomic parts need to be evenly placed on the nodes to allow a higher degree of parallelism but for optimal placement of atomic parts, Query-4 requires atomic parts to be placed together in order to decrease the number of internode traversals. Similar conflicts exists for Query-3 and Query-4. 7 Overview of Test Bed The hardware platform used is the 128 node Fujitsu AP1000 [Ishihata et al. 1990]. Each node has a 25 MHz SPARC CPU with 16MB of memory and 128 KB of direct-mapped cache memory. There are 16 disks in the system. We have simulated a shared-nothing system on this hardware architecture. Each node of the system acts as both a client and a server. The clients do the query processing and the server is responsible for satisfying remote page requests. Initially the system provided two limitations in providing our desired test bed. The first limitation is a lack of support for threads by the operating system and the second is the parallel file-system. The two limitations where overcome by the use of a MPI [Sitsky et al. 1994] non-blocking receive and an air-disk respectively. 8 Performance Results The four queries outlined in Section 6 were first run to train the database, therefore to arrive at the values for the frequency counts. The frequency counts were then used by the various placement algorithms to position the objects into nodes. The four queries were then run 10 times with the objects placed according to the various algorithms to obtain the results presented. When a query completes, the cache is flashed thus all results presented in this paper are derived from cold runs. Note: The labels on the graphs mean the following: ffl RD : Random partitioning ffl RR : Round Robin partitioning ffl DN : Greedy similarity declustering without similarity clustering ffl DC : Greedy similarity declustering with similarity clustering ffl WIN: Window similarity declustering with similarity clustering

4 Respnose Time (sec) RD RR DN DC WIN Number of processors Figure 1: Response time for running all four queries The value of α for DN, DC and WIN were all set to 0.9 since the queries run involved only a small amount of computation. The complete set of results for this project are ommitted from this paper due to paper length limitations, however they can be found in He [1998]. The results on figure 1 show the placement algorithms developed in this paper performing only slightly better than random and round robin. The reason is the execution time of query 2 (parallel value based join) dominates the total execution time of running all four queries. Query 2 can not be optimised by the placement algorithms since it is a set query which does not benefit from reduced navigation. The fact query 2 involves all to all communication and synchronisation also causes the total execution time to appear very non-scalable. This however is not the case for queries 3 and 4 where navigation is present. Queries 3 and 4 when placed via WIN depicted execution times upto 8 fold lower than random placement. WIN appears to be the best performer when navigation is present in the query. From the experiments conducted it was also observed WIN and DC resulted in large reductions (upto 16 fold) in the number of remote page loads while causing only a small amount of client workload imbalance. Another experiment we conducted involved varying training conditions 4 and execution conditions. The results showed the clustering phase was essential in reducing remote page loads when the training conditions differ vastly from execution conditions. This is due to the fact the clustering phase do not need to balance between parallelism and reduced internode object references. 9 Conclusion Both the clustering and declustering of objects in a parallel object oriented database is important in reducing the response time of a set of queries that contains navigation. The fact that the declustering plus clustering approach resulted in a large reduction in the number of remote page loads while causing only a small amount of client workload imbalance is grounds for optimism. The extension of these ideas to online 5 object placement would be an interesting area for further research. Testing with a larger set of queries with more conflicting requirements is important in predicting the performance of the object placement methods in real applications and thus should be explored as a part of further research. Acknowledgement We would like to thank Luke Kirby for helping in the implementation of the test bed and for providing helpful comments and suggestions, David Sitsky and David Walsh for their help in the implementation of the test bed, and Richard Walker for typographical assistance. 4 queries broken up into two categories and they include set and navigation queries. Varying percentage of set and navigational queries where tested. 5 while the database is in operation

5 49 Bibliography CAREY, M., DEWITT, D.,AND NAUGHTON, J The OO7 benchmark. In Proceedings of the 1993 ACM- SIGMOD Conference on the Management of Data. CHEN, L.T.,ROTEM, D.,AND SESHADRI, S Declustering databases on heterogeneous disk systems. In Proceedings of the 21st VLDB Conference (1995), pp COPELAND, G.,ALEXANDER, W.,BOUGHTER, E., AND KELLER, T Data placement in bubba. In Proceedings of the 21st VLDB Conference (1988), pp FANG, M., LEE, R., AND CHANG, C The idea of declustering and its applications. In Proceedings of twelfth International conference on Very Large Databases, GHANDEHARIZADEH, S.,WILHITE, D.,LIN, K., AND ZHAO, X Object placement in parallel objectoriented database systems. Proceedings of the Tenth International Conference on Data Engineering, HE, Z Object placement in parallel object oriented databases. Honours Thesis. Australian National University. ISHIHATA, H.,HORIE, T.,INANO, S.,SHIMIZU, T.,AND KATO, S CAP-II architecture. In Proceedings of the First Fujitsu-ANU CAP Workshop (Kawasaki, Japan, November 1990). Fujitsu Laboratories Ltd. LIU, D.AND SHEKHAR, S Partitioning similarity graphs: A framework for declustering problems. Information Systems 21, 6 (September), PADMANADHAN, S.AND BARU, C. K. 92. Data placement in shared-nothing parallel database systems. Technical report, The University of Michigan. SITSKY, D.,WALSH, D.,AND JOHNSON, C An efficient implementation of the message passing interface (MPI) on the Fujitsu AP1000. In Proceedings of the Third Parallel Computing Workshop (Kawasaki, Japan, Nov ). Fujitsu Laboratories Ltd.

