Simulation of a cost model response requests for replication in data grid environment

Size: px
Start display at page:

Download "Simulation of a cost model response requests for replication in data grid environment"

Transcription

1 Simulation of a cost model response requests for replication in data grid environment Benatiallah ali, Kaddi mohammed, Benatiallah djelloul, Harrouz abdelkader Laboratoire LEESI, faculté des science et technologie Université d adrar Algérie Abstract Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes. Key Words: response time, query, consistency, bandwidth, storage capacity, CERN. University of Nizwa, Oman December 9-11, 2014 Page 113

2 1. INTRODUCTION Data availability is a critical issue for all organizations in the world. Thus we are faced with a changing information and the internet ever generate data streams increasingly complex systems. This has led the scientific community to think about storage technologies, access and processing information data. Advances in telecommunications have made possible the reunion of a multitude of computers interconnected by the network to cooperate these geographically distributed resources; That was the birth of computing grids. It therefore seems impossible to recent stoker on a single machine and therefore often use a data grid. Grid computing is an important mechanism to manage IT resources placed in remote locations and linked to consumers through transmission data sites. The idea is to link heterogeneous storage resources and distributed so that, for the user, they appear as a single entity[3]. One of the first reasons to use data grids[4, 6] comes from the applications using large data sets[1, 8], for example, in high-energy physics[7] or science of life[2]. However, the distribution, large scale, a data grid and dynamicity of its sites respectively pose the problem of remote access and data availability. These parameters are extremely important in the context of data grids where the cost is very short and user access is frequent. The use of replication techniques is a very important action for access to shared data. The cost of access to data has a direct influence on the response time of the client. One problem with the use of replication techniques is the choice of the replica at the end to minimize the cost of response user queries. Our goal is to propose an approach called Good customer + Closer common to minimize the cost of query response for replication in data grid environment, which has a hierarchical topology grid type CERN. 2. MATERIALS AND METHODS 2.1 Topology of the grid: Our job is to provide a cost model for replication in a data grid. Our choice was for a grid topology CERN Type for several reasons: - CERN is a real grid widely used. - CERN is hierarchical. - The design of CERN is simple. University of Nizwa, Oman December 9-11, 2014 Page 114

3 - The number of levels in CERN is fixed (five levels). CERN structure is illustrated in Figure 2.1 Pn: The immediate parent of a node n Rd : The set of nodes that contain a replica of the data d BP(n): Bandwidth between nodes n and pn Size(d): Size of the data d Path d (n1,n2): All nodes encountered along the way node n1 to node n2, except node n2 CT d (n1, n2): Transfer cost of a given node n1 to node n2 CTL d : Cost processing the read operation on the data d CTE d : Cost of processing the write operation of the data Figure 2.1 Logical topology of the grid used by CERN [5] 2.2 The parameters used in our cost model: The proposed approach in our cost model replication is designed as an optimization problem of replica placement, which minimizes the average cost of query response generated by customers in a data grid, by based on the following parameters: CRR i : Cost of query response i CM: Average cost of all queries When a customer asks for a given, it will be served by the closest one node containing a replica of the data. We will calculate the cost of response to a request seeking access to the data of which is the sum of the cost of transferring data to and cost of University of Nizwa, Oman December 9-11, 2014 Page 115

4 calculation processing operation (read or write). The cost of transfer of data from the node n1 to node n2 is calculated as follows: CT d (n1, n2) = Size(d) + BW(n), n Path d (n1,n2) (2.1) To our cost model achieve their goal and since our simulation is static, the cost of processing the read operation on the data d (CTL d ), the cost of processing the write operation of the data (CTE d ) and the size of the data d (Size (d)) are determined by the simulator with the ability to change them. Also assume that all nodes in the same level have the same storage capacity, and bandwidth between all nodes of the same level n and the nodes in level n +1 is fixed. Our simulator provides an opportunity for users to enter the storage capacity of the nodes and the bandwidth between a node and another. Therefore the cost of response to a request from a client i (node) n1 requesting a read operation on the data d in a node n2 is calculated using the following formula: CRR i = CT d (n1, n2)+ CTL d (2.2) The same applies to the cost of response to a request from a client i (node) n1 requesting a write operation on the data d in a node n2: CRR i = CT d (n1, n2)+ CTE d (2.3) And therefore, we can estimate the average cost of all queries: CM = CRR i / total number of queries (2.4) We will calculate the various costs of responding to a request (CT d (n1, n2), CRR i, CM,...) per unit time. 2.3 Phases of handling our simulator Our simulator reproduces the components of an actual gate. It is thus possible to model a gate by performing the following steps: - Configure the grid: To configure the grid, should be given storage capacity of grid nodes and the bandwidth between these nodes to the grid that must be configured by user or by default. - Placement of data without replication: After configuring the grid, we move to the placement of data in the nodes of the grid, so we entity "data" which can be set by default or by user, then we generate queries per user or randomly to calculate the response cost of these queries. - Data replication: This phase includes data replication already placed on the grid, using same queries generated in the placement University of Nizwa, Oman December 9-11, 2014 Page 116

