FAWN. A Fast Array of Wimpy Nodes. David Andersen, Jason Franklin, Michael Kaminsky*, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan

Size: px
Start display at page:

Download "FAWN. A Fast Array of Wimpy Nodes. David Andersen, Jason Franklin, Michael Kaminsky*, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan"

Transcription

1 FAWN A Fast Array of Wimpy Nodes David Andersen, Jason Franklin, Michael Kaminsky*, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan Carnegie Mellon University *Intel Labs Pittsburgh

2 Energy in computing Power is a significant burden on computing 3-year TCO soon to be dominated by power Hydroelectric Dam 2

3 3

4 Google s power consumption... would incur an annual electricity bill of nearly $38 million [Qureshi:sigcomm09] Energy consumption by data centers could nearly double... (by 2011) to more than 100 billion kwh, representing a $7.4 billion annual electricity cost [EPA Report 2007] Annual cost of energy for Google, Amazon, Microsoft = Annual cost of all first-year CS PhD Students 4

5 Can we reduce energy use by a factor of ten? Still serve the same workloads Avoid increasing capital cost 5

6 FAWN Fast Array of Wimpy Nodes Improve computational efficiency of data-intensive computing using an array of well-balanced low-power systems. 34-5"6"78-, 9&4:&4 +;1< ()* %&' +,-#. ()* ()* ()* %&' +,-#. ()* %&' +,-#. ()* ()*!"#$ %&' ()* %&' +,-#. ()* %&' +,-#. ()* %&' +,-#. ()* %&' +,-#. ()* %&' +,-#. AMD Geode 256MB DRAM 4GB CompactFlash /

7 Goal: reduce peak power Traditional Datacenter FAWN 100% Power 1000W 100W Cooling Servers (good){ Distribution 20% 20% energy loss 750W <100W 7

8 Overview Background FAWN Principles FAWN-KV Design Evaluation Conclusion 8

9 Towards balanced systems 1E+08 1E+07 1E+06 1E+05 Disk Seek Wasted Rebalancing Options Nanoseconds 1E+04 1E+03 1E+02 1E+01 resources DRAM Access 1E+00 CPU Cycle 1E Year Today s CPUs Array of Fastest Disks Slower CPUs Fast Storage Slow CPUs Today s Disks 9

10 Targeting the sweet-spot in efficiency 2500 Speed vs. Efficiency Fastest processors exhibit superlinear power usage Instructions/sec/W in millions Custom ARM Mote XScale 800Mhz Atom Z500 Xeon7350 Fixed power costs can dominate efficiency for slow processors FAWN targets sweet spot in system efficiency when including fixed costs Instructions/sec in millions (Includes 0.1W power overhead) 10

11 Targeting the sweet-spot in efficiency Instructions/sec/W in millions FAWN Today s CPU Array of Fastest Disks Slower CPU Fast Storage Slow CPU Today s Disk 11 Instructions/sec in millions XScale 800Mhz Custom ARM Mote Atom Z500 Xeon7350 More efficient

12 Overview Background FAWN Principles FAWN-KV Design Architecture Constraints Evaluation Conclusion 12

13 Data-intensive Key Value Critical infrastructure service Service level agreements for performance/latency Random-access, read-mostly, hard to cache 13

14 FAWN-KV: Our Key Value Proposition Energy-efficient cluster key-value store Goal: improve Queries/Joule Prototype: Alix3c2 nodes with flash storage 500MHz CPU, 256MB DRAM, 4GB CompactFlash 14

15 FAWN-KV: Our Key Value Proposition Unique Challenges: Energy-efficient cluster key-value store Efficient and fast failover Goal: improve Queries/Joule Wimpy CPUs, limited DRAM Flash poor at small random writes Prototype: Alix3c2 nodes with flash storage 500MHz CPU, 256MB DRAM, 4GB CompactFlash 15

16 FAWN-KV Architecture Manages Backends Back-end Acts as Gateway Routes Requests Back-end FAWN Back-end FAWN-DS Front-end X Back-end Back-end KV Ring Back-end Consistent hashing 16

17 FAWN-KV Architecture Back-end FAWN Back-end FAWN-DS Front-end X Back-end Back-end Back-end Back-end FAWN-DS FAWN-KV Limited Resources Avoid random writes Efficient Failover Avoid random writes 17

18 From key to value KeyFrag!= Key Potential collisions! 160-bit key Log Entry Key Len Data Low probability of multiple Flash reads Hashtable Hash Index Data region KeyFrag Valid. { 12 bytes per entry Offset (a) FAWN-DS FAWN-KV Limited Resources Avoid random writes Efficient Failover Avoid random writes 18