6 50

Advanced Databases: Parallel Databases A.Poulovassilis

Advanced Databases: Parallel Databases A.Poulovassilis 1 Advanced Databases: Parallel Databases A.Poulovassilis 1 Parallel Database Architectures Parallel database systems use parallel processing techniques to achieve faster DBMS performance and handle larger

More information

Computing Data Cubes Using Massively Parallel Processors

Computing Data Cubes Using Massively Parallel Processors Computing Data Cubes Using Massively Parallel Processors Hongjun Lu Xiaohui Huang Zhixian Li {luhj,huangxia,lizhixia}@iscs.nus.edu.sg Department of Information Systems and Computer Science National University

More information

Scalable GPU Graph Traversal!

Scalable GPU Graph Traversal! Scalable GPU Graph Traversal Duane Merrill, Michael Garland, and Andrew Grimshaw PPoPP '12 Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming Benwen Zhang

More information

Parallel DBMS. Parallel Database Systems. PDBS vs Distributed DBS. Types of Parallelism. Goals and Metrics Speedup. Types of Parallelism

Parallel DBMS. Parallel Database Systems. PDBS vs Distributed DBS. Types of Parallelism. Goals and Metrics Speedup. Types of Parallelism Parallel DBMS Parallel Database Systems CS5225 Parallel DB 1 Uniprocessor technology has reached its limit Difficult to build machines powerful enough to meet the CPU and I/O demands of DBMS serving large

More information

Ecient Implementation of Sorting Algorithms on Asynchronous Distributed-Memory Machines

Ecient Implementation of Sorting Algorithms on Asynchronous Distributed-Memory Machines Ecient Implementation of Sorting Algorithms on Asynchronous Distributed-Memory Machines Zhou B. B., Brent R. P. and Tridgell A. y Computer Sciences Laboratory The Australian National University Canberra,

More information

Job Re-Packing for Enhancing the Performance of Gang Scheduling

Job Re-Packing for Enhancing the Performance of Gang Scheduling Job Re-Packing for Enhancing the Performance of Gang Scheduling B. B. Zhou 1, R. P. Brent 2, C. W. Johnson 3, and D. Walsh 3 1 Computer Sciences Laboratory, Australian National University, Canberra, ACT

More information

B.H.GARDI COLLEGE OF ENGINEERING & TECHNOLOGY (MCA Dept.) Parallel Database Database Management System - 2

B.H.GARDI COLLEGE OF ENGINEERING & TECHNOLOGY (MCA Dept.) Parallel Database Database Management System - 2 Introduction :- Today single CPU based architecture is not capable enough for the modern database that are required to handle more demanding and complex requirements of the users, for example, high performance,

More information

Record Placement Based on Data Skew Using Solid State Drives

Record Placement Based on Data Skew Using Solid State Drives Record Placement Based on Data Skew Using Solid State Drives Jun Suzuki 1, Shivaram Venkataraman 2, Sameer Agarwal 2, Michael Franklin 2, and Ion Stoica 2 1 Green Platform Research Laboratories, NEC j-suzuki@ax.jp.nec.com

More information

Fundamentals of Database Systems

Fundamentals of Database Systems Fundamentals of Database Systems Assignment: 4 September 21, 2015 Instructions 1. This question paper contains 10 questions in 5 pages. Q1: Calculate branching factor in case for B- tree index structure,

More information

Analysis of Parallel Scan Processing in Shared Disk Database Systems

Analysis of Parallel Scan Processing in Shared Disk Database Systems in: Proc. EURO-PAR 95 Conf., LNCS, Springer-Verlag, Stockholm, August 1995 Analysis of Parallel Scan Processing in Shared Disk Database Systems Erhard Rahm Thomas Stöhr University of Leipzig, Institute

