Coreference Resolution with Knowledge. Haoruo Peng March 20, 2015

Size: px
Start display at page:

Download "Coreference Resolution with Knowledge. Haoruo Peng March 20, 2015"

Transcription

1 Coreference Resolution with Knowledge Haoruo Peng March 20,

2 Coreference Problem 2

3 Coreference Problem 3

4 Online Demo Please check outhttp://cogcomp.cs.illinois.edu/page/demo_view/coref 4

5 General Framework Jack threw the bags of Mary into the water since he is angry with her. 5

6 General Framework Jack threw the bags of Mary into the water since he is angry with her. Mention Detection 5

7 General Framework Jack threw the bags of Mary into the water since he is angry with her. Mention Detection 5

8 General Framework Jack threw the bags of Mary into the water since he is angry with her. Mention Detection Pairwise Mention Scoring 5

9 General Framework Jack threw the bags of Mary into the water since he is angry with her. Mention Detection Pairwise Mention Scoring Goal: Coreferent Mentions have higher scores 5

10 General Framework Jack threw the bags of Mary into the water since he is angry with her. Mention Detection Pairwise Mention Scoring Goal: Coreferent Mentions have higher scores 5

11 General Framework Jack threw the bags of Mary into the water since he is angry with her. Mention Detection Pairwise Mention Scoring Goal: Coreferent Mentions have higher scores Inference (ILP) Best-Link All-Link 5

12 ILP formulation of CR Best-Link All-Link 6

13 General Framework Learning (for Pairwise Mention Scores) Structural SVM Features: Mention Types, String Relations, Semantic, Relative Location, Anaphoricity(Learned), Aligned Modifiers, Memorization, etc. 7

14 General Framework Learning (for Pairwise Mention Scores) Structural SVM Features: Mention Types, String Relations, Semantic, Relative Location, Anaphoricity(Learned), Aligned Modifiers, Memorization, etc. Evaluation MUC BCUB CEAF_e 7

15 General Framework Learning (for Pairwise Mention Scores) Structural SVM Features: Mention Types, String Relations, Semantic, Relative Location, Anaphoricity(Learned), Aligned Modifiers, Memorization, etc. Evaluation MUC BCUB CEAF_e IllinoisCoref VS. Stanford Muti-pass Sieve System VS. Berkeley CR System 7

16 Difficulties in CR Hard Coreference Problems [A bird] perched on the [limb] and [it] bent. [Robert] is robbed by [Kevin], and [he] is arrested by police. Gender / Plurality information cannot help -> Requires Knowledge 8

17 Part 1 Solving Hard Coreference Problems 9

18 Hard Coreference Problems Motivating Examples 10

19 Hard Coreference Problems Motivating Examples Category 1 [A bird] perched on the [limb] and [it] bent. [The bee] landed on [the flower] because [it] had pollen. 10

20 Hard Coreference Problems Motivating Examples Category 1 [A bird] perched on the [limb] and [it] bent. [The bee] landed on [the flower] because [it] had pollen. Category 2 [Jack] is robbed by [Kevin], and [he] is arrested by police. [Jim] was afraid of [Robert] because [he] gets scared around new people. 10

21 Hard Coreference Problems Motivating Examples Category 1 [A bird] perched on the [limb] and [it] bent. [The bee] landed on [the flower] because [it] had pollen. Category 2 [Jack] is robbed by [Kevin], and [he] is arrested by police. [Jim] was afraid of [Robert] because [he] gets scared around new people. C [Lakshman] asked [Vivan] to get him some ice cream because [he] was hot. 10

22 Predicate Schemas Type 1 Type 2 11

23 Predicate Schemas Type 1 Type 2 11

24 Predicate Schemas Sub Obj Type 1 Type 2 11

25 Predicate Schemas Sub Obj Type 1 (Cat1) [The bee] landed on [the flower] because [it] had pollen. Type 2 11

26 Predicate Schemas Type 1 Sub Obj (Cat1) [The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen])) Type 2 11

27 Predicate Schemas Type 1 Sub Obj (Cat1) [The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen])) Type 2 11

28 Predicate Schemas Type 1 Sub Obj (Cat1) [The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen])) Type 2 11

29 Predicate Schemas Type 1 Sub Obj (Cat1) [The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen])) Type 2 Shared Mention 11

30 Predicate Schemas Type 1 Sub Obj (Cat1) [The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen])) Type 2 Shared Mention (Cat2) [Jim] was afraid of [Robert] because [he] gets scared around new people. 11

31 Predicate Schemas Sub Obj Type 1 (Cat1) [The bee] landed on [the flower] because [it] had pollen. S(have(m=[the flower], a=[pollen])) > S(have(m=[the bee], a=[pollen])) Shared Mention Type 2 (Cat2) [Jim] was afraid of [Robert] because [he] gets scared around new people. S S(be afraid of(a=*, m=*) get scared around(m=*, a=*), because) 11 ^ ^

32 Predicate Schemas Possible variations for scoring function statistics. 12

33 Predicate Schemas in Coreference 13

34 Predicate Schemas in Coreference Pairwise Mention Scoring Function 13

35 Predicate Schemas in Coreference Pairwise Mention Scoring Function Scoring Function for Predicate Schemas 13

36 Predicate Schemas in Coreference Pairwise Mention Scoring Function Scoring Function for Predicate Schemas We can add scores of Predicate Schemas as Features 13

37 Ways of Using Knowledge Major Disadvantages of Using Knowledge as Features Noise in Knowledge Inexplicit Textual Inference Alternative way Using Knowledge as Constraints 14

