Searching complex graphs

Size: px
Start display at page:

Download "Searching complex graphs"

Transcription

1

2 Searching complex graphs complex graph data Big volume: huge number of nodes/links Big variety: complex, heterogeneous schema Big velocity: e.g., frequently updated Noisy, ambiguous attributes and values Existing techniques: Pregel, Trinity, Big velocity Big volume Big data Big variety nosql graph databases (Gremin, Neo4j, Gigraph, infinitegraph) Graph searching/querying: a graph query/pattern Q, a data graph G, identify matches in G for Q Computationally efficient query models Identify hidden matches in noisy, heterogeneous network Distributed querying and partition management Galileo : Google Knowledge Graph Search (May, 2012) People who like things I like an example of Facebook graph search query (January, 2013) 2

3 Main challenges Computationally efficient query models Enabling graph search with semantic similarity (ontology-based search) Enhancing approximate subgraph querying (Nema, simulation-based graph pattern matching) Distributed graph searching: partition management (Sedge) Vision of a distributed, complex graph search engine Conclusion Searching Yinghui big, Wu complex ICDE 2013 graphs 3

4

5 Computational efficient graph querying Let s use subgraph isomorphism as an example shape G-ray find all [Tong the et. subgraphs al., KDD 07]: that approximate are isomorphic matches to by Q in preserving G (NP-hard): the query query languages shape and algorithms Dual-simulation [Shuai et.al, VLDB 12]: preserving edge-edge matching too restrictive and computationally expensive! approximate subgraph matching: topological and label similarity (B. Edit distance Gallagher. Matching structure and semantics: A survey on graph-based pattern TALE[Tian et. al., ICDE 08] matching. AAAI FS., 2006.) SIGMA [Mongiovi et. al., J. Bioinformatics & Computational Biology 10] SAPPER [Zhang et. al., VLDB 12]: two-hop neighborhood indexes Trust [Sambhoos et al., Information Fusion 10]: - approximate graph matching with number of edge misses and node label mismatch Developing P-Hom [W.Fan computational et.al., VLDB 10]: edge-path efficient matchingquery models Flexible to capture label/topological similarity in noisy graph Proximity+label similarity Can be efficiently computed SAGA [Tian et. al., Bioinformatics 06]: both structure and node label similarity NESS, Nema [Arijit et.al, SIGMOD 12, VLDB 13] Bounded simulation [W.Fan et.al, VLDB 10]: edge-path matching Provide balanced usability-expressiveness Can be easily maintained over dynamic data graphs 5

6 Example: a simple IMDB query Query Graph 1 Query Graph 2 Kate Winslet (Actor)? (Movie) Kate Winslet (Actor)? (Movie)? (Director) Bernard Hill (Actor)? (Director) Bernard Hill (Actor)? (Movie) Titanic (Movie) Multiple representation of a simple query Matches may look very different from queries (e.g., large edit distance) relax rigid matching constraints of subgraph isomorphism Kate Winslet (Actor) James Cameron (Director) Bernard Hill (Actor) Searching Yinghui Wu big ICDE graphs

7 NESS and Nema (SIGMOD 11, VLDB 13) Goal: find a matching function Φ with minimum matching cost C(Φ) Individual node matching cost : Sum of label similarity and neighbourhood (vector) similarity of v and Φ(v) v 1 Φ f(v 1,u 1 ) u 1 { u 2,0.5, u 3,0.5, u 4,0.25 } (2 hop with propagation factor 0.5 v 2 v 4 Q f(v 2,u 2 ) f(v 4,u 4 ) u 2 u 3 u 4 u 5 Iterative Inference algorithm: a Max-Sum Inference in Random Markov Field - Time complexity: O(n G. n Q + T. n Q. m Q. d Q ) G 7

8 Effectiveness & Efficiency BLINKS [SIGMOD 07] SAGA [Bioinfo 06] IsoRank [PNAS 08] gstore [VLDB 11] NeMa [VLDB 13] Precision Recall Time (top-1) 1.92 sec sec sec 0.92 sec 0.97 sec Precision IMDB - 3M, 11M; YAGO - 13M, 18M; DBPedia 5M, 20M IMDB YAGO DBpedia Accuracy Query graph contains 7 nodes, structural noise 30%, and label noise 50%. Top-k Match Finding Time (sec) IMDB YAGO Dbpedia Efficiency Top-1 Top-3 Top-5 8

9

10 Searching in noisy graphs (ICDE 13) Finding semantically related matches for Q in G Q: find suspect A using class I guns in a safehouse A: we found a match [who report to A] using class II guns [a type of class I guns] in a [relocated] safehouse Q safehouse not match!... G match! rifle relocate to... subclass... supervise report to Og Using ontology-information to Yinghui capture Wu ICDE semantically 2013 similar matches 10

11 Ontology-based searching Ontology graphs A travel ontology museum Royal Gallery (RG) attraction Restaurants park Disneyland guided tours Holiday tour (HT) tourists Leisure center Culture tour (CT) waterfront riverside Holiday Cafe Royal Place (RP) Holiday Plazza (HP) Ontology-based subgraph querying: given a data graph G, a query graph Q and an ontology graph Og, identify best matches that are semantically close to Q 11