More information

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1 Main Memory Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 Main Memory Background Swapping Contiguous allocation Paging Segmentation Segmentation with paging

More information

A Data Centered Approach for Cache Partitioning in Embedded Real- Time Database System

A Data Centered Approach for Cache Partitioning in Embedded Real- Time Database System A Data Centered Approach for Cache Partitioning in Embedded Real- Time Database System HU WEI CHEN TIANZHOU SHI QINGSONG JIANG NING College of Computer Science Zhejiang University College of Computer Science

More information

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15

Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2014/15 Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2014/15 Lecture X: Parallel Databases Topics Motivation and Goals Architectures Data placement Query processing Load balancing

More information

LOAD BALANCING ALGORITHMS ROUND-ROBIN (RR), LEAST- CONNECTION, AND LEAST LOADED EFFICIENCY

LOAD BALANCING ALGORITHMS ROUND-ROBIN (RR), LEAST- CONNECTION, AND LEAST LOADED EFFICIENCY LOAD BALANCING ALGORITHMS ROUND-ROBIN (RR), LEAST- CONNECTION, AND LEAST LOADED EFFICIENCY Dr. Mustafa ElGili Mustafa Computer Science Department, Community College, Shaqra University, Shaqra, Saudi Arabia,

More information

A Feasibility Study for Methods of Effective Memoization Optimization

A Feasibility Study for Methods of Effective Memoization Optimization A Feasibility Study for Methods of Effective Memoization Optimization Daniel Mock October 2018 Abstract Traditionally, memoization is a compiler optimization that is applied to regions of code with few

More information

Cost Models for Query Processing Strategies in the Active Data Repository

Cost Models for Query Processing Strategies in the Active Data Repository Cost Models for Query rocessing Strategies in the Active Data Repository Chialin Chang Institute for Advanced Computer Studies and Department of Computer Science University of Maryland, College ark 272

More information

Parallel Databases C H A P T E R18. Practice Exercises

Parallel Databases C H A P T E R18. Practice Exercises C H A P T E R18 Parallel Databases Practice Exercises 181 In a range selection on a range-partitioned attribute, it is possible that only one disk may need to be accessed Describe the benefits and drawbacks

More information

ECE7995 (7) Parallel I/O

ECE7995 (7) Parallel I/O ECE7995 (7) Parallel I/O 1 Parallel I/O From user s perspective: Multiple processes or threads of a parallel program accessing data concurrently from a common file From system perspective: - Files striped

More information

ayaz ali Micro & Macro Scheduling Techniques Ayaz Ali Department of Computer Science University of Houston Houston, TX

ayaz ali Micro & Macro Scheduling Techniques Ayaz Ali Department of Computer Science University of Houston Houston, TX ayaz ali Micro & Macro Scheduling Techniques Ayaz Ali Department of Computer Science University of Houston Houston, TX 77004 ayaz@cs.uh.edu 1. INTRODUCTION Scheduling techniques has historically been one

More information

ADR and DataCutter. Sergey Koren CMSC818S. Thursday March 4 th, 2004

ADR and DataCutter. Sergey Koren CMSC818S. Thursday March 4 th, 2004 ADR and DataCutter Sergey Koren CMSC818S Thursday March 4 th, 2004 Active Data Repository Used for building parallel databases from multidimensional data sets Integrates storage, retrieval, and processing

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information

Join Processing for Flash SSDs: Remembering Past Lessons

Join Processing for Flash SSDs: Remembering Past Lessons Join Processing for Flash SSDs: Remembering Past Lessons Jaeyoung Do, Jignesh M. Patel Department of Computer Sciences University of Wisconsin-Madison $/MB GB Flash Solid State Drives (SSDs) Benefits of

More information

Ecient Implementation of Sorting Algorithms on Asynchronous Distributed-Memory Machines

Ecient Implementation of Sorting Algorithms on Asynchronous Distributed-Memory Machines Ecient Implementation of Sorting Algorithms on Asynchronous Distributed-Memory Machines B. B. Zhou, R. P. Brent and A. Tridgell Computer Sciences Laboratory The Australian National University Canberra,

More information

Outline. How Fast is -fast? Performance Analysis of KKD Applications using Hardware Performance Counters on UltraSPARC-III

Outline. How Fast is -fast? Performance Analysis of KKD Applications using Hardware Performance Counters on UltraSPARC-III Outline How Fast is -fast? Performance Analysis of KKD Applications using Hardware Performance Counters on UltraSPARC-III Peter Christen and Adam Czezowski CAP Research Group Department of Computer Science,