38 Using Knowledge as Constraints 15

39 Using Knowledge as Constraints Generating Constraints 15

40 Using Knowledge as Constraints Generating Constraints ILP inference (Best-Link) 15

41 Scores for Predicate Schemas Multiple Sources Gigaword Wikipedia Web Search Polarity Information 16

42 Scores for Predicate Schemas Gigaword Chunking + Dependency Parsing => predicate(subject, object) => Type 1 Predicate Schema Heuristic Coreference => Type 2 Predicate Schema 17

43 Scores for Predicate Schemas Gigaword Chunking + Dependency Parsing => predicate(subject, object) => Type 1 Predicate Schema Heuristic Coreference => Type 2 Predicate Schema Wikipedia Entity Linking to ground on Wikipedia Entries (Disambiguation) Gather Simple Statistics for 1) immediately after 2) immediately before 3) after 4) before => Type 1 Predicate Schema ) (approximation) 17

44 Scores for Predicate Schemas Web Search Google Query with Quote (counts) m predicate, m a, a m, m predicate a => Type 1 Predicate Schema 18

45 Scores for Predicate Schemas Web Search Google Query with Quote (counts) m predicate, m a, a m, m predicate a => Type 1 Predicate Schema Polarity Information Polarity on predicates => Polarity on mentions Negate polarity if mention is object Negate polarity for polarity-reversing connective +1 if polarities for mentions are the same -1 if polarities for mentions are different => Type 2 Predicate Schema 18

46 Recap Things to consider for using knowledge in NLP Knowledge Representation Predicate Schema Knowledge Inference Features VS. Inference Knowledge Acquisition Multiple Sources 19

47 Datasets Winograd dataset 1 [The bee] landed on [the flower] because [it] had pollen. [The bee] landed on [the flower] because [it] wanted pollen

48 Datasets Winograd dataset 1 [The bee] landed on [the flower] because [it] had pollen. [The bee] landed on [the flower] because [it] wanted pollen

49 Datasets Winograd dataset 1 [The bee] landed on [the flower] because [it] had pollen. [The bee] landed on [the flower] because [it] wanted pollen. [Jack] threw the bags of [John] into the water since [he] mistakenly asked him to carry his bags

50 Datasets Winograd dataset 1 [The bee] landed on [the flower] because [it] had pollen. [The bee] landed on [the flower] because [it] wanted pollen. [Jack] threw the bags of [John] into the water since [he] mistakenly asked him to carry his bags. W inocoref dataset

51 Evaluation on Hard Coreference Dataset Winograd WinoCoref Metric Precision AntePre Illinois IlliCons Rahman and Ng (2012) KnowFeat KnowCons KnowComb

52 Evaluation on Standard Coreference 22

53 Analysis on Effects of Schemas 23

54 Part 2 Profiler: Knowledge Schemas at Scale 24

55 Goal How to enlarge the Knowledge acquired from text Data Volume Schema Richness Profiler Demo: 25

56 Motivation 26

57 Enriched Schemas 27

58 Enriched Schemas 28

59 Enriched Schemas 29

60 Implementation 30

61 Effect of Wikification (Entity-Linking) 31

62 Effect of Wikification (Entity-Linking) 32

63 Knowledge Visualization 33

64 Knowledge Visualization 34

65 Publications [1] Solving Hard Coreference Problems. Haoruo Peng*, Daniel Khashabi* and Dan Roth. NAACL [2] A Joint Framework for Mention Head Detection and Coreference Resolution. Submitted to ACL [3] Profiler: Knowledge Schemas at Scale. Submitted to Transactions of ACL

66 Future Directions The use of world knowledge in NLP tasks Knowledge Representation (schemas) Is co-occurrence information enough? Knowledge Inference Sparsity Issues Knowledge Acquisition Which sources to choose? Interpolation / Tasks beyond CR (CR can be seen as a subset of AI-complete problems) Outlier Detection for Singleton Mentions 36

67 Collaborators Daniel Khashabi Zhiye Fei Kaiwei Chang Prof. Dan Roth 37

68 Thank You! 38

69 Difficulties in CR Hard Coreference Problems Ex.1 [A bird] perched on the [limb] and [it] bent. Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police. Gender / Plurality information cannot help -> Requires Knowledge 39

70 Difficulties in CR Hard Coreference Problems Ex.1 [A bird] perched on the [limb] and [it] bent. Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police. Gender / Plurality information cannot help -> Requires Knowledge 39

71 Difficulties in CR Hard Coreference Problems Ex.1 [A bird] perched on the [limb] and [it] bent. Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police. Gender / Plurality information cannot help -> Requires Knowledge 39

72 Difficulties in CR Hard Coreference Problems Ex.1 [A bird] perched on the [limb] and [it] bent. Ex.2 [Robert] is robbed by [Kevin], and [he] is arrested by police. Gender / Plurality information cannot help -> Requires Knowledge Performance Gaps System Dataset Gold Predicted Gap Illinois CoNLL Berkeley CoNLL Stanford ACE > Requires Better Mention Detection 39

73 A Joint Framework for Mention Head Detection and Coreference Resolution Goal: Improve CR on predicted mentions (End-to-End) Solution: [Multinational companies investing in [China]] had become so angry that [they] recently set up an anti-piracy league to pressure [the [Chinese] government] to take action. [Domestic manufacturers, [who] are also suffering], launched a similar body this month. Traditional: MD -> Coref Our paper: Mention Head -> Joint Coref -> Head to Mention Joint Learning / Inference Step Results Add decision variables to decide whether to choose a head or not Joint Coref is able to reject some mention head candidates Dataset Illinois Baseline Our Paper ACE CoNLL