5 phase data without replication, the cost calculation and display the results. In this phase, our simulator can replicate random data and also allows the user to replicate according to their choice. The replication rules are the same investment rules, except that the phase of replication can replicate each data across multiple nodes. After data replication, it can t generate queries, but the same queries generated and saved in the placement phase in order to make comparisons between the results obtained in the two phases are used. The last step in this phase provides the data paths, costs and results display different queries. - Reconciliation of data to the right customer: This phase allows to link data to the right customer. The right customer(s) is the customer(s) has a large number of requests for a given relative to other clients that request the same data. To do this, use the same queries generated previously to select the right customers of each data. The approximation of a given good customer is to create a copy of the data on the working group (immediate father) to which it belongs. After the approximation of the data to the right customers, we calculate the cost of these queries and we show the results. Our approach is to approximate the data not only for good customers, but also to the nearest common customers that require the same data. For this we use the same queries to identify previously generated for each data customers that require reading or writing on this data. After the reconciliation process, we calculate the cost of these queries and we show the results alongside the results of the previous phases to make a comparison between all approaches. - Reconciliation of data + good customer to the nearest common: The average cost of queries generated is different depending on the number and placement of data on the grid. This phase is used to display the result of the average cost of investment data without replication, with replication, data reconciliation and rapprochement to the right customer data simultaneously to the right customer and the nearest common. The display average cost of our approach beside the other methods of investment allows us to demonstrate that our approach gives in most cases a minimum average cost. University of Nizwa, Oman December 9-11, 2014 Page 117

6 Coût (Unité de Temps) THE INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT2014) 3. Results To demonstrate the effectiveness of our approach given, we chose a sample application which gave us the following result: 8, , , , , , , Résultats de Simulation Figure 3.1 The average cost of each approach in our example Indeed, this result clearly shows that our approach "good customer + nearest common point" for this example gives a minimum average cost. Approche We concluded after multiple tests that whenever the grid was large and it has several replicas and the number of requests generated by clients widely distributed on the grid is too large, we found that the average cost of our proposed approach is more small compared to other approaches(the difference between the average cost of our approach and the good customer of up to 25%). 4. Conclusion Our simulation results show the cost saving response to a query in our approaches (good customer + nearest common point) compared to other approaches (without replication, with replication, good customer) because our investment strategy of the data is priority to good customers without adversely affecting the other clients that request the same data. In future work, we expect to refine our solution to make it more flexible. As future works, several axes can be identified: - take into account the size of the request made by a customer on a given cost and propagation of updates to the data to the other nodes in the calculation of cost of response - use protocols to maintain consistency of replicated data. Take into account the computing capacity of each site in the decision of placement of replicas. It is not advantageous to place a replica of a University of Nizwa, Oman December 9-11, 2014 Page 118

7 given too much to ask on a site limited capacity. - Studying in parallel the problem of the number of replicas that can be hosted on a site based on the available storage space and computing capacity of the site. - Do more testing with other designs and other configurations (varying the number of nodes in each level of the grid, change the storage nodes, change the bandwidth, etc..) Can show us' other contributions of strategy we proposed. - Implement our model in another simulation environment. - Implement this approach on a real grid. References [1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury et S. Tuecke. The Data Grid : Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets. Journal of Network and Computer Applications, 23: , [2] A. Krishnan. A Survey of Life Sciences Applications on the Grid. New Generation Computing, 22: , [3] A. Vernois. Ordonnancement et réplication de données bioinformatiques dans un contexte de grille de calcul. PhD thesis, Ecole Normale Supérieur de Lyon. Parallel Computing laboratory, [4] F. Berman, G.C. Fox et A.J.H. Hey, editeurs. Grid Computing : Making the Global Infrastructure a Reality.Wiley, [5] [6] I. Foster et C. Kesselman, editeurs. The Grid 2 : Blueprint for a New Computing Infrastructure. Morgan Kaufmann publisher, [7] M. Karlsson and M. Mahalingam, "Do we need replica placement algorithms in Content delivery networks?". in proceeedings of the [8] X. Qin et H. Jiang. Data Grid : Supporting Data-Intensive Applications in Wide-Area Networks. Rapport de recherche TR , University of Nebraska-Lincoln, Lincoln, NE, USA,Mai University of Nizwa, Oman December 9-11, 2014 Page 119

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

A Simulation Model for Large Scale Distributed Systems

A Simulation Model for Large Scale Distributed Systems A Simulation Model for Large Scale Distributed Systems Ciprian M. Dobre and Valentin Cristea Politechnica University ofbucharest, Romania, e-mail. **Politechnica University ofbucharest, Romania, e-mail.

More information

Two-Level Dynamic Load Balancing Algorithm Using Load Thresholds and Pairwise Immigration

Two-Level Dynamic Load Balancing Algorithm Using Load Thresholds and Pairwise Immigration Two-Level Dynamic Load Balancing Algorithm Using Load Thresholds and Pairwise Immigration Hojiev Sardor Qurbonboyevich Department of IT Convergence Engineering Kumoh National Institute of Technology, Daehak-ro

More information

A Time-To-Live Based Reservation Algorithm on Fully Decentralized Resource Discovery in Grid Computing

A Time-To-Live Based Reservation Algorithm on Fully Decentralized Resource Discovery in Grid Computing A Time-To-Live Based Reservation Algorithm on Fully Decentralized Resource Discovery in Grid Computing Sanya Tangpongprasit, Takahiro Katagiri, Hiroki Honda, Toshitsugu Yuba Graduate School of Information

