Hash Table Design and Optimization for Software Virtual Switches

Size: px
Start display at page:

Download "Hash Table Design and Optimization for Software Virtual Switches"

Transcription

1 Hash Table Design and Optimization for Software Virtual Switches P R E S E N T E R : R E N WA N G Y I P E N G WA N G, S A M E H G O B R I E L, R E N WA N G, C H A R L I E TA I, C R I S T I A N D U M I T R E S C U I N T E L L A B S

2 OUTLINE Background and motivation Survey and understanding Analysis

3 Background We found the most common data structure used in virtual switch is hash table. wildcarding match (tuple space search): routing table, ACL exact match: con-track table, flow cache, etc. Comparing to tree based data structure, hash table based data structure has certain advantages: More parallelism: no pointer chasing Faster rule updates 3

4 Background Hash table lookup is also one of the most time consuming stage during packet processing: E.g. Open vswitch (100k rules, 20 subtables) Execution percentage IO Preprocessing Rule lookup others ~8% ~5% ~78% ~9% A major source of hash table lookup overhead is memory access latency. 4

5 Motivation Hash table is a simple data structure, but there are many different design and implementations. Understanding of hash table performance and how to design an efficient hash table structure is the key to a good software switch. A general guideline to hash table designs will benefit future vswitch development. 5

6 Basic hash table structure The evolution of hash table algorithms: single array -> bucket-based -> n-hash Key A Key A Key A 6

7 Cuckoo hashing Cuckoo hash algorithm: existing keys can be displaced to alternative bucket Key B Key A Key A Hash func Key B 7

8 Survey We also studied into various open source virtual switch applications to learn their implementations. Three major purposes these applications use hash table for: Routing table/acl tuple space search Connect tracking table exact match Flow cache exact/signature match with replacement policy 8

9 Observations Set-associative table and cuckoo hash are widely used. Bucket size is usually 4-8 entries Cache alignment Vectorization Capacity guarantee is needed in telcom use cases Linked list based hash table as extended table Software techniques to improve performance: Software pipelining Batching Read write concurrency Optimistic locking Intel TSX 9

10 Analysis - Table organization and data structure Number of keys per bucket More entries in a bucket can directly improve the table utilizations. 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% load factors vs. assoc hash 2hash cuckoo Cuckoo hash insertion cycles vs. load factor Conclusion: when table utilization is important, cuckoo hash should be used. Multiple hash function and multiple ways per bucket also help a lot. 10

11 Analysis - Separate key storage and cache alignment Hash tables could store key-data pair in a separate memory location, and only keep signatures and index in the table. Pros: signature and index are easily to be cache aligned, benefit cache miss case. Cons: requires another memory jump when hit. SIG Key+data Out tests show that with optimized DPDK hash tables, storing keys in or outside the table does not show major difference with 16 or 32-byte key size. However, cache alignment will improve hash table lookup speed by % in our DPDK based performance test. 11

12 Analysis - Hash table based cache When use hash table for flow cache we need to consider cache miss ratio. 4-8 ways per bucket can already keep the miss ratio to be reasonable low. lookup We propose a new AVX-based LRU implementation. Use Intel AVX instruction to permute the bucket % 25.00% miss ratio vs. ways/bucket miss ratio 20.00% 15.00% 10.00% 5.00% 0.00% speed comparison (lower the better) avx age ll bplru tplru insert lookup void adjust_location(int location, bucket* bucket){ m256i array = avx_load(bucket) m256i permute_pattern = avx_load(permute_index[location]) m256i permuted_array = avx_permute(array, permute_pattern) avx_store (bucket, permuted_array) } 12

13 Analysis - Software pipelining and batching Batching can enable us to prefetch hash table bucket for different lookup keys. Together with batching, software pipelining can further improve performance. Software pipelining + batching easily improve performance by 2X in our test case cycle/pkt with prefetch or pipelining no opt. prefetch pipelined 13

14 Analysis- Vectorization Besides using Intel AVX instruction for LRU operation, we can also use AVX instruction to perform signature comparison. We compare three mechanisms: No vectorization. Horizontal vectorization: compare one key s signature to all signatures in a bucket. Vertical vecotrization: compare all key s signatures in a batch to different entries across different buckets. Observation: Vertical or scalar better for low table utilization. Horizontal better for high table utilization. An adaptive method could benefit lookup cycle vs. avg entry location scalar vert hori 14