19 Log-structured Datastore Log-structuring avoids small random writes Get Put Delete Random Read Append FAWN-DS FAWN-KV Limited Resources Avoid random writes Efficient Failover Avoid random writes 19

20 On a node addition Hash Index Values H A (H,B] G B F C D Node additions, failures require transfer of key-ranges 20

21 Nodes stream data range Data in original range Data in new range Stream from B to A Concurrent Inserts, B Minimizes locking Compact Datastore A Background operations sequential Continue to meet SLA FAWN-DS FAWN-KV Limited Resources Avoid random writes Efficient Failover Avoid random writes 21

22 FAWN-KV Take-aways Log-structured datastore Avoids random writes at all levels Minimizes locking during failover Careful resource use but high performing Replication and strong consistency Variant of chain replication (see paper) 22

23 Overview Background FAWN principles FAWN-KV Design Evaluation Conclusion 23

24 Evaluation Roadmap Key-value lookup efficiency comparison Impact of background operations TCO analysis for random read workloads 24

25 FAWN-DS Lookups System QPS Watts QPS Watt Alix3c2/Sandisk(CF) Desktop/Mobi (SSD) MacbookPro / HD Desktop / HD Our FAWN-based system over 6x more efficient than 2008-era traditional systems 25

26 Impact of background ops Queries per second Queries per second Peak Compact Split Merge 0 Peak Compact Split Merge Peak query load 30% of peak query load Background operations have: Moderate impact at peak load Negligible impact at 30% load 26

27 When to use FAWN for random access workloads? TCO = Capital Cost + Power Cost ($0.10/kWh) Traditional (200W) FAWN (10W each) Five 2 TB disks 160GB PCI-e Flash SSD 64GB FBDIMM per node 2 TB disk 64GB SATA Flash SSD 2GB DRAM per node ~$ per node ~$ per node 27

28 Architecture with lowest TCO for random access workloads %&'&()'!*+,)!+-!./!$""""!$"""!$""!$"!$ 0.12*+*,% *+*0)#35!"#$%&%'(#)*+*,-./ 0.12*+*,-./!"#$!"#$!$!$"!$""!$""" 01)23!4&')! (9():; Ratio of query rate to dataset size determines storage technology Graph ignores management, cooling, networking... FAWN-based systems can provide lower cost per {GB, QueryRate} 28

29 Conclusion FAWN architecture reduces energy consumption of cluster computing FAWN-KV addresses challenges of wimpy nodes for key value storage Log-structured, memory efficient datastore Efficient replication and failover Meets energy efficiency and performance goals Each decimal order of magnitude increase in parallelism requires a major redesign and rewrite of parallel code - Kathy Yelick 29

System and Algorithmic Adaptation for Flash

System and Algorithmic Adaptation for Flash System and Algorithmic Adaptation for Flash The FAWN Perspective David G. Andersen, Vijay Vasudevan, Michael Kaminsky* Amar Phanishayee, Jason Franklin, Iulian Moraru, Lawrence Tan Carnegie Mellon University

More information

FAWN: A Fast Array of Wimpy Nodes

FAWN: A Fast Array of Wimpy Nodes FAWN: A Fast Array of Wimpy Nodes David G. Andersen, Jason Franklin, Michael Kaminsky *, Amar Phanishayee, Lawrence Tan, Vijay Vasudevan Carnegie Mellon University, * Intel Labs SOSP 09 CAS ICT Storage

More information

From architecture to algorithms: Lessons from the FAWN project

From architecture to algorithms: Lessons from the FAWN project From architecture to algorithms: Lessons from the FAWN project David Andersen, Vijay Vasudevan, Michael Kaminsky*, Michael A. Kozuch*, Amar Phanishayee, Lawrence Tan, Jason Franklin, Iulian Moraru, Sang

More information

FAWN as a Service. 1 Introduction. Jintian Liang CS244B December 13, 2017

FAWN as a Service. 1 Introduction. Jintian Liang CS244B December 13, 2017 Liang 1 Jintian Liang CS244B December 13, 2017 1 Introduction FAWN as a Service FAWN, an acronym for Fast Array of Wimpy Nodes, is a distributed cluster of inexpensive nodes designed to give users a view

More information

FAWN: A Fast Array of Wimpy Nodes

FAWN: A Fast Array of Wimpy Nodes To appear in 22nd ACM Symposium on Operating Systems Principles (SOSP 09) This version is reformatted from the official version that appears in the conference proceedings. FAWN: A Fast Array of Wimpy Nodes