More information

Visual Analysis of Lagrangian Particle Data from Combustion Simulations

Visual Analysis of Lagrangian Particle Data from Combustion Simulations Visual Analysis of Lagrangian Particle Data from Combustion Simulations Hongfeng Yu Sandia National Laboratories, CA Ultrascale Visualization Workshop, SC11 Nov 13 2011, Seattle, WA Joint work with Jishang

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

Scalable Multi-DM642-based MPEG-2 to H.264 Transcoder. Arvind Raman, Sriram Sethuraman Ittiam Systems (Pvt.) Ltd. Bangalore, India

Scalable Multi-DM642-based MPEG-2 to H.264 Transcoder. Arvind Raman, Sriram Sethuraman Ittiam Systems (Pvt.) Ltd. Bangalore, India Scalable Multi-DM642-based MPEG-2 to H.264 Transcoder Arvind Raman, Sriram Sethuraman Ittiam Systems (Pvt.) Ltd. Bangalore, India Outline of Presentation MPEG-2 to H.264 Transcoding Need for a multiprocessor

More information

Parallelizing Frequent Itemset Mining with FP-Trees

Parallelizing Frequent Itemset Mining with FP-Trees Parallelizing Frequent Itemset Mining with FP-Trees Peiyi Tang Markus P. Turkia Department of Computer Science Department of Computer Science University of Arkansas at Little Rock University of Arkansas

More information

data parallelism Chris Olston Yahoo! Research

data parallelism Chris Olston Yahoo! Research data parallelism Chris Olston Yahoo! Research set-oriented computation data management operations tend to be set-oriented, e.g.: apply f() to each member of a set compute intersection of two sets easy

More information

A Case for Merge Joins in Mediator Systems

A Case for Merge Joins in Mediator Systems A Case for Merge Joins in Mediator Systems Ramon Lawrence Kirk Hackert IDEA Lab, Department of Computer Science, University of Iowa Iowa City, IA, USA {ramon-lawrence, kirk-hackert}@uiowa.edu Abstract

More information

Profile of CopperEye Indexing Technology. A CopperEye Technical White Paper

Profile of CopperEye Indexing Technology. A CopperEye Technical White Paper Profile of CopperEye Indexing Technology A CopperEye Technical White Paper September 2004 Introduction CopperEye s has developed a new general-purpose data indexing technology that out-performs conventional

More information

! Parallel machines are becoming quite common and affordable. ! Databases are growing increasingly large

! Parallel machines are becoming quite common and affordable. ! Databases are growing increasingly large Chapter 20: Parallel Databases Introduction! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems!

More information

Chapter 20: Parallel Databases

Chapter 20: Parallel Databases Chapter 20: Parallel Databases! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems 20.1 Introduction!

More information

Chapter 20: Parallel Databases. Introduction

Chapter 20: Parallel Databases. Introduction Chapter 20: Parallel Databases! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems 20.1 Introduction!

More information

A Data Centered Approach for Cache Partitioning in Embedded Real- Time Database System

A Data Centered Approach for Cache Partitioning in Embedded Real- Time Database System A Data Centered Approach for Cache Partitioning in Embedded Real- Time Database System HU WEI, CHEN TIANZHOU, SHI QINGSONG, JIANG NING College of Computer Science Zhejiang University College of Computer

More information

Parallel Query Optimisation

Parallel Query Optimisation Parallel Query Optimisation Contents Objectives of parallel query optimisation Parallel query optimisation Two-Phase optimisation One-Phase optimisation Inter-operator parallelism oriented optimisation

More information

Exploiting On-Chip Data Transfers for Improving Performance of Chip-Scale Multiprocessors

Exploiting On-Chip Data Transfers for Improving Performance of Chip-Scale Multiprocessors Exploiting On-Chip Data Transfers for Improving Performance of Chip-Scale Multiprocessors G. Chen 1, M. Kandemir 1, I. Kolcu 2, and A. Choudhary 3 1 Pennsylvania State University, PA 16802, USA 2 UMIST,

More information

Chapter 18: Parallel Databases

Chapter 18: Parallel Databases Chapter 18: Parallel Databases Introduction Parallel machines are becoming quite common and affordable Prices of microprocessors, memory and disks have dropped sharply Recent desktop computers feature

More information

Client-Server Semantic Binary Database: Design and Development

Client-Server Semantic Binary Database: Design and Development Client-Server Semantic Binary Database: Design and Development Konstantin Beznosov High Performance Database Research Center Florida International University http://www.cs.fiu.edu/ beznosov December 9,

More information

Research on the Implementation of MPI on Multicore Architectures

Research on the Implementation of MPI on Multicore Architectures Research on the Implementation of MPI on Multicore Architectures Pengqi Cheng Department of Computer Science & Technology, Tshinghua University, Beijing, China chengpq@gmail.com Yan Gu Department of Computer