12 Querying framework A querying framework based on filtering-and-verification (1) offline ontology indexing: develop ontology views of G as an ontology index, by summarizing G using Og (2) online ontology-based filtering-and-verification A query evaluation framework (comparing with query enumeration): index construction in (O( G log G ) time) filtering in O( Q I time) Og ontology index Q query view G Q 1 Q 2 Q 4 Q 5 Q 3 Q(G) equivalence! Q(G) Q verification 12

13 Experimental results: effectiveness James Cameron from CrossDomain: G: 1.07M nodes, 3.86M edges Og: 1.44M nodes, 5.3M edges James Cameron Q 1 Cannes Festival Aliens Ghosts of the Abyss Aliens of the Deep Walt Disney Pictures Walt Disney Pictures Q 2 Flamingo from Flickr: G: 1.3M nodes, 6.42M edges Og: 3.64M entities (DBPedia) Flamingo Picture Picture Miami San Diego Pink San Diego Pink Seaworld Florida 13 Ontology matching identifies much Yinghui Wu more ICDE 2013 meaningful hidden matches

14 Experimental results: efficiency 30% of the running time of traditional subgraph querying algorithm, e.g., VF2 Effective even with a single concept graph Scale well with data size Ontology index can be efficiently updated upon changes to data graphs Ontology matching outperforms Yinghui traditional Wu ICDE 2013 graph querying in efficiency 14

15

16 Graph partition and management(sigmod 12) Sedge: partition strategy Complementary partitioning repartition the graph with region constraint On-demand partitioning: envelop grouping for cross queries Two-level partition management v1 v2 v3 v5 C1 C2 v4 C3 P3 P1 P2 Run independently 16

17 Graph partition management Sedge: system architecture 17

18 Sedge: performance evaluation SP 2 Bench (DBLP-based) Significant cross query reduction (complete removal of cross queries for several cases) Complementary and on demand partition is effective effectively improve efficiency for cross queries 18

19

20 Dealing with decentralized world Real-life graphs are distributed Our vision: a dispatching-local evaluation-assembling framework Querying distributed graphs? High communication cost; inter-source communication is expensive/not allowed Local evaluation+assembling 20 Distributed querying over Yinghui independent Wu ICDE 2013 graph sources 20

21 Distributed graph querying framework (rejected, still trying) Requester site Sc Q and a set of graph Sources F1,, Fn Q(Fi) Q(Fi) distributing at Sc: source filtering and query decomposition sources Q(G) Q... local evaluation: generate partial results Q(Fi) requester Sc Q(Fi) Assembling at Sc dispatching + local evaluation + assembling 11

22 Distributed graph querying: real-life life queries wiki Dbpedia Flickr 22

23 Searching complex graph: a big graph issue computationally efficient query models partition strategy & management/ distributed querying compression/summarization view-based querying Big volume incremental/dynami c graph querying and maintenance Spatial-temporal /stream graph querying Big velocity Searching big graph data Big variety semantic searching e.g., ontology-based indexing and querying usability-expressive power: query suggestion/transformatio n/rewriting/refinement knowledge inference A great source of research topics and promising search tools 23

24 resources All of our software and data will be announced in this link: Ness and Nema: source code Sedge: project homepage (docs, source code and dataset) Ontology-based subgraph matching Thank you! Acknowledgement: Information Network Science CTA Our group: Xifeng Yan, Shengqi, Arijit 24

Ontology-based Subgraph Querying

Ontology-based Subgraph Querying Ontology-based Subgraph Querying Yinghui Wu Shengqi Yang Xifeng Yan University of California Santa Barbara {yinghui, sqyang, xyan}@cs.ucsb.edu Abstract Subgraph querying has been applied in a variety of

More information

Mining Summaries for Knowledge Graph Search

Mining Summaries for Knowledge Graph Search Mining Summaries for Knowledge Graph Search Qi Song 1 Yinghui Wu 1 Xin Luna Dong 2 1 2 Sponsored by: Searching real world graph data Knowledge Graph G: used to represent knowledge bases Graph query Q:

More information

Towards Querying and Mining of Large-Scale Networks

Towards Querying and Mining of Large-Scale Networks UNIVERSITY OF CALIFORNIA Santa Barbara Towards Querying and Mining of Large-Scale Networks A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in

More information

Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing. Interspeech 2013

Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing. Interspeech 2013 Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing LARRY HECK, DILEK HAKKANI-TÜR, GOKHAN TUR Focus of This Paper SLU and Entity Extraction (Slot Filling) Spoken Language Understanding

More information

Summary of Research. Arijit Khan

Summary of Research. Arijit Khan Graphs are widely used in many application domains, including social networks, knowledge graphs, biological networks, software collaboration, geo-spatial road networks, interactive gaming, among many others.