15 Future directions of Hash Table Design Cuckoo hash + extended linked list design Linked list based hash table provides capacity guarantee. Cuckoo hash table provides high table utilization and constant table lookup time. The combination of both to achieve both capacity guarantee and better utilization. Adaptive vrouter From the study, we found no single data structure could fit all use cases. Runtime decision based on traffic patterns could benefit. During runtime, a learning (e.g., trial and rank) phase to try various hash table data structures. 15

16 Conclusion We investigated multiple hash table algorithms and implementations in popular virtual switches. We analyzed various hash table designs and provide guide lines for different use cases. We proposed Intel AVX based LRU cache implementation and adaptive signature comparison. We proposed future directions on hash table design in virtual switches. 16

Tungsten Fabric Optimization by DPDK ZHAOYAN CHEN YIPENG WANG

Tungsten Fabric Optimization by DPDK ZHAOYAN CHEN YIPENG WANG x Tungsten Fabric Optimization by DPDK ZHAOYAN CHEN YIPENG WANG Agenda Introduce Tungsten Fabric Support More CPU cores MPLS over GRE Optimization Hash Table Optimization Batch RX for VM and Fabric What

More information

Flow Caching for High Entropy Packet Fields

Flow Caching for High Entropy Packet Fields Flow Caching for High Entropy Packet Fields Nick Shelly Nick McKeown! Ethan Jackson Teemu Koponen Jarno Rajahalme Outline Current flow classification in OVS Problems with high entropy packets Proposed

More information

Extending DPDK Flow Classification Libraries for Determinism & Cloud Usages SAMEH GOBRIEL INTEL LABS

Extending DPDK Flow Classification Libraries for Determinism & Cloud Usages SAMEH GOBRIEL INTEL LABS x Extending DPDK Flow Classification Libraries for Determinism & Cloud Usages SAMEH GOBRIEL INTEL LABS Contributors Yipeng Wang yipeng1.wang@intel.com Ren Wang ren.wang@intel.com Charlie Tai charlie.tai@intel.com

More information

MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing

MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing MemC3: MemCache with CLOCK and Concurrent Cuckoo Hashing Bin Fan (CMU), Dave Andersen (CMU), Michael Kaminsky (Intel Labs) NSDI 2013 http://www.pdl.cmu.edu/ 1 Goal: Improve Memcached 1. Reduce space overhead

More information

High-Performance Key-Value Store on OpenSHMEM

High-Performance Key-Value Store on OpenSHMEM High-Performance Key-Value Store on OpenSHMEM Huansong Fu*, Manjunath Gorentla Venkata, Ahana Roy Choudhury*, Neena Imam, Weikuan Yu* *Florida State University Oak Ridge National Laboratory Outline Background

More information

Spring 2018 :: CSE 502. Cache Design Basics. Nima Honarmand

Spring 2018 :: CSE 502. Cache Design Basics. Nima Honarmand Cache Design Basics Nima Honarmand Storage Hierarchy Make common case fast: Common: temporal & spatial locality Fast: smaller, more expensive memory Bigger Transfers Registers More Bandwidth Controlled

More information

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV. Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Goal: fast and cost-efficient key-value store Store, retrieve, manage key-value objects Get(key)/Put(key,value)/Delete(key) Target: cluster-level

More information

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching

Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value Caching Kefei Wang and Feng Chen Louisiana State University SoCC '18 Carlsbad, CA Key-value Systems in Internet Services Key-value

More information

Main Memory (Part II)

Main Memory (Part II) Main Memory (Part II) Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 1 / 50 Reminder Amir H. Payberah

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #21: Caches 3 2005-07-27 CS61C L22 Caches III (1) Andy Carle Review: Why We Use Caches 1000 Performance 100 10 1 1980 1981 1982 1983

More information

Accelerating OpenFlow SDN Switches with Per-Port Cache

Accelerating OpenFlow SDN Switches with Per-Port Cache Accelerating OpenFlow SDN Switches with Per-Port Cache Cheng-Yi Lin Youn-Long Lin Department of Computer Science National Tsing Hua University 1 Outline 1. Introduction 2. Related Work 3. Per-Port Cache

More information

A Comparison of Performance and Accuracy of Measurement Algorithms in Software

A Comparison of Performance and Accuracy of Measurement Algorithms in Software A Comparison of Performance and Accuracy of Measurement Algorithms in Software Omid Alipourfard, Masoud Moshref 1, Yang Zhou 2, Tong Yang 2, Minlan Yu 3 Yale University, Barefoot Networks 1, Peking University

More information

High Performance Computing and Programming, Lecture 3

High Performance Computing and Programming, Lecture 3 High Performance Computing and Programming, Lecture 3 Memory usage and some other things Ali Dorostkar Division of Scientific Computing, Department of Information Technology, Uppsala University, Sweden