More information

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Raghav Sethi Michael Kaminsky David G. Andersen Michael J. Freedman Goal: fast and cost-effective key-value store Target: cluster-level storage for

More information

FAWN: A Fast Array of Wimpy Nodes By David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan

FAWN: A Fast Array of Wimpy Nodes By David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan FAWN: A Fast Array of Wimpy Nodes By David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan doi:10.1145/1965724.1965747 Abstract This paper presents a

More information

SILT: A MEMORY-EFFICIENT, HIGH-PERFORMANCE KEY- VALUE STORE PRESENTED BY PRIYA SRIDHAR

SILT: A MEMORY-EFFICIENT, HIGH-PERFORMANCE KEY- VALUE STORE PRESENTED BY PRIYA SRIDHAR SILT: A MEMORY-EFFICIENT, HIGH-PERFORMANCE KEY- VALUE STORE PRESENTED BY PRIYA SRIDHAR AGENDA INTRODUCTION Why SILT? MOTIVATION SILT KV STORAGE SYSTEM LOW READ AMPLIFICATION CONTROLLABLE WRITE AMPLIFICATION

More information

C 1. Recap. CSE 486/586 Distributed Systems Distributed File Systems. Traditional Distributed File Systems. Local File Systems.

C 1. Recap. CSE 486/586 Distributed Systems Distributed File Systems. Traditional Distributed File Systems. Local File Systems. Recap CSE 486/586 Distributed Systems Distributed File Systems Optimistic quorum Distributed transactions with replication One copy serializability Primary copy replication Read-one/write-all replication

More information

Improving Datacenter Energy Efficiency Using a Fast Array of Wimpy Nodes

Improving Datacenter Energy Efficiency Using a Fast Array of Wimpy Nodes Improving Datacenter Energy Efficiency Using a Fast Array of Wimpy Nodes Vijay Vasudevan vrv+@cs.cmu.edu October 12, 2010 THESIS PROPOSAL Computer Science Department Carnegie Mellon University Pittsburgh,

More information

MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing

MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing Bin Fan (CMU), Dave Andersen (CMU), Michael Kaminsky (Intel Labs) NSDI 2013 http://www.pdl.cmu.edu/ 1 Goal: Improve Memcached 1. Reduce space overhead

More information

Cheap and Large CAMs for High Performance Data-Intensive Networked Systems- The Bufferhash KV Store

Cheap and Large CAMs for High Performance Data-Intensive Networked Systems- The Bufferhash KV Store Cheap and Large CAMs for High Performance Data-Intensive Networked Systems- The Bufferhash KV Store Presented by Akhila Nookala M.S EE Wayne State University ECE7650 Scalable and Secure Internet Services

More information

Near Memory Key/Value Lookup Acceleration MemSys 2017

Near Memory Key/Value Lookup Acceleration MemSys 2017 Near Key/Value Lookup Acceleration MemSys 2017 October 3, 2017 Scott Lloyd, Maya Gokhale Center for Applied Scientific Computing This work was performed under the auspices of the U.S. Department of Energy

More information

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu Database Architecture 2 & Storage Instructor: Matei Zaharia cs245.stanford.edu Summary from Last Time System R mostly matched the architecture of a modern RDBMS» SQL» Many storage & access methods» Cost-based

More information

PS2 out today. Lab 2 out today. Lab 1 due today - how was it?

PS2 out today. Lab 2 out today. Lab 1 due today - how was it? 6.830 Lecture 7 9/25/2017 PS2 out today. Lab 2 out today. Lab 1 due today - how was it? Project Teams Due Wednesday Those of you who don't have groups -- send us email, or hand in a sheet with just your

More information

Solid Access Technologies, LLC

Solid Access Technologies, LLC Newburyport, MA, USA USSD 200 USSD 200 The I/O Bandwidth Company Solid Access Technologies, LLC Solid Access Technologies, LLC Why Are We Here? The Storage Perfect Storm Traditional I/O Bottleneck Reduction

More information

Architecture of a Real-Time Operational DBMS

Architecture of a Real-Time Operational DBMS Architecture of a Real-Time Operational DBMS Srini V. Srinivasan Founder, Chief Development Officer Aerospike CMG India Keynote Thane December 3, 2016 [ CMGI Keynote, Thane, India. 2016 Aerospike Inc.