74 ILP formulation of CR Best-Link with Knowledge Constraints Best-Link with Joint Mention Detection 41

Narrative Schema as World Knowledge for Coreference Resolution

Narrative Schema as World Knowledge for Coreference Resolution Narrative Schema as World Knowledge for Coreference Resolution Joseph Irwin Nara Institute of Science and Technology Nara Prefecture, Japan joseph-i@is.naist.jp Mamoru Komachi Nara Institute of Science

More information

Mention Detection: Heuristics for the OntoNotes annotations

Mention Detection: Heuristics for the OntoNotes annotations Mention Detection: Heuristics for the OntoNotes annotations Jonathan K. Kummerfeld, Mohit Bansal, David Burkett and Dan Klein Computer Science Division University of California at Berkeley {jkk,mbansal,dburkett,klein}@cs.berkeley.edu

More information

Lecture 24: NER & Entity Linking

Lecture 24: NER & Entity Linking Lecture 24: NER & Entity Linking Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 1 Organizing knowledge It s a version of Chicago the standard

More information

Unstructured Data. CS102 Winter 2019

Unstructured Data. CS102 Winter 2019 Winter 2019 Big Data Tools and Techniques Basic Data Manipulation and Analysis Performing well-defined computations or asking well-defined questions ( queries ) Data Mining Looking for patterns in data

More information

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking Yi Yang * and Ming-Wei Chang # * Georgia Institute of Technology, Atlanta # Microsoft Research, Redmond Traditional

More information

T2KG: An End-to-End System for Creating Knowledge Graph from Unstructured Text

T2KG: An End-to-End System for Creating Knowledge Graph from Unstructured Text The AAAI-17 Workshop on Knowledge-Based Techniques for Problem Solving and Reasoning WS-17-12 T2KG: An End-to-End System for Creating Knowledge Graph from Unstructured Text Natthawut Kertkeidkachorn, 1,2

More information

Markov Chains for Robust Graph-based Commonsense Information Extraction

Markov Chains for Robust Graph-based Commonsense Information Extraction Markov Chains for Robust Graph-based Commonsense Information Extraction N iket Tandon 1,4 Dheera j Ra jagopal 2,4 Gerard de M elo 3 (1) Max Planck Institute for Informatics, Germany (2) NUS, Singapore

More information

It s time for a semantic engine!

It s time for a semantic engine! It s time for a semantic engine! Ido Dagan Bar-Ilan University, Israel 1 Semantic Knowledge is not the goal it s a primary mean to achieve semantic inference! Knowledge design should be derived from its

More information

QANUS A GENERIC QUESTION-ANSWERING FRAMEWORK

QANUS A GENERIC QUESTION-ANSWERING FRAMEWORK QANUS A GENERIC QUESTION-ANSWERING FRAMEWORK NG, Jun Ping National University of Singapore ngjp@nus.edu.sg 30 November 2009 The latest version of QANUS and this documentation can always be downloaded from

More information

Topics for Today. The Last (i.e. Final) Class. Weakly Supervised Approaches. Weakly supervised learning algorithms (for NP coreference resolution)

Topics for Today. The Last (i.e. Final) Class. Weakly Supervised Approaches. Weakly supervised learning algorithms (for NP coreference resolution) Topics for Today The Last (i.e. Final) Class Weakly supervised learning algorithms (for NP coreference resolution) Co-training Self-training A look at the semester and related courses Submit the teaching

More information

Transliteration as Constrained Optimization

Transliteration as Constrained Optimization EMNLP 08 Transliteration as Constrained Optimization Dan Goldwasser Dan Roth Department of Computer Science University of Illinois Urbana, IL 61801 {goldwas1,danr}@uiuc.edu Abstract This paper introduces

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Natural Language Processing. SoSe Question Answering

Natural Language Processing. SoSe Question Answering Natural Language Processing SoSe 2017 Question Answering Dr. Mariana Neves July 5th, 2017 Motivation Find small segments of text which answer users questions (http://start.csail.mit.edu/) 2 3 Motivation

More information

AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands

AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands Svetlana Stoyanchev, Hyuckchul Jung, John Chen, Srinivas Bangalore AT&T Labs Research 1 AT&T Way Bedminster NJ 07921 {sveta,hjung,jchen,srini}@research.att.com

More information

Towards Summarizing the Web of Entities

Towards Summarizing the Web of Entities Towards Summarizing the Web of Entities contributors: August 15, 2012 Thomas Hofmann Director of Engineering Search Ads Quality Zurich, Google Switzerland thofmann@google.com Enrique Alfonseca Yasemin

More information

Proposed Task Description for Source/Target Belief and Sentiment Evaluation (BeSt) at TAC 2016

Proposed Task Description for Source/Target Belief and Sentiment Evaluation (BeSt) at TAC 2016 Proposed Task Description for Source/Target Belief and Sentiment Evaluation (BeSt) at TAC 2016 V.2.1 0. Changes to This Document This revision is oriented towards the general public. The notion of provenance

More information

Stanford-UBC at TAC-KBP

Stanford-UBC at TAC-KBP Stanford-UBC at TAC-KBP Eneko Agirre, Angel Chang, Dan Jurafsky, Christopher Manning, Valentin Spitkovsky, Eric Yeh Ixa NLP group, University of the Basque Country NLP group, Stanford University Outline

More information

NUS-I2R: Learning a Combined System for Entity Linking

NUS-I2R: Learning a Combined System for Entity Linking NUS-I2R: Learning a Combined System for Entity Linking Wei Zhang Yan Chuan Sim Jian Su Chew Lim Tan School of Computing National University of Singapore {z-wei, tancl} @comp.nus.edu.sg Institute for Infocomm