More information

PVPP: A Programmable Vector Packet Processor. Sean Choi, Xiang Long, Muhammad Shahbaz, Skip Booth, Andy Keep, John Marshall, Changhoon Kim

PVPP: A Programmable Vector Packet Processor. Sean Choi, Xiang Long, Muhammad Shahbaz, Skip Booth, Andy Keep, John Marshall, Changhoon Kim PVPP: A Programmable Vector Packet Processor Sean Choi, Xiang Long, Muhammad Shahbaz, Skip Booth, Andy Keep, John Marshall, Changhoon Kim Fixed Set of Protocols Fixed-Function Switch Chip TCP IPv4 IPv6

More information

Multimedia Streaming. Mike Zink

Multimedia Streaming. Mike Zink Multimedia Streaming Mike Zink Technical Challenges Servers (and proxy caches) storage continuous media streams, e.g.: 4000 movies * 90 minutes * 10 Mbps (DVD) = 27.0 TB 15 Mbps = 40.5 TB 36 Mbps (BluRay)=

More information

IMPORTANT: Circle the last two letters of your class account:

IMPORTANT: Circle the last two letters of your class account: Spring 2011 University of California, Berkeley College of Engineering Computer Science Division EECS MIDTERM I CS 186 Introduction to Database Systems Prof. Michael J. Franklin NAME: STUDENT ID: IMPORTANT:

More information

OpenFlow Software Switch & Intel DPDK. performance analysis

OpenFlow Software Switch & Intel DPDK. performance analysis OpenFlow Software Switch & Intel DPDK performance analysis Agenda Background Intel DPDK OpenFlow 1.3 implementation sketch Prototype design and setup Results Future work, optimization ideas OF 1.3 prototype

More information

Stochastic Pre-Classification for SDN Data Plane Matching

Stochastic Pre-Classification for SDN Data Plane Matching Stochastic Pre-Classification for SDN Data Plane Matching Luke McHale, C. Jasson Casey, Paul V. Gratz, Alex Sprintson Presenter: Luke McHale Ph.D. Student, Texas A&M University Contact: luke.mchale@tamu.edu

More information

Learning with Purpose

Learning with Purpose Network Measurement for 100Gbps Links Using Multicore Processors Xiaoban Wu, Dr. Peilong Li, Dr. Yongyi Ran, Prof. Yan Luo Department of Electrical and Computer Engineering University of Massachusetts

More information

EECS 470. Lecture 14 Advanced Caches. DEC Alpha. Fall Jon Beaumont

EECS 470. Lecture 14 Advanced Caches. DEC Alpha. Fall Jon Beaumont Lecture 14 Advanced Caches DEC Alpha Fall 2018 Instruction Cache BIU Jon Beaumont www.eecs.umich.edu/courses/eecs470/ Data Cache Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti,

More information

Memory Hierarchy. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Memory Hierarchy. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Memory Hierarchy Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 35 Caches IV / VM I 2004-11-19 Andy Carle inst.eecs.berkeley.edu/~cs61c-ta Google strikes back against recent encroachments into the Search

More information

Basics of Performance Engineering

Basics of Performance Engineering ERLANGEN REGIONAL COMPUTING CENTER Basics of Performance Engineering J. Treibig HiPerCH 3, 23./24.03.2015 Why hardware should not be exposed Such an approach is not portable Hardware issues frequently

More information

Lecture 21. Monday, February 28 CS 470 Operating Systems - Lecture 21 1

Lecture 21. Monday, February 28 CS 470 Operating Systems - Lecture 21 1 Lecture 21 Case study guidelines posted Case study assignments Third project (virtual memory simulation) will go out after spring break. Extra credit fourth project (shell program) will go out after that.

More information

Jackson Marusarz Intel Corporation

Jackson Marusarz Intel Corporation Jackson Marusarz Intel Corporation Intel VTune Amplifier Quick Introduction Get the Data You Need Hotspot (Statistical call tree), Call counts (Statistical) Thread Profiling Concurrency and Lock & Waits

More information

Overview IN this chapter we will study. William Stallings Computer Organization and Architecture 6th Edition

Overview IN this chapter we will study. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 4 Cache Memory Overview IN this chapter we will study 4.1 COMPUTER MEMORY SYSTEM OVERVIEW 4.2 CACHE MEMORY PRINCIPLES 4.3 ELEMENTS

More information

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li

Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Be Fast, Cheap and in Control with SwitchKV Xiaozhou Li Raghav Sethi Michael Kaminsky David G. Andersen Michael J. Freedman Goal: fast and cost-effective key-value store Target: cluster-level storage for