More information

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Goal: fast and cost-efficient key-value store Store, retrieve, manage key-value objects Get(key)/Put(key,value)/Delete(key) Target: cluster-level

More information

Next-Generation Cloud Platform

Next-Generation Cloud Platform Next-Generation Cloud Platform Jangwoo Kim Jun 24, 2013 E-mail: jangwoo@postech.ac.kr High Performance Computing Lab Department of Computer Science & Engineering Pohang University of Science and Technology

More information

Federated Array of Bricks Y Saito et al HP Labs. CS 6464 Presented by Avinash Kulkarni

Federated Array of Bricks Y Saito et al HP Labs. CS 6464 Presented by Avinash Kulkarni Federated Array of Bricks Y Saito et al HP Labs CS 6464 Presented by Avinash Kulkarni Agenda Motivation Current Approaches FAB Design Protocols, Implementation, Optimizations Evaluation SSDs in enterprise

More information

Multimedia Streaming. Mike Zink

Multimedia Streaming. Mike Zink Multimedia Streaming Mike Zink Technical Challenges Servers (and proxy caches) storage continuous media streams, e.g.: 4000 movies * 90 minutes * 10 Mbps (DVD) = 27.0 TB 15 Mbps = 40.5 TB 36 Mbps (BluRay)=

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University I/O System Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Introduction (1) I/O devices can be characterized by Behavior: input, output, storage

More information

Memory-Based Cloud Architectures

Memory-Based Cloud Architectures Memory-Based Cloud Architectures ( Or: Technical Challenges for OnDemand Business Software) Jan Schaffner Enterprise Platform and Integration Concepts Group Example: Enterprise Benchmarking -) *%'+,#$)

More information

CS 350 Winter 2011 Current Topics: Virtual Machines + Solid State Drives

CS 350 Winter 2011 Current Topics: Virtual Machines + Solid State Drives CS 350 Winter 2011 Current Topics: Virtual Machines + Solid State Drives Virtual Machines Resource Virtualization Separating the abstract view of computing resources from the implementation of these resources

More information

CSE 124: Networked Services Lecture-17

CSE 124: Networked Services Lecture-17 Fall 2010 CSE 124: Networked Services Lecture-17 Instructor: B. S. Manoj, Ph.D http://cseweb.ucsd.edu/classes/fa10/cse124 11/30/2010 CSE 124 Networked Services Fall 2010 1 Updates PlanetLab experiments

More information

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees Pandian Raju 1, Rohan Kadekodi 1, Vijay Chidambaram 1,2, Ittai Abraham 2 1 The University of Texas at Austin 2 VMware Research

More information

Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani

Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani The Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani CS5204 Operating Systems 1 Introduction GFS is a scalable distributed file system for large data intensive

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 11: File System Implementation Prof. Alan Mislove (amislove@ccs.neu.edu) File-System Structure File structure Logical storage unit Collection

More information

CSE 4/521 Introduction to Operating Systems. Lecture 23 File System Implementation II (Allocation Methods, Free-Space Management) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 23 File System Implementation II (Allocation Methods, Free-Space Management) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 23 File System Implementation II (Allocation Methods, Free-Space Management) Summer 2018 Overview Objective: To discuss how the disk is managed for a

More information

Performance Analysis in the Real World of Online Services

Performance Analysis in the Real World of Online Services Performance Analysis in the Real World of Online Services Dileep Bhandarkar, Ph. D. Distinguished Engineer 2009 IEEE International Symposium on Performance Analysis of Systems and Software My Background:

More information

Ultra-Low Latency Down to Microseconds SSDs Make It. Possible

Ultra-Low Latency Down to Microseconds SSDs Make It. Possible Ultra-Low Latency Down to Microseconds SSDs Make It Possible DAL is a large ocean shipping company that covers ocean and land transportation, storage, cargo handling, and ship management. Every day, its

More information

Tools for Social Networking Infrastructures

Tools for Social Networking Infrastructures Tools for Social Networking Infrastructures 1 Cassandra - a decentralised structured storage system Problem : Facebook Inbox Search hundreds of millions of users distributed infrastructure inbox changes

More information

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Kefei Wang and Feng Chen Louisiana State University SoCC '18 Carlsbad, CA Key-value Systems in Internet Services Key-value

More information

Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c

Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c White Paper Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c What You Will Learn This document demonstrates the benefits

More information

Maximizing Fraud Prevention Through Disruptive Architectures Delivering speed at scale.