More information

Intuitive and Interactive Query Formulation to Improve the Usability of Query Systems for Heterogeneous Graphs

Intuitive and Interactive Query Formulation to Improve the Usability of Query Systems for Heterogeneous Graphs Intuitive and Interactive Query Formulation to Improve the Usability of Query Systems for Heterogeneous Graphs Nandish Jayaram University of Texas at Arlington PhD Advisors: Dr. Chengkai Li, Dr. Ramez

More information

Conversational Knowledge Graphs. Larry Heck Microsoft Research

Conversational Knowledge Graphs. Larry Heck Microsoft Research Conversational Knowledge Graphs Larry Heck Microsoft Research Multi-modal systems e.g., Microsoft MiPad, Pocket PC TV Voice Search e.g., Bing on Xbox Task-specific argument extraction (e.g., Nuance, SpeechWorks)

More information

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage Arijit Khan Nanyang Technological University (NTU), Singapore Gustavo Segovia ETH Zurich, Switzerland Donald Kossmann Microsoft

More information

On Statistical Characteristics of Real-life Knowledge Graphs

On Statistical Characteristics of Real-life Knowledge Graphs On Statistical Characteristics of Real-life Knowledge Graphs Wenliang Cheng, Chengyu Wang, Bing Xiao, Weining Qian, Aoying Zhou Institute for Data Science and Engineering East China Normal University Shanghai,

More information

Mining Trusted Information in Medical Science: An Information Network Approach

Mining Trusted Information in Medical Science: An Information Network Approach Mining Trusted Information in Medical Science: An Information Network Approach Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign Collaborated with many, especially Yizhou

More information

Fast Top-K Search in Knowledge Graphs

Fast Top-K Search in Knowledge Graphs Fast Top-K Search in Knowledge Graphs Shengqi Yang, Fangqiu Han, Yinghui Wu, Xifeng Yan University of California Santa Barbara {sqyang, fhan, xyan}@cs.ucsb.edu Washington State University yinghui@eecs.wsu.edu

More information

Mining Summaries for Knowledge Graph Search

Mining Summaries for Knowledge Graph Search Mining Summaries for Knowledge Graph Search Qi Song Yinghui Wu Xin Luna Dong 2 Washington State University 2 Google Inc. {qsong, yinghui}@eecs.wsu.edu lunadong@google.com Abstract Mining and searching

More information

Efficient Aggregation for Graph Summarization

Efficient Aggregation for Graph Summarization Efficient Aggregation for Graph Summarization Yuanyuan Tian (University of Michigan) Richard A. Hankins (Nokia Research Center) Jignesh M. Patel (University of Michigan) Motivation Graphs are everywhere

More information

Behavior Query Discovery in System-Generated Temporal Graphs

Behavior Query Discovery in System-Generated Temporal Graphs Behavior Query Discovery in System-Generated Temporal Graphs Bo Zong,, Xusheng Xiao, Zhichun Li, Zhenyu Wu, Zhiyun Qian, Xifeng Yan, Ambuj K. Singh, Guofei Jiang UC Santa Barbara NEC Labs, America UC Riverside

More information

Learning Semantic Entity Representations with Knowledge Graph and Deep Neural Networks and its Application to Named Entity Disambiguation

Learning Semantic Entity Representations with Knowledge Graph and Deep Neural Networks and its Application to Named Entity Disambiguation Learning Semantic Entity Representations with Knowledge Graph and Deep Neural Networks and its Application to Named Entity Disambiguation Hongzhao Huang 1 and Larry Heck 2 Computer Science Department,

More information

Jianyong Wang Department of Computer Science and Technology Tsinghua University

Jianyong Wang Department of Computer Science and Technology Tsinghua University Jianyong Wang Department of Computer Science and Technology Tsinghua University jianyong@tsinghua.edu.cn Joint work with Wei Shen (Tsinghua), Ping Luo (HP), and Min Wang (HP) Outline Introduction to entity

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Recommender Systems Recommendation via Information Network Analysis Hybrid Collaborative Filtering

More information

Distributed Exact Subgraph Matching in Small Diameter Dynamic Graphs

Distributed Exact Subgraph Matching in Small Diameter Dynamic Graphs Distributed Exact Subgraph Matching in Small Diameter Dynamic Graphs Charith Wickramaarachchi, Rajgopal Kannan Charalampos Chelmis*, and Viktor K. Prasanna University of Southern California *University

More information

Effective Keyword Search over (Semi)-Structured Big Data Mehdi Kargar

Effective Keyword Search over (Semi)-Structured Big Data Mehdi Kargar Effective Keyword Search over (Semi)-Structured Big Data Mehdi Kargar School of Computer Science Faculty of Science University of Windsor How Big is this Big Data? 40 Billion Instagram Photos 300 Hours

More information

Answering Aggregate Queries Over Large RDF Graphs

Answering Aggregate Queries Over Large RDF Graphs 1 Answering Aggregate Queries Over Large RDF Graphs Lei Zou, Peking University Ruizhe Huang, Peking University Lei Chen, Hong Kong University of Science and Technology M. Tamer Özsu, University of Waterloo

More information

PROJECT PROPOSALS: COMMUNITY DETECTION AND ENTITY RESOLUTION. Donatella Firmani

PROJECT PROPOSALS: COMMUNITY DETECTION AND ENTITY RESOLUTION. Donatella Firmani PROJECT PROPOSALS: COMMUNITY DETECTION AND ENTITY RESOLUTION Donatella Firmani donatella.firmani@uniroma3.it PROJECT 1: COMMUNITY DETECTION What is Community Detection? What Social Network Analysis is?