More information

Semantic Estimation for Texts in Software Engineering

Semantic Estimation for Texts in Software Engineering Semantic Estimation for Texts in Software Engineering 汇报人 : Reporter:Xiaochen Li Dalian University of Technology, China 大连理工大学 2016 年 11 月 29 日 Oscar Lab 2 Ph.D. candidate at OSCAR Lab, in Dalian University

More information

Guiding Semi-Supervision with Constraint-Driven Learning

Guiding Semi-Supervision with Constraint-Driven Learning Guiding Semi-Supervision with Constraint-Driven Learning Ming-Wei Chang 1 Lev Ratinov 2 Dan Roth 3 1 Department of Computer Science University of Illinois at Urbana-Champaign Paper presentation by: Drew

More information

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia

LSTM for Language Translation and Image Captioning. Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 1 LSTM for Language Translation and Image Captioning Tel Aviv University Deep Learning Seminar Oran Gafni & Noa Yedidia 2 Part I LSTM for Language Translation Motivation Background (RNNs, LSTMs) Model

More information

Grounded Compositional Semantics for Finding and Describing Images with Sentences

Grounded Compositional Semantics for Finding and Describing Images with Sentences Grounded Compositional Semantics for Finding and Describing Images with Sentences R. Socher, A. Karpathy, V. Le,D. Manning, A Y. Ng - 2013 Ali Gharaee 1 Alireza Keshavarzi 2 1 Department of Computational

More information

Using Bagging and Boosting Techniques for Improving Coreference Resolution

Using Bagging and Boosting Techniques for Improving Coreference Resolution Informatica 34 (2010) 111 118 111 Using Bagging and Boosting Techniques for Improving Coreference Resolution Smita Vemulapalli Center for Signal and Image Processing (CSIP), School of Electrical and Computer

More information

NOAA Satellite and Information Service Dan St. Jean, NESDIS Office of Systems Architecture and Advance Planning

NOAA Satellite and Information Service Dan St. Jean, NESDIS Office of Systems Architecture and Advance Planning NOAA/NESDIS Updates on Architecture Studies and Commercial Data Process Committee on Earth Science and Applications from Space December 2, 2015 NOAA Satellite and Information Service Dan St. Jean, NESDIS

More information

Rhetoric Map of an Answer to Compound Queries

Rhetoric Map of an Answer to Compound Queries Rhetoric Map of an Answer to Compound Queries Boris Galitsky Knowledge Trail Inc. San-Francisco, USA bgalitsky@hotmail.com Dmitry Ilvovsky National Research University Higher School of Economics, Moscow,

More information

BUPT at TREC 2009: Entity Track

BUPT at TREC 2009: Entity Track BUPT at TREC 2009: Entity Track Zhanyi Wang, Dongxin Liu, Weiran Xu, Guang Chen, Jun Guo Pattern Recognition and Intelligent System Lab, Beijing University of Posts and Telecommunications, Beijing, China,

More information

Papers for comprehensive viva-voce

Papers for comprehensive viva-voce Papers for comprehensive viva-voce Priya Radhakrishnan Advisor : Dr. Vasudeva Varma Search and Information Extraction Lab, International Institute of Information Technology, Gachibowli, Hyderabad, India

More information

Active Query Sensing for Mobile Location Search

Active Query Sensing for Mobile Location Search (by Mac Funamizu) Active Query Sensing for Mobile Location Search Felix. X. Yu, Rongrong Ji, Shih-Fu Chang Digital Video and Multimedia Lab Columbia University November 29, 2011 Outline Motivation Problem

More information

Text Mining for Software Engineering

Text Mining for Software Engineering Text Mining for Software Engineering Faculty of Informatics Institute for Program Structures and Data Organization (IPD) Universität Karlsruhe (TH), Germany Department of Computer Science and Software

More information

Understanding the Query: THCIB and THUIS at NTCIR-10 Intent Task

Understanding the Query: THCIB and THUIS at NTCIR-10 Intent Task Understanding the Query: THCIB and THUIS at NTCIR-10 Intent Task Yunqing Xia 1 and Sen Na 2 1 Tsinghua University 2 Canon Information Technology (Beijing) Co. Ltd. Before we start Who are we? THUIS is

More information

Tulip: Lightweight Entity Recognition and Disambiguation Using Wikipedia-Based Topic Centroids. Marek Lipczak Arash Koushkestani Evangelos Milios

Tulip: Lightweight Entity Recognition and Disambiguation Using Wikipedia-Based Topic Centroids. Marek Lipczak Arash Koushkestani Evangelos Milios Tulip: Lightweight Entity Recognition and Disambiguation Using Wikipedia-Based Topic Centroids Marek Lipczak Arash Koushkestani Evangelos Milios Problem definition The goal of Entity Recognition and Disambiguation

More information

Solving the Who s Mark Johnson Puzzle: Information Extraction Based Cross Document Coreference

Solving the Who s Mark Johnson Puzzle: Information Extraction Based Cross Document Coreference Solving the Who s Mark Johnson Puzzle: Information Extraction Based Cross Document Coreference Jian Huang Sarah M. Taylor Jonathan L. Smith Konstantinos A. Fotiadis C. Lee Giles Information Sciences and

More information

UBC Entity Discovery and Linking & Diagnostic Entity Linking at TAC-KBP 2014

UBC Entity Discovery and Linking & Diagnostic Entity Linking at TAC-KBP 2014 UBC Entity Discovery and Linking & Diagnostic Entity Linking at TAC-KBP 2014 Ander Barrena, Eneko Agirre, Aitor Soroa IXA NLP Group / University of the Basque Country, Donostia, Basque Country ander.barrena@ehu.es,