Maximizing Fraud Prevention Through Disruptive Architectures Delivering speed at scale. Maximizing Fraud Prevention Through Disruptive Architectures Delivering speed at scale. January 2016 Credit Card Fraud prevention is among the most time-sensitive and high-value of IT tasks. The databases

More information

Moneta: A High-performance Storage Array Architecture for Nextgeneration, Micro 2010

Moneta: A High-performance Storage Array Architecture for Nextgeneration, Micro 2010 Moneta: A High-performance Storage Array Architecture for Nextgeneration, Non-volatile Memories Micro 2010 NVM-based SSD NVMs are replacing spinning-disks Performance of disks has lagged NAND flash showed

More information

Voldemort. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation

Voldemort. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation Voldemort Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/29 Outline 1 2 3 Smruti R. Sarangi Leader Election 2/29 Data

More information

FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 23

FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 23 FILE SYSTEMS CS124 Operating Systems Winter 2015-2016, Lecture 23 2 Persistent Storage All programs require some form of persistent storage that lasts beyond the lifetime of an individual process Most

More information

ChunkStash: Speeding Up Storage Deduplication using Flash Memory

ChunkStash: Speeding Up Storage Deduplication using Flash Memory ChunkStash: Speeding Up Storage Deduplication using Flash Memory Biplob Debnath +, Sudipta Sengupta *, Jin Li * * Microsoft Research, Redmond (USA) + Univ. of Minnesota, Twin Cities (USA) Deduplication

More information

PC-based data acquisition II

PC-based data acquisition II FYS3240 PC-based instrumentation and microcontrollers PC-based data acquisition II Data streaming to a storage device Spring 2015 Lecture 9 Bekkeng, 29.1.2015 Data streaming Data written to or read from

More information

Reduced and Alternative Energy for Cloud and Telephony Applications

Reduced and Alternative Energy for Cloud and Telephony Applications Reduced and Alternative Energy for Cloud and Telephony Applications James Hughes, Fellow Cloud Computing www.huawei.com Agenda Energy usage in a Telco Trends and direction Energy usage in data centers

More information

Main Memory and the CPU Cache

Main Memory and the CPU Cache Main Memory and the CPU Cache CPU cache Unrolled linked lists B Trees Our model of main memory and the cost of CPU operations has been intentionally simplistic The major focus has been on determining

More information

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction

More information

Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation

Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation Demartek Emulex LPe16000B 16Gb Fibre Channel HBA Evaluation Evaluation report prepared under contract with Emulex Executive Summary The computing industry is experiencing an increasing demand for storage

More information

FaSST: Fast, Scalable, and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs

FaSST: Fast, Scalable, and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs FaSST: Fast, Scalable, and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs Anuj Kalia (CMU), Michael Kaminsky (Intel Labs), David Andersen (CMU) RDMA RDMA is a network feature that

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung SOSP 2003 presented by Kun Suo Outline GFS Background, Concepts and Key words Example of GFS Operations Some optimizations in

More information

Fusion iomemory PCIe Solutions from SanDisk and Sqrll make Accumulo Hypersonic

Fusion iomemory PCIe Solutions from SanDisk and Sqrll make Accumulo Hypersonic WHITE PAPER Fusion iomemory PCIe Solutions from SanDisk and Sqrll make Accumulo Hypersonic Western Digital Technologies, Inc. 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive

More information

MEMORY. Objectives. L10 Memory

MEMORY. Objectives. L10 Memory MEMORY Reading: Chapter 6, except cache implementation details (6.4.1-6.4.6) and segmentation (6.5.5) https://en.wikipedia.org/wiki/probability 2 Objectives Understand the concepts and terminology of hierarchical

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

BlueDBM: An Appliance for Big Data Analytics*

BlueDBM: An Appliance for Big Data Analytics* BlueDBM: An Appliance for Big Data Analytics* Arvind *[ISCA, 2015] Sang-Woo Jun, Ming Liu, Sungjin Lee, Shuotao Xu, Arvind (MIT) and Jamey Hicks, John Ankcorn, Myron King(Quanta) BigData@CSAIL Annual Meeting

More information

Crossing the Chasm: Sneaking a parallel file system into Hadoop

Crossing the Chasm: Sneaking a parallel file system into Hadoop Crossing the Chasm: Sneaking a parallel file system into Hadoop Wittawat Tantisiriroj Swapnil Patil, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University In this work Compare and contrast large

More information

Optimizing Flash-based Key-value Cache Systems

Optimizing Flash-based Key-value Cache Systems Optimizing Flash-based Key-value Cache Systems Zhaoyan Shen, Feng Chen, Yichen Jia, Zili Shao Department of Computing, Hong Kong Polytechnic University Computer Science & Engineering, Louisiana State University

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

Main Memory (RAM) Organisation

Main Memory (RAM) Organisation Main Memory (RAM) Organisation Computers employ many different types of memory (semi-conductor, magnetic disks, USB sticks, DVDs etc.) to hold data and programs. Each type has its own characteristics and

More information

Was ist dran an einer spezialisierten Data Warehousing platform?