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 Cache II 27-8-6 Scott Beamer, Instructor New Flow Based Routers CS61C L24 Cache II (1) www.anagran.com Caching Terminology When we try

More information

Maximizing Face Detection Performance

Maximizing Face Detection Performance Maximizing Face Detection Performance Paulius Micikevicius Developer Technology Engineer, NVIDIA GTC 2015 1 Outline Very brief review of cascaded-classifiers Parallelization choices Reducing the amount

More information

Some Practice Problems on Hardware, File Organization and Indexing

Some Practice Problems on Hardware, File Organization and Indexing Some Practice Problems on Hardware, File Organization and Indexing Multiple Choice State if the following statements are true or false. 1. On average, repeated random IO s are as efficient as repeated

More information

A distributed in-memory key-value store system on heterogeneous CPU GPU cluster

A distributed in-memory key-value store system on heterogeneous CPU GPU cluster The VLDB Journal DOI 1.17/s778-17-479- REGULAR PAPER A distributed in-memory key-value store system on heterogeneous CPU GPU cluster Kai Zhang 1 Kaibo Wang 2 Yuan Yuan 3 Lei Guo 2 Rubao Li 3 Xiaodong Zhang

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 0 Introduction to Computer Engineering Study Problems, Set #9 Spring 01 1. Given the following series of address references given as word addresses:,,, 1, 1, 1,, 8, 19,,,,, 7,, and. Assuming a direct-mapped

More information

ECE 5730 Memory Systems

ECE 5730 Memory Systems ECE 5730 Memory Systems Spring 2009 Command Scheduling Disk Caching Lecture 23: 1 Announcements Quiz 12 I ll give credit for #4 if you answered (d) Quiz 13 (last one!) on Tuesday Make-up class #2 Thursday,

More information

Scalable Concurrent Hash Tables via Relativistic Programming

Scalable Concurrent Hash Tables via Relativistic Programming Scalable Concurrent Hash Tables via Relativistic Programming Josh Triplett September 24, 2009 Speed of data < Speed of light Speed of light: 3e8 meters/second Processor speed: 3 GHz, 3e9 cycles/second

More information

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015 Operating Systems 09. Memory Management Part 1 Paul Krzyzanowski Rutgers University Spring 2015 March 9, 2015 2014-2015 Paul Krzyzanowski 1 CPU Access to Memory The CPU reads instructions and reads/write

More information

Show Me the $... Performance And Caches

Show Me the $... Performance And Caches Show Me the $... Performance And Caches 1 CPU-Cache Interaction (5-stage pipeline) PCen 0x4 Add bubble PC addr inst hit? Primary Instruction Cache IR D To Memory Control Decode, Register Fetch E A B MD1

More information

Hashing Round-down Prefixes for Rapid Packet Classification

Hashing Round-down Prefixes for Rapid Packet Classification Hashing Round-down Prefixes for Rapid Packet Classification Fong Pong and Nian-Feng Tzeng* *Center for Advanced Computer Studies University of Louisiana, Lafayette, USA 1 Outline Packet Classification

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 32 Caches III 2008-04-16 Lecturer SOE Dan Garcia Hi to Chin Han from U Penn! Prem Kumar of Northwestern has created a quantum inverter

More information

William Stallings Computer Organization and Architecture 8th Edition. Cache Memory

William Stallings Computer Organization and Architecture 8th Edition. Cache Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 4 Cache Memory Characteristics Location Capacity Unit of transfer Access method Performance Physical type Physical characteristics

More information

Topic: A Deep Dive into Memory Access. Company: Intel Title: Software Engineer Name: Wang, Zhihong

Topic: A Deep Dive into Memory Access. Company: Intel Title: Software Engineer Name: Wang, Zhihong Topic: A Deep Dive into Memory Access Company: Intel Title: Software Engineer Name: Wang, Zhihong A Typical NFV Scenario: PVP Guest Forwarding Engine virtio vhost Forwarding Engine NIC Ring ops What s

More information

Memory Management. Memory

Memory Management. Memory Memory Management These slides are created by Dr. Huang of George Mason University. Students registered in Dr. Huang s courses at GMU can make a single machine readable copy and print a single copy of

More information

COSC3330 Computer Architecture Lecture 20. Virtual Memory

COSC3330 Computer Architecture Lecture 20. Virtual Memory COSC3330 Computer Architecture Lecture 20. Virtual Memory Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Virtual Memory Topics Reducing Cache Miss Penalty (#2) Use

More information

Reliably Scalable Name Prefix Lookup! Haowei Yuan and Patrick Crowley! Washington University in St. Louis!! ANCS 2015! 5/8/2015!