More information

UNIVERSITY OF CALIFORNIA, IRVINE. Graphical Models for Entity Coreference Resolution DISSERTATION

UNIVERSITY OF CALIFORNIA, IRVINE. Graphical Models for Entity Coreference Resolution DISSERTATION UNIVERSITY OF CALIFORNIA, IRVINE Graphical Models for Entity Coreference Resolution DISSERTATION submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Computer Science

More information

Supervised Models for Coreference Resolution [Rahman & Ng, EMNLP09] Running Example. Mention Pair Model. Mention Pair Example

Supervised Models for Coreference Resolution [Rahman & Ng, EMNLP09] Running Example. Mention Pair Model. Mention Pair Example Supervised Models for Coreference Resolution [Rahman & Ng, EMNLP09] Many machine learning models for coreference resolution have been created, using not only different feature sets but also fundamentally

More information

Inverted Index for Fast Nearest Neighbour

Inverted Index for Fast Nearest Neighbour Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

Vision Plan. For KDD- Service based Numerical Entity Searcher (KSNES) Version 2.0

Vision Plan. For KDD- Service based Numerical Entity Searcher (KSNES) Version 2.0 Vision Plan For KDD- Service based Numerical Entity Searcher (KSNES) Version 2.0 Submitted in partial fulfillment of the Masters of Software Engineering Degree. Naga Sowjanya Karumuri CIS 895 MSE Project

More information

Visual Query Suggestion

Visual Query Suggestion Visual Query Suggestion Zheng-Jun Zha, Linjun Yang, Tao Mei, Meng Wang, Zengfu Wang University of Science and Technology of China Textual Visual Query Suggestion Microsoft Research Asia Motivation Framework

More information

Unsupervised Rank Aggregation with Distance-Based Models

Unsupervised Rank Aggregation with Distance-Based Models Unsupervised Rank Aggregation with Distance-Based Models Alexandre Klementiev, Dan Roth, and Kevin Small University of Illinois at Urbana-Champaign Motivation Consider a panel of judges Each (independently)

More information

WebTLab: A cooccurrence-based approach to KBP 2010 Entity-Linking task

WebTLab: A cooccurrence-based approach to KBP 2010 Entity-Linking task WebTLab: A cooccurrence-based approach to KBP 2010 Entity-Linking task Norberto Fernández, Jesus A. Fisteus, Luis Sánchez, Eduardo Martín {berto,jaf,luiss,emartin}@it.uc3m.es Web Technologies Laboratory

More information

Identification and Tracing of Ambiguous Names: Discriminative and Generative Approaches

Identification and Tracing of Ambiguous Names: Discriminative and Generative Approaches AAAI 04 Identification and Tracing of Ambiguous Names: Discriminative and Generative Approaches Xin Li Paul Morie Dan Roth Department of Computer Science University of Illinois, Urbana, IL 61801 {xli1,morie,danr}@uiuc.edu

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee Presented by: Jingyao Zhan Contents Introduction Related Work Method

More information

<is web> Information Systems & Semantic Web University of Koblenz Landau, Germany

<is web> Information Systems & Semantic Web University of Koblenz Landau, Germany Information Systems & University of Koblenz Landau, Germany Semantic Search examples: Swoogle and Watson Steffen Staad credit: Tim Finin (swoogle), Mathieu d Aquin (watson) and their groups 2009-07-17

More information

Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval

Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Representation Learning using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Xiaodong Liu 12, Jianfeng Gao 1, Xiaodong He 1 Li Deng 1, Kevin Duh 2, Ye-Yi Wang 1 1

More information

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi) )

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi) ) Natural Language Processing SoSe 2014 Question Answering Dr. Mariana Neves June 25th, 2014 (based on the slides of Dr. Saeedeh Momtazi) ) Outline 2 Introduction History QA Architecture Natural Language

More information

Semi-Supervised Abstraction-Augmented String Kernel for bio-relationship Extraction

Semi-Supervised Abstraction-Augmented String Kernel for bio-relationship Extraction Semi-Supervised Abstraction-Augmented String Kernel for bio-relationship Extraction Pavel P. Kuksa, Rutgers University Yanjun Qi, Bing Bai, Ronan Collobert, NEC Labs Jason Weston, Google Research NY Vladimir

More information

Articulated Pose Estimation with Flexible Mixtures-of-Parts

Articulated Pose Estimation with Flexible Mixtures-of-Parts Articulated Pose Estimation with Flexible Mixtures-of-Parts PRESENTATION: JESSE DAVIS CS 3710 VISUAL RECOGNITION Outline Modeling Special Cases Inferences Learning Experiments Problem and Relevance Problem:

More information

Evaluation Algorithms for Event Nugget Detection : A Pilot Study

Evaluation Algorithms for Event Nugget Detection : A Pilot Study Evaluation Algorithms for Event Nugget Detection : A Pilot Study Zhengzhong Liu, Teruko Mitamura, Eduard Hovy Carnegie Mellon University 5 Forbes Avenue Pittsburgh, PA 15213, USA liu@cs.cmu.edu, teruko@cs.cmu.edu,

More information

Link Mining & Entity Resolution. Lise Getoor University of Maryland, College Park

Link Mining & Entity Resolution. Lise Getoor University of Maryland, College Park Link Mining & Entity Resolution Lise Getoor University of Maryland, College Park Learning in Structured Domains Traditional machine learning and data mining approaches assume: A random sample of homogeneous