More information

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( )

Anti-Caching: A New Approach to Database Management System Architecture. Guide: Helly Patel ( ) Dr. Sunnie Chung Kush Patel ( ) Anti-Caching: A New Approach to Database Management System Architecture Guide: Helly Patel (2655077) Dr. Sunnie Chung Kush Patel (2641883) Abstract Earlier DBMS blocks stored on disk, with a main memory

More information

Chapter 18: Parallel Databases

Chapter 18: Parallel Databases Chapter 18: Parallel Databases Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 18: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery

More information

Chapter 18: Parallel Databases. Chapter 18: Parallel Databases. Parallelism in Databases. Introduction

Chapter 18: Parallel Databases. Chapter 18: Parallel Databases. Parallelism in Databases. Introduction Chapter 18: Parallel Databases Chapter 18: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery Parallelism Intraoperation Parallelism Interoperation Parallelism Design of

More information

Ceph: A Scalable, High-Performance Distributed File System

Ceph: A Scalable, High-Performance Distributed File System Ceph: A Scalable, High-Performance Distributed File System S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long Presented by Philip Snowberger Department of Computer Science and Engineering University

More information

Location Database Clustering to Achieve Location Management Time Cost Reduction in A Mobile Computing System

Location Database Clustering to Achieve Location Management Time Cost Reduction in A Mobile Computing System Location Database Clustering to Achieve Location Management Time Cost Reduction in A Mobile Computing ystem Chen Jixiong, Li Guohui, Xu Huajie, Cai Xia*, Yang Bing chool of Computer cience & Technology,

More information

Multiple Query Optimization for Data Analysis Applications on Clusters of SMPs

Multiple Query Optimization for Data Analysis Applications on Clusters of SMPs Multiple Query Optimization for Data Analysis Applications on Clusters of SMPs Henrique Andrade y, Tahsin Kurc z, Alan Sussman y, Joel Saltz yz y Dept. of Computer Science University of Maryland College

More information

Engineering Goals. Scalability Availability. Transactional behavior Security EAI... CS530 S05

Engineering Goals. Scalability Availability. Transactional behavior Security EAI... CS530 S05 Engineering Goals Scalability Availability Transactional behavior Security EAI... Scalability How much performance can you get by adding hardware ($)? Performance perfect acceptable unacceptable Processors

More information

Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System

Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System Distributed Scheduling for the Sombrero Single Address Space Distributed Operating System Donald S. Miller Department of Computer Science and Engineering Arizona State University Tempe, AZ, USA Alan C.

More information

Workloads Programmierung Paralleler und Verteilter Systeme (PPV)

Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Workloads 2 Hardware / software execution environment

More information

Data Warehousing 11g Essentials

Data Warehousing 11g Essentials Oracle 1z0-515 Data Warehousing 11g Essentials Version: 6.0 QUESTION NO: 1 Indentify the true statement about REF partitions. A. REF partitions have no impact on partition-wise joins. B. Changes to partitioning

More information

Use of Shape Deformation to Seamlessly Stitch Historical Document Images

Use of Shape Deformation to Seamlessly Stitch Historical Document Images Use of Shape Deformation to Seamlessly Stitch Historical Document Images Wei Liu Wei Fan Li Chen Jun Sun Satoshi Naoi In China, efforts are being made to preserve historical documents in the form of digital

More information

Performance Isolation in Multi- Tenant Relational Database-asa-Service. Sudipto Das (Microsoft Research)

Performance Isolation in Multi- Tenant Relational Database-asa-Service. Sudipto Das (Microsoft Research) Performance Isolation in Multi- Tenant Relational Database-asa-Service Sudipto Das (Microsoft Research) CREATE DATABASE CREATE TABLE SELECT... INSERT UPDATE SELECT * FROM FOO WHERE App1 App2 App3 App1

More information

RESTORE: REUSING RESULTS OF MAPREDUCE JOBS. Presented by: Ahmed Elbagoury

RESTORE: REUSING RESULTS OF MAPREDUCE JOBS. Presented by: Ahmed Elbagoury RESTORE: REUSING RESULTS OF MAPREDUCE JOBS Presented by: Ahmed Elbagoury Outline Background & Motivation What is Restore? Types of Result Reuse System Architecture Experiments Conclusion Discussion Background

More information

Buffer Management for XFS in Linux. William J. Earl SGI

Buffer Management for XFS in Linux. William J. Earl SGI Buffer Management for XFS in Linux William J. Earl SGI XFS Requirements for a Buffer Cache Delayed allocation of disk space for cached writes supports high write performance Delayed allocation main memory