More information

Capturing Topology in Graph Pattern Matching

Capturing Topology in Graph Pattern Matching Capturing Topology in Graph Pattern Matching Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, Tianyu Wo University of Edinburgh Graphs are everywhere, and quite a few are huge graphs! File systems Databases

More information

An overview of Graph Categories and Graph Primitives

An overview of Graph Categories and Graph Primitives An overview of Graph Categories and Graph Primitives Dino Ienco (dino.ienco@irstea.fr) https://sites.google.com/site/dinoienco/ Topics I m interested in: Graph Database and Graph Data Mining Social Network

More information

Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs

Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs Authors: Andreas Wagner, Veli Bicer, Thanh Tran, and Rudi Studer Presenter: Freddy Lecue IBM Research Ireland 2014 International

More information

Link Mining & Entity Resolution. Lise Getoor University of Maryland, College Park

Link Mining & Entity Resolution. Lise Getoor University of Maryland, College Park Link Mining & Entity Resolution Lise Getoor University of Maryland, College Park Learning in Structured Domains Traditional machine learning and data mining approaches assume: A random sample of homogeneous

More information

PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks

PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks Pramod Srinivasan CS591txt - Text Mining Seminar University of Illinois, Urbana-Champaign April 8, 2016 Pramod Srinivasan

More information

Personalized Entity Recommendation: A Heterogeneous Information Network Approach

Personalized Entity Recommendation: A Heterogeneous Information Network Approach Personalized Entity Recommendation: A Heterogeneous Information Network Approach Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon Norick, Jiawei Han University of

More information

A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2

A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2 A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2 1 Student, M.E., (Computer science and Engineering) in M.G University, India, 2 Associate Professor

More information

CSE 701: LARGE-SCALE GRAPH MINING. A. Erdem Sariyuce

CSE 701: LARGE-SCALE GRAPH MINING. A. Erdem Sariyuce CSE 701: LARGE-SCALE GRAPH MINING A. Erdem Sariyuce WHO AM I? My name is Erdem Office: 323 Davis Hall Office hours: Wednesday 2-4 pm Research on graph (network) mining & management Practical algorithms

More information

Limitations of XPath & XQuery in an Environment with Diverse Schemes

Limitations of XPath & XQuery in an Environment with Diverse Schemes Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML-Data Martin Theobald, Ralf Schenkel, and Gerhard Weikum Saarland University Saarbrücken, Germany 23.06.2003

More information

Introduction to Text Mining. Hongning Wang

Introduction to Text Mining. Hongning Wang Introduction to Text Mining Hongning Wang CS@UVa Who Am I? Hongning Wang Assistant professor in CS@UVa since August 2014 Research areas Information retrieval Data mining Machine learning CS@UVa CS6501:

More information

SLIPO. Scalable Linking and Integration of Big POI data. Giorgos Giannopoulos IMIS/Athena RC

SLIPO. Scalable Linking and Integration of Big POI data. Giorgos Giannopoulos IMIS/Athena RC SLIPO Scalable Linking and Integration of Big POI data I n f o r m a ti o n a n d N e t w o r ki n g D a y s o n H o ri z o n 2 0 2 0 B i g Da ta Public-Priva te Partnership To p i c : I C T 14 B i g D

More information

Outline. Part I. Introduction Part II. ML for DI. Part III. DI for ML Part IV. Conclusions and research direction

Outline. Part I. Introduction Part II. ML for DI. Part III. DI for ML Part IV. Conclusions and research direction Outline Part I. Introduction Part II. ML for DI ML for entity linkage ML for data extraction ML for data fusion ML for schema alignment Part III. DI for ML Part IV. Conclusions and research direction Data

More information

Query Independent Scholarly Article Ranking

Query Independent Scholarly Article Ranking Query Independent Scholarly Article Ranking Shuai Ma, Chen Gong, Renjun Hu, Dongsheng Luo, Chunming Hu, Jinpeng Huai SKLSDE Lab, Beihang University, China Beijing Advanced Innovation Center for Big Data

More information

Extending Keyword Search to Metadata in Relational Database

Extending Keyword Search to Metadata in Relational Database DEWS2008 C6-1 Extending Keyword Search to Metadata in Relational Database Jiajun GU Hiroyuki KITAGAWA Graduate School of Systems and Information Engineering Center for Computational Sciences University

More information

Reduce and Aggregate: Similarity Ranking in Multi-Categorical Bipartite Graphs

Reduce and Aggregate: Similarity Ranking in Multi-Categorical Bipartite Graphs Reduce and Aggregate: Similarity Ranking in Multi-Categorical Bipartite Graphs Alessandro Epasto J. Feldman*, S. Lattanzi*, S. Leonardi, V. Mirrokni*. *Google Research Sapienza U. Rome Motivation Recommendation

More information

Mir Abolfazl Mostafavi Centre for research in geomatics, Laval University Québec, Canada

Mir Abolfazl Mostafavi Centre for research in geomatics, Laval University Québec, Canada Mir Abolfazl Mostafavi Centre for research in geomatics, Laval University Québec, Canada Mohamed Bakillah and Steve H.L. Liang Department of Geomatics Engineering University of Calgary, Alberta, Canada

More information

Clustering in Big Data Using K-Means Algorithm

Clustering in Big Data Using K-Means Algorithm Clustering in Big Data Using K-Means Algorithm Ajitesh Janaswamy, B.E Dept of CSE, BITS Pilani, Dubai Campus. ABSTRACT: K-means is the most widely used clustering algorithm due to its fairly straightforward