More information

Entity Linking at TAC Task Description

Entity Linking at TAC Task Description Entity Linking at TAC 2013 Task Description Version 1.0 of April 9, 2013 1 Introduction The main goal of the Knowledge Base Population (KBP) track at TAC 2013 is to promote research in and to evaluate

More information

Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information

Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information Satoshi Sekine Computer Science Department New York University sekine@cs.nyu.edu Kapil Dalwani Computer Science Department

More information

Question Answering Systems

Question Answering Systems Question Answering Systems An Introduction Potsdam, Germany, 14 July 2011 Saeedeh Momtazi Information Systems Group Outline 2 1 Introduction Outline 2 1 Introduction 2 History Outline 2 1 Introduction

More information

Outline. Morning program Preliminaries Semantic matching Learning to rank Entities

Outline. Morning program Preliminaries Semantic matching Learning to rank Entities 112 Outline Morning program Preliminaries Semantic matching Learning to rank Afternoon program Modeling user behavior Generating responses Recommender systems Industry insights Q&A 113 are polysemic Finding

More information

Leaning to Parse Database Queries Using Inductive Logic Programming

Leaning to Parse Database Queries Using Inductive Logic Programming Leaning to Parse Database Queries Using Inductive Logic Programming John M. Zelle and Raymond J. Mooney Presented by Lena Dankin Plan Task definition General background: Prolog Shift Reduce Parsing CHILL

More information

NLP in practice, an example: Semantic Role Labeling

NLP in practice, an example: Semantic Role Labeling NLP in practice, an example: Semantic Role Labeling Anders Björkelund Lund University, Dept. of Computer Science anders.bjorkelund@cs.lth.se October 15, 2010 Anders Björkelund NLP in practice, an example:

More information

Overview of TAC-KBP 2015 Event Nugget Track

Overview of TAC-KBP 2015 Event Nugget Track Overview of TAC-KBP 2015 Event Nugget Track Teruko Mitamura Zhengzhong Liu Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 USA {teruko, liu, hovy}@cs.cmu.edu Eduard Hovy Abstract This

More information

Large-Scale Syntactic Processing: Parsing the Web. JHU 2009 Summer Research Workshop

Large-Scale Syntactic Processing: Parsing the Web. JHU 2009 Summer Research Workshop Large-Scale Syntactic Processing: JHU 2009 Summer Research Workshop Intro CCG parser Tasks 2 The Team Stephen Clark (Cambridge, UK) Ann Copestake (Cambridge, UK) James Curran (Sydney, Australia) Byung-Gyu

More information

Table of Contents 1 Introduction A Declarative Approach to Entity Resolution... 17

Table of Contents 1 Introduction A Declarative Approach to Entity Resolution... 17 Table of Contents 1 Introduction...1 1.1 Common Problem...1 1.2 Data Integration and Data Management...3 1.2.1 Information Quality Overview...3 1.2.2 Customer Data Integration...4 1.2.3 Data Management...8

More information

Unsupervised Semantic Parsing

Unsupervised Semantic Parsing Unsupervised Semantic Parsing Hoifung Poon Dept. Computer Science & Eng. University of Washington (Joint work with Pedro Domingos) 1 Outline Motivation Unsupervised semantic parsing Learning and inference

More information

Discriminative Learning over Constrained Latent Representations

Discriminative Learning over Constrained Latent Representations NAACL 10 Discriminative Learning over Constrained Latent Representations Ming-Wei Chang and Dan Goldwasser and Dan Roth and Vivek Srikumar University of Illinois at Urbana Champaign Urbana, IL 61801 {mchang,goldwas1,danr,vsrikum2}@uiuc.edu

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

Automated Tracking for Alignment of Electron Microscope Images

Automated Tracking for Alignment of Electron Microscope Images Automated Tracking for Alignment of Electron Microscope Images Fernando Amat 1, Farshid Moussavi 1, Luis R. Comolli 3, Gal Elidan 2, Kenneth H. Downing 3, Mark Horowitz 1 SIAM Annual Meeting 07/11/2008

More information

Annotating Spatio-Temporal Information in Documents

Annotating Spatio-Temporal Information in Documents Annotating Spatio-Temporal Information in Documents Jannik Strötgen University of Heidelberg Institute of Computer Science Database Systems Research Group http://dbs.ifi.uni-heidelberg.de stroetgen@uni-hd.de

More information

Lessons Learned from Large Scale Crowdsourced Data Collection for ILSVRC. Jonathan Krause

Lessons Learned from Large Scale Crowdsourced Data Collection for ILSVRC. Jonathan Krause Lessons Learned from Large Scale Crowdsourced Data Collection for ILSVRC Jonathan Krause Overview Classification Localization Detection Pelican Overview Classification Localization Detection Pelican Overview

More information

Query Expansion using Wikipedia and DBpedia

Query Expansion using Wikipedia and DBpedia Query Expansion using Wikipedia and DBpedia Nitish Aggarwal and Paul Buitelaar Unit for Natural Language Processing, Digital Enterprise Research Institute, National University of Ireland, Galway firstname.lastname@deri.org

More information

Master Project. Various Aspects of Recommender Systems. Prof. Dr. Georg Lausen Dr. Michael Färber Anas Alzoghbi Victor Anthony Arrascue Ayala

Master Project. Various Aspects of Recommender Systems. Prof. Dr. Georg Lausen Dr. Michael Färber Anas Alzoghbi Victor Anthony Arrascue Ayala Master Project Various Aspects of Recommender Systems May 2nd, 2017 Master project SS17 Albert-Ludwigs-Universität Freiburg Prof. Dr. Georg Lausen Dr. Michael Färber Anas Alzoghbi Victor Anthony Arrascue