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance Weaving Relations for Cache Performance Anastassia Ailamaki Carnegie Mellon David DeWitt, Mark Hill, and Marios Skounakis University of Wisconsin-Madison Memory Hierarchies PROCESSOR EXECUTION PIPELINE

More information

Architecture-Conscious Database Systems

Architecture-Conscious Database Systems Architecture-Conscious Database Systems 2009 VLDB Summer School Shanghai Peter Boncz (CWI) Sources Thank You! l l l l Database Architectures for New Hardware VLDB 2004 tutorial, Anastassia Ailamaki Query

More information

PARALLEL & DISTRIBUTED DATABASES CS561-SPRING 2012 WPI, MOHAMED ELTABAKH

PARALLEL & DISTRIBUTED DATABASES CS561-SPRING 2012 WPI, MOHAMED ELTABAKH PARALLEL & DISTRIBUTED DATABASES CS561-SPRING 2012 WPI, MOHAMED ELTABAKH 1 INTRODUCTION In centralized database: Data is located in one place (one server) All DBMS functionalities are done by that server

More information

6 Distributed data management I Hashing

6 Distributed data management I Hashing 6 Distributed data management I Hashing There are two major approaches for the management of data in distributed systems: hashing and caching. The hashing approach tries to minimize the use of communication

More information

Comparing Gang Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT)

Comparing Gang Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT) Comparing Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT) Abstract Charles Severance Michigan State University East Lansing, Michigan,

More information

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358 Virtual Memory Reading: Silberschatz chapter 10 Reading: Stallings chapter 8 1 Outline Introduction Advantages Thrashing Principal of Locality VM based on Paging/Segmentation Combined Paging and Segmentation

More information

SSDs vs HDDs for DBMS by Glen Berseth York University, Toronto

SSDs vs HDDs for DBMS by Glen Berseth York University, Toronto SSDs vs HDDs for DBMS by Glen Berseth York University, Toronto So slow So cheap So heavy So fast So expensive So efficient NAND based flash memory Retains memory without power It works by trapping a small

More information

DYNAMIC REPLICATION OF CONTENT IN THE HAMMERHEAD MULTIMEDIA SERVER

DYNAMIC REPLICATION OF CONTENT IN THE HAMMERHEAD MULTIMEDIA SERVER DYNAMIC REPLICATION OF CONTENT IN THE HAMMERHEAD MULTIMEDIA SERVER Jonathan Dukes Jeremy Jones Department of Computer Science Trinity College Dublin, Ireland Email: Jonathan.Dukes@cs.tcd.ie KEYWORDS Multimedia

More information

A Scalable Sharing Architecture for a Parallel Database System. Vibby Gottemukkala Edward Omiecinski Umakishore Ramachandran. College of Computing

A Scalable Sharing Architecture for a Parallel Database System. Vibby Gottemukkala Edward Omiecinski Umakishore Ramachandran. College of Computing A Scalable Sharing Architecture for a Parallel Database System Vibby Gottemukkala Edward Omiecinski Umakishore Ramachandran College of Computing Georgia Institute of Technology, Atlanta, GA 30332 Abstract

More information

Revisiting Pipelined Parallelism in Multi-Join Query Processing

Revisiting Pipelined Parallelism in Multi-Join Query Processing Revisiting Pipelined Parallelism in Multi-Join Query Processing Bin Liu Elke A. Rundensteiner Department of Computer Science, Worcester Polytechnic Institute Worcester, MA 01609-2280 (binliu rundenst)@cs.wpi.edu

More information

Optimistic Concurrency Control based on Cache Coherency in Distributed Database Systems

Optimistic Concurrency Control based on Cache Coherency in Distributed Database Systems 148 Optimistic Concurrency Control based on Cache Coherency in Distributed Database Systems Tae-Young Choe, Kumoh National Institute of Technology 1, YangHo Dong, Gumi, Korea Summary Optimistic concurrency

More information

Virtual Allocation: A Scheme for Flexible Storage Allocation

Virtual Allocation: A Scheme for Flexible Storage Allocation Virtual Allocation: A Scheme for Flexible Storage Allocation Sukwoo Kang, and A. L. Narasimha Reddy Dept. of Electrical Engineering Texas A & M University College Station, Texas, 77843 fswkang, reddyg@ee.tamu.edu

More information

MDHIM: A Parallel Key/Value Store Framework for HPC

MDHIM: A Parallel Key/Value Store Framework for HPC MDHIM: A Parallel Key/Value Store Framework for HPC Hugh Greenberg 7/6/2015 LA-UR-15-25039 HPC Clusters Managed by a job scheduler (e.g., Slurm, Moab) Designed for running user jobs Difficult to run system