More information

A Distributed Media Service System Based on Globus Data-Management Technologies1

A Distributed Media Service System Based on Globus Data-Management Technologies1 A Distributed Media Service System Based on Globus Data-Management Technologies1 Xiang Yu, Shoubao Yang, and Yu Hong Dept. of Computer Science, University of Science and Technology of China, Hefei 230026,

More information

Scalable Hybrid Search on Distributed Databases

Scalable Hybrid Search on Distributed Databases Scalable Hybrid Search on Distributed Databases Jungkee Kim 1,2 and Geoffrey Fox 2 1 Department of Computer Science, Florida State University, Tallahassee FL 32306, U.S.A., jungkkim@cs.fsu.edu, 2 Community

More information

MANAGEMENT AND PLACEMENT OF REPLICAS IN A HIERARCHICAL DATA GRID

MANAGEMENT AND PLACEMENT OF REPLICAS IN A HIERARCHICAL DATA GRID MANAGEMENT AND PLACEMENT OF REPLICAS IN A HIERARCHICAL DATA GRID Ghalem Belalem 1 and Bakhta Meroufel 2 1 Department of Computer Science, Faculty of Sciences, University of Oran (Es Senia), Algeria ghalem1dz@gmail.com

More information

Routing protocols in WSN

Routing protocols in WSN Routing protocols in WSN 1.1 WSN Routing Scheme Data collected by sensor nodes in a WSN is typically propagated toward a base station (gateway) that links the WSN with other networks where the data can

More information

Future Generation Computer Systems. PDDRA: A new pre-fetching based dynamic data replication algorithm in data grids

Future Generation Computer Systems. PDDRA: A new pre-fetching based dynamic data replication algorithm in data grids Future Generation Computer Systems 28 (2012) 666 681 Contents lists available at SciVerse ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs PDDRA: A new pre-fetching

More information

Task Load Balancing Strategy for Grid Computing

Task Load Balancing Strategy for Grid Computing Journal of Computer Science 3 (3): 186-194, 2007 ISS 1546-9239 2007 Science Publications Task Load Balancing Strategy for Grid Computing 1 B. Yagoubi and 2 Y. Slimani 1 Department of Computer Science,

More information

Identifying Dynamic Replication Strategies for a High- Performance Data Grid

Identifying Dynamic Replication Strategies for a High- Performance Data Grid Identifying Dynamic Replication Strategies for a High- Performance Data Grid Kavitha Ranganathan and Ian Foster Department of Computer Science, The University of Chicago 1100 E 58 th Street, Chicago, IL

More information

CHAPTER 7 CONCLUSION AND FUTURE SCOPE

CHAPTER 7 CONCLUSION AND FUTURE SCOPE 121 CHAPTER 7 CONCLUSION AND FUTURE SCOPE This research has addressed the issues of grid scheduling, load balancing and fault tolerance for large scale computational grids. To investigate the solution

More information

An Introduction to the Grid

An Introduction to the Grid 1 An Introduction to the Grid 1.1 INTRODUCTION The Grid concepts and technologies are all very new, first expressed by Foster and Kesselman in 1998 [1]. Before this, efforts to orchestrate wide-area distributed

More information

ADAPTIVE AND DYNAMIC LOAD BALANCING METHODOLOGIES FOR DISTRIBUTED ENVIRONMENT

ADAPTIVE AND DYNAMIC LOAD BALANCING METHODOLOGIES FOR DISTRIBUTED ENVIRONMENT ADAPTIVE AND DYNAMIC LOAD BALANCING METHODOLOGIES FOR DISTRIBUTED ENVIRONMENT PhD Summary DOCTORATE OF PHILOSOPHY IN COMPUTER SCIENCE & ENGINEERING By Sandip Kumar Goyal (09-PhD-052) Under the Supervision

More information

A Data-Aware Resource Broker for Data Grids

A Data-Aware Resource Broker for Data Grids A Data-Aware Resource Broker for Data Grids Huy Le, Paul Coddington, and Andrew L. Wendelborn School of Computer Science, University of Adelaide Adelaide, SA 5005, Australia {paulc,andrew}@cs.adelaide.edu.au

More information

Nowadays data-intensive applications play a

Nowadays data-intensive applications play a Journal of Advances in Computer Engineering and Technology, 3(2) 2017 Data Replication-Based Scheduling in Cloud Computing Environment Bahareh Rahmati 1, Amir Masoud Rahmani 2 Received (2016-02-02) Accepted

More information

Grid Computing Models for Discovering the Resources

Grid Computing Models for Discovering the Resources Grid Computing Models for Discovering the Resources Prarthana T,V 1, Jebah Jaykumar 2 1Asst. Professor, BNM Institute of technology, Karnataka, India 2 Asst. Professor, BNM Institute of technology, Karnataka,

More information

Dynamic Data Grid Replication Strategy Based on Internet Hierarchy

Dynamic Data Grid Replication Strategy Based on Internet Hierarchy Dynamic Data Grid Replication Strategy Based on Internet Hierarchy Sang-Min Park 1, Jai-Hoon Kim 1, Young-Bae Ko 2, and Won-Sik Yoon 2 1 Graduate School of Information and Communication Ajou University,