Was ist dran an einer spezialisierten Data Warehousing platform? Was ist dran an einer spezialisierten Data Warehousing platform? Hermann Bär Oracle USA Redwood Shores, CA Schlüsselworte Data warehousing, Exadata, specialized hardware proprietary hardware Introduction

More information

The Google File System

The Google File System October 13, 2010 Based on: S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google file system, in Proceedings ACM SOSP 2003, Lake George, NY, USA, October 2003. 1 Assumptions Interface Architecture Single

More information

Distributed Data Store

Distributed Data Store Distributed Data Store Large-Scale Distributed le system Q: What if we have too much data to store in a single machine? Q: How can we create one big filesystem over a cluster of machines, whose data is

More information

Crossing the Chasm: Sneaking a parallel file system into Hadoop

Crossing the Chasm: Sneaking a parallel file system into Hadoop Crossing the Chasm: Sneaking a parallel file system into Hadoop Wittawat Tantisiriroj Swapnil Patil, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University In this work Compare and contrast large

More information

Transistor: Digital Building Blocks

Transistor: Digital Building Blocks Final Exam Review Transistor: Digital Building Blocks Logically, each transistor acts as a switch Combined to implement logic functions (gates) AND, OR, NOT Combined to build higher-level structures Multiplexer,

More information

Google File System. Arun Sundaram Operating Systems

Google File System. Arun Sundaram Operating Systems Arun Sundaram Operating Systems 1 Assumptions GFS built with commodity hardware GFS stores a modest number of large files A few million files, each typically 100MB or larger (Multi-GB files are common)

More information

There Is More Consensus in Egalitarian Parliaments

There Is More Consensus in Egalitarian Parliaments There Is More Consensus in Egalitarian Parliaments Iulian Moraru, David Andersen, Michael Kaminsky Carnegie Mellon University Intel Labs Fault tolerance Redundancy State Machine Replication 3 State Machine

More information

Three Paths to Better Business Decisions

Three Paths to Better Business Decisions Three Paths to Better Business Decisions Business decisions take you down many paths. The Micron 5210 ION SSD gets you where you want to go, quickly and efficiently. Overview Leaders depend on data, and

More information

CS Project Report

CS Project Report CS7960 - Project Report Kshitij Sudan kshitij@cs.utah.edu 1 Introduction With the growth in services provided over the Internet, the amount of data processing required has grown tremendously. To satisfy

More information

Warehouse-Scale Computing

Warehouse-Scale Computing ecture 31 Computer Science 61C Spring 2017 April 7th, 2017 Warehouse-Scale Computing 1 New-School Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned to computer

More information

Virtualization of the MS Exchange Server Environment

Virtualization of the MS Exchange Server Environment MS Exchange Server Acceleration Maximizing Users in a Virtualized Environment with Flash-Powered Consolidation Allon Cohen, PhD OCZ Technology Group Introduction Microsoft (MS) Exchange Server is one of

More information

Samsung SSD PM863 and SM863 for Data Centers. Groundbreaking SSDs that raise the bar on satisfying big data demands

Samsung SSD PM863 and SM863 for Data Centers. Groundbreaking SSDs that raise the bar on satisfying big data demands Samsung SSD PM863 and SM863 for Data Centers Groundbreaking SSDs that raise the bar on satisfying big data demands 2 Samsung SSD PM863 and SM863 Innovations in solid state As the importance of data in

More information

MATE-EC2: A Middleware for Processing Data with Amazon Web Services

MATE-EC2: A Middleware for Processing Data with Amazon Web Services MATE-EC2: A Middleware for Processing Data with Amazon Web Services Tekin Bicer David Chiu* and Gagan Agrawal Department of Compute Science and Engineering Ohio State University * School of Engineering

More information

RAMCloud: A Low-Latency Datacenter Storage System Ankita Kejriwal Stanford University

RAMCloud: A Low-Latency Datacenter Storage System Ankita Kejriwal Stanford University RAMCloud: A Low-Latency Datacenter Storage System Ankita Kejriwal Stanford University (Joint work with Diego Ongaro, Ryan Stutsman, Steve Rumble, Mendel Rosenblum and John Ousterhout) a Storage System

More information

The Fusion Distributed File System

The Fusion Distributed File System Slide 1 / 44 The Fusion Distributed File System Dongfang Zhao February 2015 Slide 2 / 44 Outline Introduction FusionFS System Architecture Metadata Management Data Movement Implementation Details Unique

More information

! Design constraints. " Component failures are the norm. " Files are huge by traditional standards. ! POSIX-like

! Design constraints.  Component failures are the norm.  Files are huge by traditional standards. ! POSIX-like Cloud background Google File System! Warehouse scale systems " 10K-100K nodes " 50MW (1 MW = 1,000 houses) " Power efficient! Located near cheap power! Passive cooling! Power Usage Effectiveness = Total

More information

Modern hyperconverged infrastructure. Karel Rudišar Systems Engineer, Vmware Inc.