More information

Graph Databases. Graph Databases. May 2015 Alberto Abelló & Oscar Romero

Graph Databases. Graph Databases. May 2015 Alberto Abelló & Oscar Romero Graph Databases 1 Knowledge Objectives 1. Describe what a graph database is 2. Explain the basics of the graph data model 3. Enumerate the best use cases for graph databases 4. Name two pros and cons of

More information

Content Based Smart Crawler For Efficiently Harvesting Deep Web Interface

Content Based Smart Crawler For Efficiently Harvesting Deep Web Interface Content Based Smart Crawler For Efficiently Harvesting Deep Web Interface Prof. T.P.Aher(ME), Ms.Rupal R.Boob, Ms.Saburi V.Dhole, Ms.Dipika B.Avhad, Ms.Suvarna S.Burkul 1 Assistant Professor, Computer

More information

Intranet Search. Exploiting Databases for Document Retrieval. Christoph Mangold Universität Stuttgart

Intranet Search. Exploiting Databases for Document Retrieval. Christoph Mangold Universität Stuttgart Intranet Search Exploiting Databases for Document Retrieval Christoph Mangold Universität Stuttgart 2 /6 The Big Picture: Assume. there is a glueing problem with product P7 Has this happened before? Is

More information

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks

AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks AspEm: Embedding Learning by Aspects in Heterogeneous Information Networks Yu Shi, Huan Gui, Qi Zhu, Lance Kaplan, Jiawei Han University of Illinois at Urbana-Champaign (UIUC) Facebook Inc. U.S. Army Research

More information

NOSQL Databases and Neo4j

NOSQL Databases and Neo4j NOSQL Databases and Neo4j Database and DBMS Database - Organized collection of data The term database is correctly applied to the data and their supporting data structures. DBMS - Database Management System:

More information

Core Technology Development Team Meeting

Core Technology Development Team Meeting Core Technology Development Team Meeting To hear the meeting, you must call in Toll-free phone number: 1-866-740-1260 Access Code: 2201876 For international call in numbers, please visit: https://www.readytalk.com/account-administration/international-numbers

More information

Binju Bentex *1, Shandry K. K 2. PG Student, Department of Computer Science, College Of Engineering, Kidangoor, Kottayam, Kerala, India

Binju Bentex *1, Shandry K. K 2. PG Student, Department of Computer Science, College Of Engineering, Kidangoor, Kottayam, Kerala, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 3 ISSN : 2456-3307 Survey on Summarization of Multiple User-Generated

More information

Top-K Ranking Spatial Queries over Filtering Data

Top-K Ranking Spatial Queries over Filtering Data Top-K Ranking Spatial Queries over Filtering Data 1 Lakkapragada Prasanth, 2 Krishna Chaitanya, 1 Student, 2 Assistant Professor, NRL Instiute of Technology,Vijayawada Abstract: A spatial preference query

More information

Automatically Constructing a Directory of Molecular Biology Databases

Automatically Constructing a Directory of Molecular Biology Databases Automatically Constructing a Directory of Molecular Biology Databases Luciano Barbosa Sumit Tandon Juliana Freire School of Computing University of Utah {lbarbosa, sumitt, juliana}@cs.utah.edu Online Databases

More information

Differentially Private H-Tree

Differentially Private H-Tree GeoPrivacy: 2 nd Workshop on Privacy in Geographic Information Collection and Analysis Differentially Private H-Tree Hien To, Liyue Fan, Cyrus Shahabi Integrated Media System Center University of Southern

More information

HBase vs Neo4j. Technical overview. Name: Vladan Jovičić CR09 Advanced Scalable Data (Fall, 2017) Ecolé Normale Superiuere de Lyon

HBase vs Neo4j. Technical overview. Name: Vladan Jovičić CR09 Advanced Scalable Data (Fall, 2017) Ecolé Normale Superiuere de Lyon HBase vs Neo4j Technical overview Name: Vladan Jovičić CR09 Advanced Scalable Data (Fall, 2017) Ecolé Normale Superiuere de Lyon 12th October 2017 1 Contents 1 Introduction 3 2 Overview of HBase and Neo4j

More information

Social Data Exploration

Social Data Exploration Social Data Exploration Sihem Amer-Yahia DR CNRS @ LIG Sihem.Amer-Yahia@imag.fr Big Data & Optimization Workshop 12ème Séminaire POC LIP6 Dec 5 th, 2014 Collaborative data model User space (with attributes)

More information

Juggling the Jigsaw Towards Automated Problem Inference from Network Trouble Tickets

Juggling the Jigsaw Towards Automated Problem Inference from Network Trouble Tickets Juggling the Jigsaw Towards Automated Problem Inference from Network Trouble Tickets Rahul Potharaju (Purdue University) Navendu Jain (Microsoft Research) Cristina Nita-Rotaru (Purdue University) April

More information

Machine Learning : Clustering, Self-Organizing Maps

Machine Learning : Clustering, Self-Organizing Maps Machine Learning Clustering, Self-Organizing Maps 12/12/2013 Machine Learning : Clustering, Self-Organizing Maps Clustering The task: partition a set of objects into meaningful subsets (clusters). The