More information

Hierarchical Replication Control

Hierarchical Replication Control 1. Introduction Hierarchical Replication Control Jiaying Zhang and Peter Honeyman Center for Information Technology Integration University of Michigan at Ann Arbor jiayingz@eecs.umich.edu - 1 - honey@citi.umich.edu

More information

A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme

A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme Yue Zhang, Yunxia Pei To cite this version: Yue Zhang, Yunxia Pei. A Resource Discovery Algorithm in Mobile Grid Computing

More information

A Dynamic Replication Strategy based on Exponential Growth/Decay Rate

A Dynamic Replication Strategy based on Exponential Growth/Decay Rate A Dynamic Replication Strategy based on Exponential Growth/Decay Rate Mohammed Madi, Suhaidi Hassan and Yuhanis Yusof College of Arts and Sciences Universiti Utara Malaysia, 06010 UUM Sintok M A L A Y

More information

Dynamic Load balancing for I/O- and Memory- Intensive workload in Clusters using a Feedback Control Mechanism

Dynamic Load balancing for I/O- and Memory- Intensive workload in Clusters using a Feedback Control Mechanism Dynamic Load balancing for I/O- and Memory- Intensive workload in Clusters using a Feedback Control Mechanism Xiao Qin, Hong Jiang, Yifeng Zhu, David R. Swanson Department of Computer Science and Engineering

More information

Dynamic Replication Strategies for Object Storage Systems

Dynamic Replication Strategies for Object Storage Systems Dynamic Replication Strategies for Object Storage Systems Tan Zhipeng and Feng Dan Key Laboratory of Data Storage System, Ministry of Education School of Computer, Huazhong University of Science and Technology,

More information

An Adaptive Transfer Algorithm in GDSS

An Adaptive Transfer Algorithm in GDSS An Adaptive Transfer Algorithm in GDSS Hai Jin, Xiangshan Guan, Chao Xie and Qingchun Wang Key Laboratory for Cluster and Grid Computing, School of Computer Science and Technology, Huazhong University

More information

CS60021: Scalable Data Mining. Sourangshu Bhattacharya

CS60021: Scalable Data Mining. Sourangshu Bhattacharya CS60021: Scalable Data Mining Sourangshu Bhattacharya In this Lecture: Outline: HDFS Motivation HDFS User commands HDFS System architecture HDFS Implementation details Sourangshu Bhattacharya Computer

More information

Distributed Systems. Edited by. Ghada Ahmed, PhD. Fall (3rd Edition) Maarten van Steen and Tanenbaum

Distributed Systems. Edited by. Ghada Ahmed, PhD. Fall (3rd Edition) Maarten van Steen and Tanenbaum Distributed Systems (3rd Edition) Maarten van Steen and Tanenbaum Edited by Ghada Ahmed, PhD Fall 2017 Introduction: What is a distributed system? Distributed System Definition A distributed system is

More information

A Novel Task Scheduling Algorithm for Heterogeneous Computing

A Novel Task Scheduling Algorithm for Heterogeneous Computing A Novel Task Scheduling Algorithm for Heterogeneous Computing Vinay Kumar C. P.Katti P. C. Saxena SC&SS SC&SS SC&SS Jawaharlal Nehru University Jawaharlal Nehru University Jawaharlal Nehru University New

More information

Simulation of Dynamic Data Replication Strategies in Data Grids

Simulation of Dynamic Data Replication Strategies in Data Grids Simulation of Dynamic Data Replication Strategies in Data Grids Houda Lamehamedi, Zujun Shentu, and Boleslaw Szymanski Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 lamehh,

More information

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC Distributed Meta-data Servers: Architecture and Design Sarah Sharafkandi David H.C. Du DISC 5/22/07 1 Outline Meta-Data Server (MDS) functions Why a distributed and global Architecture? Problem description

More information

An Active Resource Management System for Computational Grid*

An Active Resource Management System for Computational Grid* An Active Resource Management System for Computational Grid* Xiaolin Chen 1, Chang Yang 1, Sanglu Lu 2, and Guihai Chen 2 1 Department of Computer Science, Chuxiong Normal University, Chuxiong 675000,

More information

Data Replication Strategies in Grid Environments

Data Replication Strategies in Grid Environments Data Replication Strategies in Grid Environments Houda Lamehamedi, Boleslaw Szymanski, and Zujun Shentu Department of Computer Science Rensselaer Polytechnic Institute Troy, NY 12180 lamehh, szymansk,

More information

A Survey Paper on Grid Information Systems

A Survey Paper on Grid Information Systems B 534 DISTRIBUTED SYSTEMS A Survey Paper on Grid Information Systems Anand Hegde 800 North Smith Road Bloomington Indiana 47408 aghegde@indiana.edu ABSTRACT Grid computing combines computers from various

More information

Text mining on a grid environment

Text mining on a grid environment Data Mining X 13 Text mining on a grid environment V. G. Roncero, M. C. A. Costa & N. F. F. Ebecken COPPE/Federal University of Rio de Janeiro, Brazil Abstract The enormous amount of information stored

More information

Future Generation Computer Systems. A survey of dynamic replication strategies for improving data availability in data grids

Future Generation Computer Systems. A survey of dynamic replication strategies for improving data availability in data grids Future Generation Computer Systems 28 (2012) 337 349 Contents lists available at SciVerse ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs A survey of dynamic