More information

File Systems. Kartik Gopalan. Chapter 4 From Tanenbaum s Modern Operating System

File Systems. Kartik Gopalan. Chapter 4 From Tanenbaum s Modern Operating System File Systems Kartik Gopalan Chapter 4 From Tanenbaum s Modern Operating System 1 What is a File System? File system is the OS component that organizes data on the raw storage device. Data, by itself, is

More information

Cross-Layer Memory Management to Reduce DRAM Power Consumption

Cross-Layer Memory Management to Reduce DRAM Power Consumption Cross-Layer Memory Management to Reduce DRAM Power Consumption Michael Jantz Assistant Professor University of Tennessee, Knoxville 1 Introduction Assistant Professor at UT since August 2014 Before UT

More information

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P?

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P? Peer-to-Peer Data Management - Part 1- Alex Coman acoman@cs.ualberta.ca Addressed Issue [1] Placement and retrieval of data [2] Server architectures for hybrid P2P [3] Improve search in pure P2P systems

More information

An Oracle White Paper April 2010

An Oracle White Paper April 2010 An Oracle White Paper April 2010 In October 2009, NEC Corporation ( NEC ) established development guidelines and a roadmap for IT platform products to realize a next-generation IT infrastructures suited

More information

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts Memory management Last modified: 26.04.2016 1 Contents Background Logical and physical address spaces; address binding Overlaying, swapping Contiguous Memory Allocation Segmentation Paging Structure of

More information

Equi-sized, Homogeneous Partitioning

Equi-sized, Homogeneous Partitioning Equi-sized, Homogeneous Partitioning Frank Klawonn and Frank Höppner 2 Department of Computer Science University of Applied Sciences Braunschweig /Wolfenbüttel Salzdahlumer Str 46/48 38302 Wolfenbüttel,

More information

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) 4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) Benchmark Testing for Transwarp Inceptor A big data analysis system based on in-memory computing Mingang Chen1,2,a,

More information

Performance Study of the MPI and MPI-CH Communication Libraries on the IBM SP

Performance Study of the MPI and MPI-CH Communication Libraries on the IBM SP Performance Study of the MPI and MPI-CH Communication Libraries on the IBM SP Ewa Deelman and Rajive Bagrodia UCLA Computer Science Department deelman@cs.ucla.edu, rajive@cs.ucla.edu http://pcl.cs.ucla.edu

More information

Summary Cache based Co-operative Proxies

Summary Cache based Co-operative Proxies Summary Cache based Co-operative Proxies Project No: 1 Group No: 21 Vijay Gabale (07305004) Sagar Bijwe (07305023) 12 th November, 2007 1 Abstract Summary Cache based proxies cooperate behind a bottleneck

More information

Join algorithm costs revisited

Join algorithm costs revisited The VLDB Journal (1996) 5: 64 84 The VLDB Journal c Springer-Verlag 1996 Join algorithm costs revisited Evan P. Harris, Kotagiri Ramamohanarao Department of Computer Science, The University of Melbourne,

More information

Chapter 8: Memory-Management Strategies

Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

Chained Declustering: A New Availability Strategy for Multiprocssor Database machines

Chained Declustering: A New Availability Strategy for Multiprocssor Database machines Chained Declustering: A New Availability Strategy for Multiprocssor Database machines Hui-I Hsiao David J. DeWitt Computer Sciences Department University of Wisconsin This research was partially supported

More information

Combining Distributed Memory and Shared Memory Parallelization for Data Mining Algorithms

Combining Distributed Memory and Shared Memory Parallelization for Data Mining Algorithms Combining Distributed Memory and Shared Memory Parallelization for Data Mining Algorithms Ruoming Jin Department of Computer and Information Sciences Ohio State University, Columbus OH 4321 jinr@cis.ohio-state.edu

More information

Evaluating find a path reachability queries

Evaluating find a path reachability queries Evaluating find a path reachability queries Panagiotis ouros and Theodore Dalamagas and Spiros Skiadopoulos and Timos Sellis Abstract. Graphs are used for modelling complex problems in many areas, such

More information

FILE SYSTEM IMPLEMENTATION. Sunu Wibirama

FILE SYSTEM IMPLEMENTATION. Sunu Wibirama FILE SYSTEM IMPLEMENTATION Sunu Wibirama File-System Structure Outline File-System Implementation Directory Implementation Allocation Methods Free-Space Management Discussion File-System Structure Outline

More information

Example: CPU-bound process that would run for 100 quanta continuously 1, 2, 4, 8, 16, 32, 64 (only 37 required for last run) Needs only 7 swaps