Modern hyperconverged infrastructure. Karel Rudišar Systems Engineer, Vmware Inc. Modern hyperconverged infrastructure Karel Rudišar Systems Engineer, Vmware Inc. 2 What Is Hyper-Converged Infrastructure? - The Ideal Architecture for SDDC Management SDDC Compute Networking Storage Simplicity

More information

AD910A M.2 (NGFF) to SATA III Converter Card

AD910A M.2 (NGFF) to SATA III Converter Card MINERVA AD910A M.2 (NGFF) to SATA III Converter Card Performance & Burn In Test Rev. 1.0 Table of Contents 1. Overview 2. Performance Measurement Tools and Results 2.1 Test Platform 2.2 Test target and

More information

IBM Emulex 16Gb Fibre Channel HBA Evaluation

IBM Emulex 16Gb Fibre Channel HBA Evaluation IBM Emulex 16Gb Fibre Channel HBA Evaluation Evaluation report prepared under contract with Emulex Executive Summary The computing industry is experiencing an increasing demand for storage performance

More information

Paperspace. Architecture Overview. 20 Jay St. Suite 312 Brooklyn, NY Technical Whitepaper

Paperspace. Architecture Overview. 20 Jay St. Suite 312 Brooklyn, NY Technical Whitepaper Architecture Overview Copyright 2016 Paperspace, Co. All Rights Reserved June - 1-2017 Technical Whitepaper Paperspace Whitepaper: Architecture Overview Content 1. Overview 3 2. Virtualization 3 Xen Hypervisor

More information

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24 FILE SYSTEMS, PART 2 CS124 Operating Systems Fall 2017-2018, Lecture 24 2 Last Time: File Systems Introduced the concept of file systems Explored several ways of managing the contents of files Contiguous

More information

Kathleen Durant PhD Northeastern University CS Indexes

Kathleen Durant PhD Northeastern University CS Indexes Kathleen Durant PhD Northeastern University CS 3200 Indexes Outline for the day Index definition Types of indexes B+ trees ISAM Hash index Choosing indexed fields Indexes in InnoDB 2 Indexes A typical

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google* 정학수, 최주영 1 Outline Introduction Design Overview System Interactions Master Operation Fault Tolerance and Diagnosis Conclusions

More information

Algorithm Performance Factors. Memory Performance of Algorithms. Processor-Memory Performance Gap. Moore s Law. Program Model of Memory I

Algorithm Performance Factors. Memory Performance of Algorithms. Processor-Memory Performance Gap. Moore s Law. Program Model of Memory I Memory Performance of Algorithms CSE 32 Data Structures Lecture Algorithm Performance Factors Algorithm choices (asymptotic running time) O(n 2 ) or O(n log n) Data structure choices List or Arrays Language

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006 Google File System, Replication Amin Vahdat CSE 123b May 23, 2006 Annoucements Third assignment available today Due date June 9, 5 pm Final exam, June 14, 11:30-2:30 Google File System (thanks to Mahesh

More information

Minerva. Performance & Burn In Test Rev AD903A/AD903D Converter Card. Table of Contents. 1. Overview

Minerva. Performance & Burn In Test Rev AD903A/AD903D Converter Card. Table of Contents. 1. Overview Minerva AD903A/AD903D Converter Card Performance & Burn In Test Rev. 1.0 Table of Contents 1. Overview 2. Performance Measurement Tools and Results 2.1 Test Platform 2.2 Test target and Used SATA III SSD

More information

Dept. Of Computer Science, Colorado State University

Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [HADOOP/HDFS] Trying to have your cake and eat it too Each phase pines for tasks with locality and their numbers on a tether Alas within a phase, you get one,

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing Instructors: Nicholas Weaver & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/ Coherency Tracked by

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 20 Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Pages Pages and frames Page

More information

Chapter 12: Query Processing

Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Basic Steps in Query Processing 1. Parsing and translation 2. Optimization 3. Evaluation 12.2