More information

Distributed Systems. Bina Ramamurthy. 6/13/2005 B.Ramamurthy 1

Distributed Systems. Bina Ramamurthy. 6/13/2005 B.Ramamurthy 1 Distributed Systems Bina Ramamurthy 6/13/2005 B.Ramamurthy 1 Introduction Distributed system is the one in which hardware and software components at networked computers communicate and coordinate their

More information

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski Distributed Systems 09. State Machine Replication & Virtual Synchrony Paul Krzyzanowski Rutgers University Fall 2016 1 State machine replication 2 State machine replication We want high scalability and

More information

A Resource Discovery Algorithm in Mobile Grid Computing Based on IP-Paging Scheme

A Resource Discovery Algorithm in Mobile Grid Computing Based on IP-Paging Scheme A Resource Discovery Algorithm in Mobile Grid Computing Based on IP-Paging Scheme Yue Zhang 1 and Yunxia Pei 2 1 Department of Math and Computer Science Center of Network, Henan Police College, Zhengzhou,

More information

Grids of Agents for Computer and Telecommunication Network Management

Grids of Agents for Computer and Telecommunication Network Management Grids of Agents for Computer and Telecommunication Network Marcos Dias de Assunção, Carlos Becker Westphall Network and Laboratory Federal University of Santa Catarina Florianópolis, SC, 88049-970, PO

More information

Simulation model and instrument to evaluate replication technologies

Simulation model and instrument to evaluate replication technologies Simulation model and instrument to evaluate replication technologies Bogdan Eremia *, Ciprian Dobre *, Florin Pop *, Alexandru Costan *, Valentin Cristea * * University POLITEHNICA of Bucharest, Romania

More information

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 1 Introduction Modified by: Dr. Ramzi Saifan Definition of a Distributed System (1) A distributed

More information

High Performance Computing Course Notes Grid Computing I

High Performance Computing Course Notes Grid Computing I High Performance Computing Course Notes 2008-2009 2009 Grid Computing I Resource Demands Even as computer power, data storage, and communication continue to improve exponentially, resource capacities are

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google* 정학수, 최주영 1 Outline Introduction Design Overview System Interactions Master Operation Fault Tolerance and Diagnosis Conclusions

More information

Random Walks and Cover Times. Project Report. Aravind Ranganathan. ECES 728 Internet Studies and Web Algorithms

Random Walks and Cover Times. Project Report. Aravind Ranganathan. ECES 728 Internet Studies and Web Algorithms Random Walks and Cover Times Project Report Aravind Ranganathan ECES 728 Internet Studies and Web Algorithms 1. Objectives: We consider random walk based broadcast-like operation in random networks. First,

More information

Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web

Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web TR020701 April 2002 Erbil Yilmaz Department of Computer Science The Florida State University Tallahassee, FL 32306

More information

SDS: A Scalable Data Services System in Data Grid

SDS: A Scalable Data Services System in Data Grid SDS: A Scalable Data s System in Data Grid Xiaoning Peng School of Information Science & Engineering, Central South University Changsha 410083, China Department of Computer Science and Technology, Huaihua

More information

A Grid Service Broker for Scheduling Distributed Data-Oriented Applications on Global Grids

A Grid Service Broker for Scheduling Distributed Data-Oriented Applications on Global Grids A Grid Broker for Scheduling Distributed Data-Oriented Applications on Global Grids Srikumar Venugopal, Rajkumar Buyya GRIDS Laboratory and NICTA Victoria Laboratory Dept. of Computer Science and Software

More information

SIMULATION FRAMEWORK FOR MODELING LARGE-SCALE DISTRIBUTED SYSTEMS. Dobre Ciprian Mihai *, Cristea Valentin *, Iosif C. Legrand **

SIMULATION FRAMEWORK FOR MODELING LARGE-SCALE DISTRIBUTED SYSTEMS. Dobre Ciprian Mihai *, Cristea Valentin *, Iosif C. Legrand ** SIMULATION FRAMEWORK FOR MODELING LARGE-SCALE DISTRIBUTED SYSTEMS Dobre Ciprian Mihai *, Cristea Valentin *, Iosif C. Legrand ** * Politehnica University of Bucharest ** California Institute of Technology

More information

Volley: Automated Data Placement for Geo-Distributed Cloud Services

Volley: Automated Data Placement for Geo-Distributed Cloud Services Volley: Automated Data Placement for Geo-Distributed Cloud Services Authors: Sharad Agarwal, John Dunagen, Navendu Jain, Stefan Saroiu, Alec Wolman, Harbinder Bogan 7th USENIX Symposium on Networked Systems

More information

System Models for Distributed Systems

System Models for Distributed Systems System Models for Distributed Systems INF5040/9040 Autumn 2015 Lecturer: Amir Taherkordi (ifi/uio) August 31, 2015 Outline 1. Introduction 2. Physical Models 4. Fundamental Models 2 INF5040 1 System Models

More information

THE VEGA PERSONAL GRID: A LIGHTWEIGHT GRID ARCHITECTURE

THE VEGA PERSONAL GRID: A LIGHTWEIGHT GRID ARCHITECTURE THE VEGA PERSONAL GRID: A LIGHTWEIGHT GRID ARCHITECTURE Wei Li, Zhiwei Xu, Bingchen Li, Yili Gong Institute of Computing Technology of Chinese Academy of Sciences Beijing China, 100080 {zxu, liwei, libingchen,