More information

Domain-specific Concept-based Information Retrieval System

Domain-specific Concept-based Information Retrieval System Domain-specific Concept-based Information Retrieval System L. Shen 1, Y. K. Lim 1, H. T. Loh 2 1 Design Technology Institute Ltd, National University of Singapore, Singapore 2 Department of Mechanical

More information

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi)

Natural Language Processing SoSe Question Answering. (based on the slides of Dr. Saeedeh Momtazi) Natural Language Processing SoSe 2015 Question Answering Dr. Mariana Neves July 6th, 2015 (based on the slides of Dr. Saeedeh Momtazi) Outline 2 Introduction History QA Architecture Outline 3 Introduction

More information

Jianyong Wang Department of Computer Science and Technology Tsinghua University

Jianyong Wang Department of Computer Science and Technology Tsinghua University Jianyong Wang Department of Computer Science and Technology Tsinghua University jianyong@tsinghua.edu.cn Joint work with Wei Shen (Tsinghua), Ping Luo (HP), and Min Wang (HP) Outline Introduction to entity

More information

CS 540: Introduction to Artificial Intelligence

CS 540: Introduction to Artificial Intelligence CS 540: Introduction to Artificial Intelligence Final Exam: 12:25-2:25pm, December 17, 2014 Room 132 Noland CLOSED BOOK (two sheets of notes and a calculator allowed) Write your answers on these pages

More information

Text, Knowledge, and Information Extraction. Lizhen Qu

Text, Knowledge, and Information Extraction. Lizhen Qu Text, Knowledge, and Information Extraction Lizhen Qu A bit about Myself PhD: Databases and Information Systems Group (MPII) Advisors: Prof. Gerhard Weikum and Prof. Rainer Gemulla Thesis: Sentiment Analysis

More information

Named Entity Detection and Entity Linking in the Context of Semantic Web

Named Entity Detection and Entity Linking in the Context of Semantic Web [1/52] Concordia Seminar - December 2012 Named Entity Detection and in the Context of Semantic Web Exploring the ambiguity question. Eric Charton, Ph.D. [2/52] Concordia Seminar - December 2012 Challenge

More information

Query Difficulty Prediction for Contextual Image Retrieval

Query Difficulty Prediction for Contextual Image Retrieval Query Difficulty Prediction for Contextual Image Retrieval Xing Xing 1, Yi Zhang 1, and Mei Han 2 1 School of Engineering, UC Santa Cruz, Santa Cruz, CA 95064 2 Google Inc., Mountain View, CA 94043 Abstract.

More information

Personalized Page Rank for Named Entity Disambiguation

Personalized Page Rank for Named Entity Disambiguation Personalized Page Rank for Named Entity Disambiguation Maria Pershina Yifan He Ralph Grishman Computer Science Department New York University New York, NY 10003, USA {pershina,yhe,grishman}@cs.nyu.edu

More information

TTIC 31190: Natural Language Processing

TTIC 31190: Natural Language Processing TTIC 31190: Natural Language Processing Kevin Gimpel Winter 2016 Lecture 2: Text Classification 1 Please email me (kgimpel@ttic.edu) with the following: your name your email address whether you taking

More information

An Information Retrieval Approach for Source Code Plagiarism Detection

An Information Retrieval Approach for Source Code Plagiarism Detection -2014: An Information Retrieval Approach for Source Code Plagiarism Detection Debasis Ganguly, Gareth J. F. Jones CNGL: Centre for Global Intelligent Content School of Computing, Dublin City University

More information

TRENTINOMEDIA: Exploiting NLP and Background Knowledge to Browse a Large Multimedia News Store

TRENTINOMEDIA: Exploiting NLP and Background Knowledge to Browse a Large Multimedia News Store TRENTINOMEDIA: Exploiting NLP and Background Knowledge to Browse a Large Multimedia News Store Roldano Cattoni 1, Francesco Corcoglioniti 1,2, Christian Girardi 1, Bernardo Magnini 1, Luciano Serafini

More information

Semantics Isn t Easy Thoughts on the Way Forward

Semantics Isn t Easy Thoughts on the Way Forward Semantics Isn t Easy Thoughts on the Way Forward NANCY IDE, VASSAR COLLEGE REBECCA PASSONNEAU, COLUMBIA UNIVERSITY COLLIN BAKER, ICSI/UC BERKELEY CHRISTIANE FELLBAUM, PRINCETON UNIVERSITY New York University

More information

NLP Seminar, Fall 2009, TAU. A presentation by Ariel Stolerman Instructor: Prof. Nachum Dershowitz. 1 Question Answering

NLP Seminar, Fall 2009, TAU. A presentation by Ariel Stolerman Instructor: Prof. Nachum Dershowitz. 1 Question Answering Question Answering NLP Seminar, Fall 2009, TAU A presentation by Ariel Stolerman Instructor: Prof. Nachum Dershowitz 1 Overview What is? Approaching QA Answer extraction A brief history Main Domains NL

More information

Multimedia Data Management M

Multimedia Data Management M ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA Multimedia Data Management M Second cycle degree programme (LM) in Computer Engineering University of Bologna Semantic Multimedia Data Annotation Home page:

More information

Re-Ranking Algorithms for Name Tagging

Re-Ranking Algorithms for Name Tagging Re-Ranking Algorithms for Name Tagging Heng Ji Cynthia Rudin Ralph Grishman Dept. of Computer Science Center for Neural Science and Courant Dept. of Computer Science Institute of Mathematical Sciences