More information

Dynamic Graph Query Support for SDN Management. Ramya Raghavendra IBM TJ Watson Research Center

Dynamic Graph Query Support for SDN Management. Ramya Raghavendra IBM TJ Watson Research Center Dynamic Graph Query Support for SDN Management Ramya Raghavendra IBM TJ Watson Research Center Roadmap SDN scenario 1: Cloud provisioning Management/Analytics primitives Current Cloud Offerings Limited

More information

TriRank: Review-aware Explainable Recommendation by Modeling Aspects

TriRank: Review-aware Explainable Recommendation by Modeling Aspects TriRank: Review-aware Explainable Recommendation by Modeling Aspects Xiangnan He, Tao Chen, Min-Yen Kan, Xiao Chen National University of Singapore Presented by Xiangnan He CIKM 15, Melbourne, Australia

More information

Computer-based Tracking Protocols: Improving Communication between Databases

Computer-based Tracking Protocols: Improving Communication between Databases Computer-based Tracking Protocols: Improving Communication between Databases Amol Deshpande Database Group Department of Computer Science University of Maryland Overview Food tracking and traceability

More information

Novel System Architectures for Semantic Based Sensor Networks Integraion

Novel System Architectures for Semantic Based Sensor Networks Integraion Novel System Architectures for Semantic Based Sensor Networks Integraion Z O R A N B A B O V I C, Z B A B O V I C @ E T F. R S V E L J K O M I L U T N O V I C, V M @ E T F. R S T H E S C H O O L O F T

More information

Lazy Big Data Integration

Lazy Big Data Integration Lazy Big Integration Prof. Dr. Andreas Thor Hochschule für Telekommunikation Leipzig (HfTL) Martin-Luther-Universität Halle-Wittenberg 16.12.2016 Agenda Integration analytics for domain-specific questions

More information

Experimental Evaluation of Spatial Indices with FESTIval

Experimental Evaluation of Spatial Indices with FESTIval Experimental Evaluation of Spatial Indices with FESTIval Anderson Chaves Carniel 1, Ricardo Rodrigues Ciferri 2, Cristina Dutra de Aguiar Ciferri 1 1 Department of Computer Science University of São Paulo

More information

Graph Classification in Heterogeneous

Graph Classification in Heterogeneous Title: Graph Classification in Heterogeneous Networks Name: Xiangnan Kong 1, Philip S. Yu 1 Affil./Addr.: Department of Computer Science University of Illinois at Chicago Chicago, IL, USA E-mail: {xkong4,

More information

Clustering. Bruno Martins. 1 st Semester 2012/2013

Clustering. Bruno Martins. 1 st Semester 2012/2013 Departamento de Engenharia Informática Instituto Superior Técnico 1 st Semester 2012/2013 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 Motivation Basic Concepts

More information

Database and Knowledge-Base Systems: Data Mining. Martin Ester

Database and Knowledge-Base Systems: Data Mining. Martin Ester Database and Knowledge-Base Systems: Data Mining Martin Ester Simon Fraser University School of Computing Science Graduate Course Spring 2006 CMPT 843, SFU, Martin Ester, 1-06 1 Introduction [Fayyad, Piatetsky-Shapiro

More information

Schemaless and Structureless Graph Querying

Schemaless and Structureless Graph Querying Schemaless and Structureless Graph Querying Shengqi Yang Yinghui Wu Huan Sun Xifeng Yan University of California Santa Barbara {sqyang, yinghui, huansun, xyan}@cs.ucsb.edu ABSTRACT Querying complex graph

More information

New Challenges in Big Data: Technical Perspectives. Hwanjo Yu POSTECH

New Challenges in Big Data: Technical Perspectives. Hwanjo Yu POSTECH New Challenges in Big Data: Technical Perspectives Hwanjo Yu POSTECH http:/hwanjoyu.org Over 1 Billion SNS users!! Viral Marketing Word-of-Mouth Effect > TV advertising......... Influence Maximization

More information

Bring Semantic Web to Social Communities

Bring Semantic Web to Social Communities Bring Semantic Web to Social Communities Jie Tang Dept. of Computer Science, Tsinghua University, China jietang@tsinghua.edu.cn April 19, 2010 Abstract Recently, more and more researchers have recognized

More information

Guarding user Privacy with Federated Learning and Differential Privacy

Guarding user Privacy with Federated Learning and Differential Privacy Guarding user Privacy with Federated Learning and Differential Privacy Brendan McMahan mcmahan@google.com DIMACS/Northeast Big Data Hub Workshop on Overcoming Barriers to Data Sharing including Privacy

More information

Supplementary Material for Ensemble Diffusion for Retrieval

Supplementary Material for Ensemble Diffusion for Retrieval Supplementary Material for Ensemble Diffusion for Retrieval Song Bai 1, Zhichao Zhou 1, Jingdong Wang, Xiang Bai 1, Longin Jan Latecki 3, Qi Tian 4 1 Huazhong University of Science and Technology, Microsoft

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Observe novel applicability of DL techniques in Big Data Analytics. Applications of DL techniques for common Big Data Analytics problems. Semantic indexing

More information

Quiz section 10. June 1, 2018

Quiz section 10. June 1, 2018 Quiz section 10 June 1, 2018 Logistics Bring: 1 page cheat-sheet, simple calculator Any last logistics questions about the final? Logistics Bring: 1 page cheat-sheet, simple calculator Any last logistics