More information

Design of Distributed Data Mining Applications on the KNOWLEDGE GRID

Design of Distributed Data Mining Applications on the KNOWLEDGE GRID Design of Distributed Data Mining Applications on the KNOWLEDGE GRID Mario Cannataro ICAR-CNR cannataro@acm.org Domenico Talia DEIS University of Calabria talia@deis.unical.it Paolo Trunfio DEIS University

More information

Network-Aware Resource Allocation in Distributed Clouds

Network-Aware Resource Allocation in Distributed Clouds Dissertation Research Summary Thesis Advisor: Asst. Prof. Dr. Tolga Ovatman Istanbul Technical University Department of Computer Engineering E-mail: aralat@itu.edu.tr April 4, 2016 Short Bio Research and

More information

Replication in Mirrored Disk Systems

Replication in Mirrored Disk Systems Replication in Mirrored Disk Systems Athena Vakali and Yannis Manolopoulos Department of Informatics, Aristotle University 54006 Thessaloniki, Greece {avakali,manolopo}@athena.auth.gr Abstract. In this

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff and Shun Tak Leung Google* Shivesh Kumar Sharma fl4164@wayne.edu Fall 2015 004395771 Overview Google file system is a scalable distributed file system

More information

A Rank-based Hybrid Algorithm for Scheduling Dataand Computation-intensive Jobs in Grid Environments

A Rank-based Hybrid Algorithm for Scheduling Dataand Computation-intensive Jobs in Grid Environments A Rank-based Hybrid Algorithm for Scheduling Dataand Computation-intensive Jobs in Grid Environments Mohsen Abdoli, Reza Entezari-Maleki, and Ali Movaghar Department of Computer Engineering, Sharif University

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval CS 347 Notes 12 2 CS 347 Notes 12 3 CS 347 Notes 12 4 CS 347 Notes 12 5 Web Search Engine Crawling

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval CS 347 Notes 12 2 CS 347 Notes 12 3 CS 347 Notes 12 4 Web Search Engine Crawling Indexing Computing

More information

Meshlization of Irregular Grid Resource Topologies by Heuristic Square-Packing Methods

Meshlization of Irregular Grid Resource Topologies by Heuristic Square-Packing Methods Meshlization of Irregular Grid Resource Topologies by Heuristic Square-Packing Methods Uei-Ren Chen 1, Chin-Chi Wu 2, and Woei Lin 3 1 Department of Electronic Engineering, Hsiuping Institute of Technology

More information

Chapter 3. Design of Grid Scheduler. 3.1 Introduction

Chapter 3. Design of Grid Scheduler. 3.1 Introduction Chapter 3 Design of Grid Scheduler The scheduler component of the grid is responsible to prepare the job ques for grid resources. The research in design of grid schedulers has given various topologies

More information

HDFS Architecture. Gregory Kesden, CSE-291 (Storage Systems) Fall 2017

HDFS Architecture. Gregory Kesden, CSE-291 (Storage Systems) Fall 2017 HDFS Architecture Gregory Kesden, CSE-291 (Storage Systems) Fall 2017 Based Upon: http://hadoop.apache.org/docs/r3.0.0-alpha1/hadoopproject-dist/hadoop-hdfs/hdfsdesign.html Assumptions At scale, hardware

More information

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

The Grid Authentication System for Mobile Grid Environment

The Grid Authentication System for Mobile Grid Environment IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 02, 2014 ISSN (online): 2321-0613 The Grid Authentication System for Mobile Grid Environment A.Sudha 1 S.M.Karpagavalli

More information

Weka4WS: a WSRF-enabled Weka Toolkit for Distributed Data Mining on Grids

Weka4WS: a WSRF-enabled Weka Toolkit for Distributed Data Mining on Grids Weka4WS: a WSRF-enabled Weka Toolkit for Distributed Data Mining on Grids Domenico Talia, Paolo Trunfio, Oreste Verta DEIS, University of Calabria Via P. Bucci 41c, 87036 Rende, Italy {talia,trunfio}@deis.unical.it

More information

Introduction to Grid Computing

Introduction to Grid Computing Milestone 2 Include the names of the papers You only have a page be selective about what you include Be specific; summarize the authors contributions, not just what the paper is about. You might be able

More information

FaceID-Grid: A Grid Platform for Face Detection and Identification in Video Storage

FaceID-Grid: A Grid Platform for Face Detection and Identification in Video Storage FaceID-Grid: A Grid Platform for Face Detection and Identification in Video Storage Filipe Rodrigues filipe.rodrigues@ist.utl.pt Instituto Superior Técnico Abstract. Face Recognition systems have received

More information

An Evaluation of Alternative Designs for a Grid Information Service

An Evaluation of Alternative Designs for a Grid Information Service An Evaluation of Alternative Designs for a Grid Information Service Warren Smith, Abdul Waheed *, David Meyers, Jerry Yan Computer Sciences Corporation * MRJ Technology Solutions Directory Research L.L.C.