More information

Executive Briefing. All SAN storage

Executive Briefing. All SAN storage Executive Briefing N exsan Drives OpEx Savings & Simplified Usability via Its Integration of SASBeast Management Software with Windows Virtual Disk Service (VDS) and Microsoft Management Console (MMC)

More information

AMD Opteron Processors In the Cloud

AMD Opteron Processors In the Cloud AMD Opteron Processors In the Cloud Pat Patla Vice President Product Marketing AMD DID YOU KNOW? By 2020, every byte of data will pass through the cloud *Source IDC 2 AMD Opteron In The Cloud October,

More information

Scaling Distributed Machine Learning with the Parameter Server

Scaling Distributed Machine Learning with the Parameter Server Scaling Distributed Machine Learning with the Parameter Server Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su Presented

More information

Comparing Performance of Solid State Devices and Mechanical Disks

Comparing Performance of Solid State Devices and Mechanical Disks Comparing Performance of Solid State Devices and Mechanical Disks Jiri Simsa Milo Polte, Garth Gibson PARALLEL DATA LABORATORY Carnegie Mellon University Motivation Performance gap [Pugh71] technology

More information

Dell PowerEdge R730xd Servers with Samsung SM1715 NVMe Drives Powers the Aerospike Fraud Prevention Benchmark

Dell PowerEdge R730xd Servers with Samsung SM1715 NVMe Drives Powers the Aerospike Fraud Prevention Benchmark Dell PowerEdge R730xd Servers with Samsung SM1715 NVMe Drives Powers the Aerospike Fraud Prevention Benchmark Testing validation report prepared under contract with Dell Introduction As innovation drives

More information

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems File system internals Tanenbaum, Chapter 4 COMP3231 Operating Systems Architecture of the OS storage stack Application File system: Hides physical location of data on the disk Exposes: directory hierarchy,

More information

Using Transparent Compression to Improve SSD-based I/O Caches

Using Transparent Compression to Improve SSD-based I/O Caches Using Transparent Compression to Improve SSD-based I/O Caches Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

Google is Really Different.

Google is Really Different. COMP 790-088 -- Distributed File Systems Google File System 7 Google is Really Different. Huge Datacenters in 5+ Worldwide Locations Datacenters house multiple server clusters Coming soon to Lenior, NC

More information

LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE

LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE Luanne Dauber, Pure Storage Author: Matt Kixmoeller, Pure Storage SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless

More information

Asynchronous Logging and Fast Recovery for a Large-Scale Distributed In-Memory Storage

Asynchronous Logging and Fast Recovery for a Large-Scale Distributed In-Memory Storage Asynchronous Logging and Fast Recovery for a Large-Scale Distributed In-Memory Storage Kevin Beineke, Florian Klein, Michael Schöttner Institut für Informatik, Heinrich-Heine-Universität Düsseldorf Outline

More information

Main-Memory Databases 1 / 25

Main-Memory Databases 1 / 25 1 / 25 Motivation Hardware trends Huge main memory capacity with complex access characteristics (Caches, NUMA) Many-core CPUs SIMD support in CPUs New CPU features (HTM) Also: Graphic cards, FPGAs, low

More information

The BioHPC Nucleus Cluster & Future Developments

The BioHPC Nucleus Cluster & Future Developments 1 The BioHPC Nucleus Cluster & Future Developments Overview Today we ll talk about the BioHPC Nucleus HPC cluster with some technical details for those interested! How is it designed? What hardware does

More information

Optimizing the Data Center with an End to End Solutions Approach

Optimizing the Data Center with an End to End Solutions Approach Optimizing the Data Center with an End to End Solutions Approach Adam Roberts Chief Solutions Architect, Director of Technical Marketing ESS SanDisk Corporation Flash Memory Summit 11-13 August 2015 August

More information

MINERVA. Performance & Burn In Test Rev AD912A Interposer Card. Table of Contents. 1. Overview

MINERVA. Performance & Burn In Test Rev AD912A Interposer Card. Table of Contents. 1. Overview MINERVA AD912A Interposer Card Performance & Burn In Test Rev. 1.0 Table of Contents 1. Overview 2. Performance Measurement Tools and Results 2.1 Test Platform 2.2 Test target and Used msata III SSD 2.3

More information

NoSQL systems. Lecture 21 (optional) Instructor: Sudeepa Roy. CompSci 516 Data Intensive Computing Systems

NoSQL systems. Lecture 21 (optional) Instructor: Sudeepa Roy. CompSci 516 Data Intensive Computing Systems CompSci 516 Data Intensive Computing Systems Lecture 21 (optional) NoSQL systems Instructor: Sudeepa Roy Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 1 Key- Value Stores Duke CS,

More information