More information

Graph Exploration: Taking the User into the Loop

Graph Exploration: Taking the User into the Loop Graph Exploration: Taking the User into the Loop Davide Mottin, Anja Jentzsch, Emmanuel Müller Hasso Plattner Institute, Potsdam, Germany 2016/10/24 CIKM2016, Indianapolis, US Where we are Background (5

More information

Digree: Building A Distributed Graph Processing Engine out of Single-node Graph Database Installations

Digree: Building A Distributed Graph Processing Engine out of Single-node Graph Database Installations Digree: Building A Distributed Graph ing Engine out of Single-node Graph Database Installations Vasilis Spyropoulos Athens University of Economics and Business Athens, Greece vasspyrop@aueb.gr ABSTRACT

More information

Fast Reliability Search in Uncertain Graphs Arijit Khan, Francesco Bonchi, Aristides Gionis, Francesco Gullo

Fast Reliability Search in Uncertain Graphs Arijit Khan, Francesco Bonchi, Aristides Gionis, Francesco Gullo Fast Reliability earch in ncertain Graphs Arijit Khan, Francesco Bonchi, Aristides Gionis, Francesco Gullo ystems Group, ETH Zurich Yahoo Labs, pain Aalto niversity, Finland ncertain Graphs 0.2 0.1 T ocial

More information

Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks

Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks Honglei Zhuang, Jing Zhang 2, George Brova, Jie Tang 2, Hasan Cam 3, Xifeng Yan 4, Jiawei Han University of Illinois at Urbana-Champaign

More information

Keywords Data alignment, Data annotation, Web database, Search Result Record

Keywords Data alignment, Data annotation, Web database, Search Result Record Volume 5, Issue 8, August 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Annotating Web

More information

Exploring the Hidden Dimension in Graph Processing

Exploring the Hidden Dimension in Graph Processing Exploring the Hidden Dimension in Graph Processing Mingxing Zhang, Yongwei Wu, Kang Chen, *Xuehai Qian, Xue Li, and Weimin Zheng Tsinghua University *University of Shouthern California Graph is Ubiquitous

More information

Fast Nearest Neighbor Search on Large Time-Evolving Graphs

Fast Nearest Neighbor Search on Large Time-Evolving Graphs Fast Nearest Neighbor Search on Large Time-Evolving Graphs Leman Akoglu Srinivasan Parthasarathy Rohit Khandekar Vibhore Kumar Deepak Rajan Kun-Lung Wu Graphs are everywhere Leman Akoglu Fast Nearest Neighbor

More information

Efficient Orienteering-Route Search over Uncertain Spatial Datasets

Efficient Orienteering-Route Search over Uncertain Spatial Datasets Efficient Orienteering-Route Search over Uncertain Spatial Datasets Mr. Nir DOLEV, Israel Dr. Yaron KANZA, Israel Prof. Yerach DOYTSHER, Israel 1 Route Search A standard search engine on the WWW returns

More information

Big Graph Analyses: From Queries to Dependencies and Association Rules

Big Graph Analyses: From Queries to Dependencies and Association Rules Noname manuscript No. (will be inserted by the editor) Big Graph Analyses: From Queries to Dependencies and Association Rules Wenfei Fan Chunming Hu Received: date / Accepted: date Abstract This position

More information

CHAPTER 5 OPTIMAL CLUSTER-BASED RETRIEVAL

CHAPTER 5 OPTIMAL CLUSTER-BASED RETRIEVAL 85 CHAPTER 5 OPTIMAL CLUSTER-BASED RETRIEVAL 5.1 INTRODUCTION Document clustering can be applied to improve the retrieval process. Fast and high quality document clustering algorithms play an important

More information

Improving the Efficiency of Fast Using Semantic Similarity Algorithm

Improving the Efficiency of Fast Using Semantic Similarity Algorithm International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 1 Improving the Efficiency of Fast Using Semantic Similarity Algorithm D.KARTHIKA 1, S. DIVAKAR 2 Final year

More information

Towards Efficient and Effective Semantic Table Interpretation Ziqi Zhang

Towards Efficient and Effective Semantic Table Interpretation Ziqi Zhang Towards Efficient and Effective Semantic Table Interpretation Ziqi Zhang Department of Computer Science, University of Sheffield Outline Define semantic table interpretation State-of-the-art and motivation

More information

Data Mining: Dynamic Past and Promising Future

Data Mining: Dynamic Past and Promising Future SDM@10 Anniversary Panel: Data Mining: A Decade of Progress and Future Outlook Data Mining: Dynamic Past and Promising Future Jiawei Han Department of Computer Science University of Illinois at Urbana

More information

Sub-Graph Finding Information over Nebula Networks

Sub-Graph Finding Information over Nebula Networks ISSN (e): 2250 3005 Volume, 05 Issue, 10 October 2015 International Journal of Computational Engineering Research (IJCER) Sub-Graph Finding Information over Nebula Networks K.Eswara Rao $1, A.NagaBhushana