More information

High Throughput WAN Data Transfer with Hadoop-based Storage

High Throughput WAN Data Transfer with Hadoop-based Storage High Throughput WAN Data Transfer with Hadoop-based Storage A Amin 2, B Bockelman 4, J Letts 1, T Levshina 3, T Martin 1, H Pi 1, I Sfiligoi 1, M Thomas 2, F Wuerthwein 1 1 University of California, San

More information

Grid Computing. Lectured by: Dr. Pham Tran Vu Faculty of Computer and Engineering HCMC University of Technology

Grid Computing. Lectured by: Dr. Pham Tran Vu   Faculty of Computer and Engineering HCMC University of Technology Grid Computing Lectured by: Dr. Pham Tran Vu Email: ptvu@cse.hcmut.edu.vn 1 Grid Architecture 2 Outline Layer Architecture Open Grid Service Architecture 3 Grid Characteristics Large-scale Need for dynamic

More information

Providing Real-Time and Fault Tolerance for CORBA Applications

Providing Real-Time and Fault Tolerance for CORBA Applications Providing Real-Time and Tolerance for CORBA Applications Priya Narasimhan Assistant Professor of ECE and CS University Pittsburgh, PA 15213-3890 Sponsored in part by the CMU-NASA High Dependability Computing

More information

HETEROGENEOUS COMPUTING

HETEROGENEOUS COMPUTING HETEROGENEOUS COMPUTING Shoukat Ali, Tracy D. Braun, Howard Jay Siegel, and Anthony A. Maciejewski School of Electrical and Computer Engineering, Purdue University Heterogeneous computing is a set of techniques

More information

A Grid-Enabled Component Container for CORBA Lightweight Components

A Grid-Enabled Component Container for CORBA Lightweight Components A Grid-Enabled Component Container for CORBA Lightweight Components Diego Sevilla 1, José M. García 1, Antonio F. Gómez 2 1 Department of Computer Engineering 2 Department of Information and Communications

More information

Performance Analysis of Applying Replica Selection Technology for Data Grid Environments*

Performance Analysis of Applying Replica Selection Technology for Data Grid Environments* Performance Analysis of Applying Replica Selection Technology for Data Grid Environments* Chao-Tung Yang 1,, Chun-Hsiang Chen 1, Kuan-Ching Li 2, and Ching-Hsien Hsu 3 1 High-Performance Computing Laboratory,

More information

Performance Monitoring of Energy Flow in the Power Transmission and Distribution System Using Grid Computing

Performance Monitoring of Energy Flow in the Power Transmission and Distribution System Using Grid Computing Journal of Computer Science 3 (5): 323-328, 2007 ISSN 1549-3636 2007 Science Publications Performance Monitoring of Energy Flow in the Power Transmission and Distribution System Using Grid Computing 1

More information

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics System Models Nicola Dragoni Embedded Systems Engineering DTU Informatics 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models Architectural vs Fundamental Models Systems that are intended

More information

QoS Guided Min-Mean Task Scheduling Algorithm for Scheduling Dr.G.K.Kamalam

QoS Guided Min-Mean Task Scheduling Algorithm for Scheduling Dr.G.K.Kamalam International Journal of Computer Communication and Information System(IJJCCIS) Vol 7. No.1 215 Pp. 1-7 gopalax Journals, Singapore available at : www.ijcns.com ISSN: 976 1349 ---------------------------------------------------------------------------------------------------------------------

More information

What is Software Architecture

What is Software Architecture What is Software Architecture Is this diagram an architecture? (ATM Software) Control Card Interface Cash Dispenser Keyboard Interface What are ambiguities in the previous diagram? Nature of the elements

More information

THE GLOBUS PROJECT. White Paper. GridFTP. Universal Data Transfer for the Grid

THE GLOBUS PROJECT. White Paper. GridFTP. Universal Data Transfer for the Grid THE GLOBUS PROJECT White Paper GridFTP Universal Data Transfer for the Grid WHITE PAPER GridFTP Universal Data Transfer for the Grid September 5, 2000 Copyright 2000, The University of Chicago and The

More information

A unified multicore programming model

A unified multicore programming model A unified multicore programming model Simplifying multicore migration By Sven Brehmer Abstract There are a number of different multicore architectures and programming models available, making it challenging

More information

Grid Computing. Grid Computing 2

Grid Computing. Grid Computing 2 Grid Computing Mahesh Joshi joshi031@d.umn.edu Presentation for Graduate Course in Advanced Computer Architecture 28 th April 2005 Objective Overview of the concept and related aspects Some practical implications

More information

Knowledge Discovery Services and Tools on Grids

Knowledge Discovery Services and Tools on Grids Knowledge Discovery Services and Tools on Grids DOMENICO TALIA DEIS University of Calabria ITALY talia@deis.unical.it Symposium ISMIS 2003, Maebashi City, Japan, Oct. 29, 2003 OUTLINE Introduction Grid

More information

OpenCache. A Platform for Efficient Video Delivery. Matthew Broadbent. 1 st Year PhD Student

OpenCache. A Platform for Efficient Video Delivery. Matthew Broadbent. 1 st Year PhD Student OpenCache A Platform for Efficient Video Delivery Matthew Broadbent 1 st Year PhD Student Motivation Consumption of video content on the Internet is constantly expanding Video-on-demand is an ever greater

More information

The Google File System

The Google File System October 13, 2010 Based on: S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google file system, in Proceedings ACM SOSP 2003, Lake George, NY, USA, October 2003. 1 Assumptions Interface Architecture Single

More information

Advanced School in High Performance and GRID Computing November Introduction to Grid computing.