More information

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks Yu Shi, Huan Gui, Qi Zhu, Lance Kaplan, Jiawei Han University of Illinois at Urbana-Champaign (UIUC) Facebook Inc. U.S. Army Research

More information

Brainspace: Quick Reference

Brainspace: Quick Reference Brainspace is a dynamic and flexible data analysis tool. The purpose of this document is to provide a quick reference guide to navigation, use, and workflow within Brainspace. This guide is divided into

More information

Graph-based Entity Linking using Shortest Path

Graph-based Entity Linking using Shortest Path Graph-based Entity Linking using Shortest Path Yongsun Shim 1, Sungkwon Yang 1, Hyunwhan Joe 1, Hong-Gee Kim 1 1 Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul, Korea {yongsun0926,

More information

English Understanding: From Annotations to AMRs

English Understanding: From Annotations to AMRs English Understanding: From Annotations to AMRs Nathan Schneider August 28, 2012 :: ISI NLP Group :: Summer Internship Project Presentation 1 Current state of the art: syntax-based MT Hierarchical/syntactic

More information

Web-based Question Answering: Revisiting AskMSR

Web-based Question Answering: Revisiting AskMSR Web-based Question Answering: Revisiting AskMSR Chen-Tse Tsai University of Illinois Urbana, IL 61801, USA ctsai12@illinois.edu Wen-tau Yih Christopher J.C. Burges Microsoft Research Redmond, WA 98052,

More information

Building Multilingual Resources and Neural Models for Word Sense Disambiguation. Alessandro Raganato March 15th, 2018

Building Multilingual Resources and Neural Models for Word Sense Disambiguation. Alessandro Raganato March 15th, 2018 Building Multilingual Resources and Neural Models for Word Sense Disambiguation Alessandro Raganato March 15th, 2018 About me alessandro.raganato@helsinki.fi http://wwwusers.di.uniroma1.it/~raganato ERC

More information

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang ACM MM 2010 Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang Harbin Institute of Technology National University of Singapore Microsoft Corporation Proliferation of images and videos on the Internet

More information

Let s get parsing! Each component processes the Doc object, then passes it on. doc.is_parsed attribute checks whether a Doc object has been parsed

Let s get parsing! Each component processes the Doc object, then passes it on. doc.is_parsed attribute checks whether a Doc object has been parsed Let s get parsing! SpaCy default model includes tagger, parser and entity recognizer nlp = spacy.load('en ) tells spacy to use "en" with ["tagger", "parser", "ner"] Each component processes the Doc object,

More information

APPROACHES TO IMPLEMENT SEMANTIC SEARCH. Johannes Peter Product Owner / Architect for Search

APPROACHES TO IMPLEMENT SEMANTIC SEARCH. Johannes Peter Product Owner / Architect for Search APPROACHES TO IMPLEMENT SEMANTIC SEARCH Johannes Peter Product Owner / Architect for Search 1 WHAT IS SEMANTIC SEARCH? 2 Success of search Interface of shops to brains of customers Wide range of usage

More information

Kara Greenfield, William Campbell, Joel Acevedo-Aviles

Kara Greenfield, William Campbell, Joel Acevedo-Aviles Kara Greenfield, William Campbell, Joel Acevedo-Aviles GraphEx 2014 8/21/2014 This work was sponsored by the Defense Advanced Research Projects Agency under Air Force Contract FA8721-05-C-0002. Opinions,

More information

An Adaptive Framework for Named Entity Combination

An Adaptive Framework for Named Entity Combination An Adaptive Framework for Named Entity Combination Bogdan Sacaleanu 1, Günter Neumann 2 1 IMC AG, 2 DFKI GmbH 1 New Business Department, 2 Language Technology Department Saarbrücken, Germany E-mail: Bogdan.Sacaleanu@im-c.de,

More information

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

EVENT DETECTION AND HUMAN BEHAVIOR RECOGNITION. Ing. Lorenzo Seidenari

EVENT DETECTION AND HUMAN BEHAVIOR RECOGNITION. Ing. Lorenzo Seidenari EVENT DETECTION AND HUMAN BEHAVIOR RECOGNITION Ing. Lorenzo Seidenari e-mail: seidenari@dsi.unifi.it What is an Event? Dictionary.com definition: something that occurs in a certain place during a particular

More information

Coreference Clustering Using Column Generation

Coreference Clustering Using Column Generation Coreference Clustering Using Column Generation Jan De Belder M arie-f rancine M oens KU Leuven, Department of Computer Science Celestijnenlaan 200A, 3001 Heverlee, Belgium jan.debelder@cs.kuleuven.be,

More information

Ranking Clustered Data with Pairwise Comparisons

Ranking Clustered Data with Pairwise Comparisons Ranking Clustered Data with Pairwise Comparisons Alisa Maas ajmaas@cs.wisc.edu 1. INTRODUCTION 1.1 Background Machine learning often relies heavily on being able to rank the relative fitness of instances

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Submodularity in Speech/NLP

Submodularity in Speech/NLP Submodularity in Speech/NLP Jeffrey A. Bilmes Professor Departments of Electrical Engineering & Computer Science and Engineering University of Washington, Seattle http://melodi.ee.washington.edu/~bilmes

More information

Natural Language Processing Tutorial May 26 & 27, 2011

Natural Language Processing Tutorial May 26 & 27, 2011 Cognitive Computation Group Natural Language Processing Tutorial May 26 & 27, 2011 http://cogcomp.cs.illinois.edu So why aren t words enough? Depends on the application more advanced task may require more

More information