More information

Efficient Subgraph Matching by Postponing Cartesian Products

Efficient Subgraph Matching by Postponing Cartesian Products Efficient Subgraph Matching by Postponing Cartesian Products Computer Science and Engineering Lijun Chang Lijun.Chang@unsw.edu.au The University of New South Wales, Australia Joint work with Fei Bi, Xuemin

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

Clustering from Data Streams

Clustering from Data Streams Clustering from Data Streams João Gama LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt 1 Introduction 2 Clustering Micro Clustering 3 Clustering Time Series Growing the Structure Adapting

More information

Approximate Graph Searching Spatio-Temporal Graphs

Approximate Graph Searching Spatio-Temporal Graphs Approximate Graph Searching Spatio-Temporal Graphs Hrishikesh Terdalkar Prof. Arnab Bhattacharya 1. Introduction Terminology and Setting What are Graphs V : Vertices E : Edges Av : Vertex Attributes AE

More information

Motion Estimation for Video Coding Standards

Motion Estimation for Video Coding Standards Motion Estimation for Video Coding Standards Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Introduction of Motion Estimation The goal of video compression

More information

Query-Based Outlier Detection in Heterogeneous Information Networks

Query-Based Outlier Detection in Heterogeneous Information Networks Query-Based Outlier Detection in Heterogeneous Information Networks Jonathan Kuck 1, Honglei Zhuang 1, Xifeng Yan 2, Hasan Cam 3, Jiawei Han 1 1 Uniersity of Illinois at Urbana-Champaign 2 Uniersity of

More information

Assignment 5: Collaborative Filtering

Assignment 5: Collaborative Filtering Assignment 5: Collaborative Filtering Arash Vahdat Fall 2015 Readings You are highly recommended to check the following readings before/while doing this assignment: Slope One Algorithm: https://en.wikipedia.org/wiki/slope_one.

More information

Web Database Integration

Web Database Integration In Proceedings of the Ph.D Workshop in conjunction with VLDB 06 (VLDB-PhD2006), Seoul, Korea, September 11, 2006 Web Database Integration Wei Liu School of Information Renmin University of China Beijing,

More information

Managing and Mining Billion Node Graphs. Haixun Wang Microsoft Research Asia

Managing and Mining Billion Node Graphs. Haixun Wang Microsoft Research Asia Managing and Mining Billion Node Graphs Haixun Wang Microsoft Research Asia Outline Overview Storage Online query processing Offline graph analytics Advanced applications Is it hard to manage graphs? Good

More information

3 Data, Data Mining. Chengkai Li

3 Data, Data Mining. Chengkai Li CSE4334/5334 Data Mining 3 Data, Data Mining Chengkai Li Department of Computer Science and Engineering University of Texas at Arlington Fall 2018 (Slides partly courtesy of Pang-Ning Tan, Michael Steinbach

More information

RiMOM Results for OAEI 2010

RiMOM Results for OAEI 2010 RiMOM Results for OAEI 2010 Zhichun Wang 1, Xiao Zhang 1, Lei Hou 1, Yue Zhao 2, Juanzi Li 1, Yu Qi 3, Jie Tang 1 1 Tsinghua University, Beijing, China {zcwang,zhangxiao,greener,ljz,tangjie}@keg.cs.tsinghua.edu.cn

More information

AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS

AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS Nilam B. Lonkar 1, Dinesh B. Hanchate 2 Student of Computer Engineering, Pune University VPKBIET, Baramati, India Computer Engineering, Pune University VPKBIET,

More information

Keyword Search over RDF Graphs. Elisa Menendez

Keyword Search over RDF Graphs. Elisa Menendez Elisa Menendez emenendez@inf.puc-rio.br Summary Motivation Keyword Search over RDF Process Challenges Example QUIOW System Next Steps Motivation Motivation Keyword search is an easy way to retrieve information

More information

GeoTemporal Reasoning for the Social Semantic Web

GeoTemporal Reasoning for the Social Semantic Web GeoTemporal Reasoning for the Social Semantic Web Jans Aasman Franz Inc. 2201 Broadway, Suite 715, Oakland, CA 94612, USA ja@franz.com Abstract: We demonstrate a Semantic Web application that organizes

More information

Where Next? Data Mining Techniques and Challenges for Trajectory Prediction. Slides credit: Layla Pournajaf

Where Next? Data Mining Techniques and Challenges for Trajectory Prediction. Slides credit: Layla Pournajaf Where Next? Data Mining Techniques and Challenges for Trajectory Prediction Slides credit: Layla Pournajaf o Navigational services. o Traffic management. o Location-based advertising. Source: A. Monreale,

More information

Content-based Dimensionality Reduction for Recommender Systems

Content-based Dimensionality Reduction for Recommender Systems Content-based Dimensionality Reduction for Recommender Systems Panagiotis Symeonidis Aristotle University, Department of Informatics, Thessaloniki 54124, Greece symeon@csd.auth.gr Abstract. Recommender

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Abstract In this chapter, we introduce some basic concepts and definitions in heterogeneous information network and compare the heterogeneous information network with other related

More information

Advances in Data Management - Web Data Integration A.Poulovassilis

Advances in Data Management - Web Data Integration A.Poulovassilis Advances in Data Management - Web Data Integration A.Poulovassilis 1 1 Integrating Deep Web Data Traditionally, the web has made available vast amounts of information in unstructured form (i.e. text).

More information