Advanced School in High Performance and GRID Computing November Introduction to Grid computing. 1967-14 Advanced School in High Performance and GRID Computing 3-14 November 2008 Introduction to Grid computing. TAFFONI Giuliano Osservatorio Astronomico di Trieste/INAF Via G.B. Tiepolo 11 34131 Trieste

More information

Redundant Parallel Data Transfer Schemes for the Grid Environment

Redundant Parallel Data Transfer Schemes for the Grid Environment Redundant Parallel Data Transfer Schemes for the Grid Environment R.S.Bhuvaneswaran Yoshiaki Katayama Naohisa Takahashi Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya

More information

WSN Routing Protocols

WSN Routing Protocols WSN Routing Protocols 1 Routing Challenges and Design Issues in WSNs 2 Overview The design of routing protocols in WSNs is influenced by many challenging factors. These factors must be overcome before

More information

Announcements. me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris

Announcements.  me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris Announcements Email me your survey: See the Announcements page Today Conceptual overview of distributed systems System models Reading Today: Chapter 2 of Coulouris Next topic: client-side processing (HTML,

More information

Scaling-Out with Oracle Grid Computing on Dell Hardware

Scaling-Out with Oracle Grid Computing on Dell Hardware Scaling-Out with Oracle Grid Computing on Dell Hardware A Dell White Paper J. Craig Lowery, Ph.D. Enterprise Solutions Engineering Dell Inc. August 2003 Increasing computing power by adding inexpensive

More information

Finding Optimal Tour Length of Mobile Agent in Wireless Sensor Network

Finding Optimal Tour Length of Mobile Agent in Wireless Sensor Network Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Finding Optimal Tour Length of Mobile Agent in Wireless Sensor Network Anil Kumar Mahto anil.fiem16@gmail.com Ajay Prasad Department

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

Priya Narasimhan. Assistant Professor of ECE and CS Carnegie Mellon University Pittsburgh, PA

Priya Narasimhan. Assistant Professor of ECE and CS Carnegie Mellon University Pittsburgh, PA OMG Real-Time and Distributed Object Computing Workshop, July 2002, Arlington, VA Providing Real-Time and Fault Tolerance for CORBA Applications Priya Narasimhan Assistant Professor of ECE and CS Carnegie

More information

An agent-based peer-to-peer grid computing architecture

An agent-based peer-to-peer grid computing architecture University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 An agent-based peer-to-peer grid computing architecture J. Tang University

More information

A Comparative study of On-Demand Data Delivery with Tables Driven and On-Demand Protocols for Mobile Ad-Hoc Network

A Comparative study of On-Demand Data Delivery with Tables Driven and On-Demand Protocols for Mobile Ad-Hoc Network A Comparative study of On-Demand Data Delivery with Tables Driven and On-Demand Protocols for Mobile Ad-Hoc Network Humayun Bakht Research Fellow, London School of Commerce, United Kingdom humayunbakht@yahoo.co.uk

More information

Experience and Prospects for Various Control Strategies for Self-Replicating Multi-Agent Systems

Experience and Prospects for Various Control Strategies for Self-Replicating Multi-Agent Systems Experience and Prospects for Various Control Strategies for Self-Replicating Multi-Agent Systems J.-P. Briot, Z. Guessoum, S. Aknine, A. Luna- Almeida, N. Faci and M. Gatti CReSTIC (Centre de Recherche

More information

A COMPARATIVE STUDY IN DYNAMIC JOB SCHEDULING APPROACHES IN GRID COMPUTING ENVIRONMENT

A COMPARATIVE STUDY IN DYNAMIC JOB SCHEDULING APPROACHES IN GRID COMPUTING ENVIRONMENT A COMPARATIVE STUDY IN DYNAMIC JOB SCHEDULING APPROACHES IN GRID COMPUTING ENVIRONMENT Amr Rekaby 1 and Mohamed Abo Rizka 2 1 Egyptian Research and Scientific Innovation Lab (ERSIL), Egypt 2 Arab Academy

More information

TIBCO StreamBase 10 Distributed Computing and High Availability. November 2017

TIBCO StreamBase 10 Distributed Computing and High Availability. November 2017 TIBCO StreamBase 10 Distributed Computing and High Availability November 2017 Distributed Computing Distributed Computing location transparent objects and method invocation allowing transparent horizontal

More information

Distributed Systems Principles and Paradigms. Chapter 01: Introduction

Distributed Systems Principles and Paradigms. Chapter 01: Introduction Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 01: Introduction Version: October 25, 2009 2 / 26 Contents Chapter

More information

On a Fast Interconnections

On a Fast Interconnections IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 75 On a Fast Interconnections Ravi Rastogi and Nitin* Department of Computer Science & Engineering and Information

More information

Distributed Systems Principles and Paradigms. Chapter 01: Introduction. Contents. Distributed System: Definition.

Distributed Systems Principles and Paradigms. Chapter 01: Introduction. Contents. Distributed System: Definition. Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 01: Version: February 21, 2011 1 / 26 Contents Chapter 01: 02: Architectures

More information