Example: CPU-bound process that would run for 100 quanta continuously 1, 2, 4, 8, 16, 32, 64 (only 37 required for last run) Needs only 7 swaps Interactive Scheduling Algorithms Continued o Priority Scheduling Introduction Round-robin assumes all processes are equal often not the case Assign a priority to each process, and always choose the process

More information

Parallel Similarity Join with Data Partitioning for Prefix Filtering

Parallel Similarity Join with Data Partitioning for Prefix Filtering 22 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015 Parallel Similarity Join with Data Partitioning for Prefix Filtering Jaruloj Chongstitvatana 1 and Methus Bhirakit 2, Non-members

More information

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross Track Join Distributed Joins with Minimal Network Traffic Orestis Polychroniou Rajkumar Sen Kenneth A. Ross Local Joins Algorithms Hash Join Sort Merge Join Index Join Nested Loop Join Spilling to disk

More information

Process. Memory Management

Process. Memory Management Process Memory Management One or more threads of execution Resources required for execution Memory (RAM) Program code ( text ) Data (initialised, uninitialised, stack) Buffers held in the kernel on behalf

More information

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others Memory Management 1 Process One or more threads of execution Resources required for execution Memory (RAM) Program code ( text ) Data (initialised, uninitialised, stack) Buffers held in the kernel on behalf

More information

Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs

Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs B. Barla Cambazoglu and Cevdet Aykanat Bilkent University, Department of Computer Engineering, 06800, Ankara, Turkey {berkant,aykanat}@cs.bilkent.edu.tr

More information

An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server

An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server D.N. Sujatha 1, K. Girish 1, K.R. Venugopal 1,andL.M.Patnaik 2 1 Department of Computer Science and Engineering University Visvesvaraya

More information

Load Sharing in Peer-to-Peer Networks using Dynamic Replication

Load Sharing in Peer-to-Peer Networks using Dynamic Replication Load Sharing in Peer-to-Peer Networks using Dynamic Replication S Rajasekhar, B Rong, K Y Lai, I Khalil and Z Tari School of Computer Science and Information Technology RMIT University, Melbourne 3, Australia

More information

Chapter 17: Parallel Databases

Chapter 17: Parallel Databases Chapter 17: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery Parallelism Intraoperation Parallelism Interoperation Parallelism Design of Parallel Systems Database Systems

More information

Access pattern Time (in millions of references)

Access pattern Time (in millions of references) Visualizing Working Sets Evangelos P. Markatos Institute of Computer Science (ICS) Foundation for Research & Technology { Hellas (FORTH) P.O.Box 1385, Heraklio, Crete, GR-711-10 GREECE markatos@csi.forth.gr,

More information

OPS-23: OpenEdge Performance Basics

OPS-23: OpenEdge Performance Basics OPS-23: OpenEdge Performance Basics White Star Software adam@wss.com Agenda Goals of performance tuning Operating system setup OpenEdge setup Setting OpenEdge parameters Tuning APWs OpenEdge utilities

More information

1.1 - Basics of Query Processing in SQL Server

1.1 - Basics of Query Processing in SQL Server Department of Computer Science and Engineering 2013/2014 Database Administration and Tuning Lab 3 2nd semester In this lab class, we will address query processing. For students with a particular interest

More information

A Performance Study of Locking Granularity in Shared-Nothing Parallel Database Systems

A Performance Study of Locking Granularity in Shared-Nothing Parallel Database Systems A Performance Study of Locking Granularity in Shared-Nothing Parallel Database Systems S. Dandamudi, S. L. Au, and C. Y. Chow School of Computer Science, Carleton University Ottawa, Ontario K1S 5B6, Canada

More information

Topology and affinity aware hierarchical and distributed load-balancing in Charm++

Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Emmanuel Jeannot, Guillaume Mercier, François Tessier Inria - IPB - LaBRI - University of Bordeaux - Argonne National

More information

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007.

Sandor Heman, Niels Nes, Peter Boncz. Dynamic Bandwidth Sharing. Cooperative Scans: Marcin Zukowski. CWI, Amsterdam VLDB 2007. Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS Marcin Zukowski Sandor Heman, Niels Nes, Peter Boncz CWI, Amsterdam VLDB 2007 Outline Scans in a DBMS Cooperative Scans Benchmarks DSM version VLDB,

More information

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Storing data on disk The traditional storage hierarchy for DBMSs is: 1. main memory (primary storage) for data currently

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2 Instructors: John Wawrzynek & Vladimir Stojanovic http://insteecsberkeleyedu/~cs61c/ Typical Memory Hierarchy Datapath On-Chip

More information