Reliably Scalable Name Prefix Lookup! Haowei Yuan and Patrick Crowley! Washington University in St. Louis!! ANCS 2015! 5/8/2015! Reliably Scalable Name Prefix Lookup! Haowei Yuan and Patrick Crowley! Washington University in St. Louis!! ANCS 2015! 5/8/2015! ! My Topic for Today! Goal: a reliable longest name prefix lookup performance

More information

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Pengfei Zuo, Yu Hua, Jie Wu Huazhong University of Science and Technology, China 3th USENIX Symposium on Operating Systems

More information

Why memory hierarchy? Memory hierarchy. Memory hierarchy goals. CS2410: Computer Architecture. L1 cache design. Sangyeun Cho

Why memory hierarchy? Memory hierarchy. Memory hierarchy goals. CS2410: Computer Architecture. L1 cache design. Sangyeun Cho Why memory hierarchy? L1 cache design Sangyeun Cho Computer Science Department Memory hierarchy Memory hierarchy goals Smaller Faster More expensive per byte CPU Regs L1 cache L2 cache SRAM SRAM To provide

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University ARM & IA-32 Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ARM (1) ARM & MIPS similarities ARM: the most popular embedded core Similar basic set

More information

Huge market -- essentially all high performance databases work this way

Huge market -- essentially all high performance databases work this way 11/5/2017 Lecture 16 -- Parallel & Distributed Databases Parallel/distributed databases: goal provide exactly the same API (SQL) and abstractions (relational tables), but partition data across a bunch

More information

Distributed File Systems Part II. Distributed File System Implementation

Distributed File Systems Part II. Distributed File System Implementation s Part II Daniel A. Menascé Implementation File Usage Patterns File System Structure Caching Replication Example: NFS 1 Implementation: File Usage Patterns Static Measurements: - distribution of file size,

More information

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Lecture 17 Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] SRAM / / Flash / RRAM / HDD SRAM / / Flash / RRAM/ HDD SRAM

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 14 Caches III Lecturer SOE Dan Garcia Google Glass may be one vision of the future of post-pc interfaces augmented reality with video

More information

Processors. Young W. Lim. May 12, 2016

Processors. Young W. Lim. May 12, 2016 Processors Young W. Lim May 12, 2016 Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Memory Management Outline. Operating Systems. Motivation. Paging Implementation. Accessing Invalid Pages. Performance of Demand Paging

Memory Management Outline. Operating Systems. Motivation. Paging Implementation. Accessing Invalid Pages. Performance of Demand Paging Memory Management Outline Operating Systems Processes (done) Memory Management Basic (done) Paging (done) Virtual memory Virtual Memory (Chapter.) Motivation Logical address space larger than physical

More information

Shepard - A Fast Exact Match Short Read Aligner

Shepard - A Fast Exact Match Short Read Aligner Shepard A Fast Exact Match Short Read Aligner Chad Nelson, Kevin Townsend, Bhavani Rao, Phillip Jones, Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University Ames, IA,

More information

MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing

MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing To appear in Proceedings of the 1th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), Lombard, IL, April 213 MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter

More information

Forget IOPS: A Proper Way to Characterize & Test Storage Performance Peter Murray SwiftTest

Forget IOPS: A Proper Way to Characterize & Test Storage Performance Peter Murray SwiftTest Forget IOPS: A Proper Way to Characterize & Test Storage Performance Peter Murray peter@swifttest.com SwiftTest Storage Performance Validation Rely on vendor IOPS claims Test in production and pray Validate

More information

The Gap Between the Virtual Machine and the Real Machine. Charles Forgy Production Systems Tech

The Gap Between the Virtual Machine and the Real Machine. Charles Forgy Production Systems Tech The Gap Between the Virtual Machine and the Real Machine Charles Forgy Production Systems Tech How to Improve Performance Use better algorithms. Use parallelism. Make better use of the hardware. Argument

More information

Unit 2. Chapter 4 Cache Memory

Unit 2. Chapter 4 Cache Memory Unit 2 Chapter 4 Cache Memory Characteristics Location Capacity Unit of transfer Access method Performance Physical type Physical characteristics Organisation Location CPU Internal External Capacity Word

More information

Programmable NICs. Lecture 14, Computer Networks (198:552)

Programmable NICs. Lecture 14, Computer Networks (198:552) Programmable NICs Lecture 14, Computer Networks (198:552) Network Interface Cards (NICs) The physical interface between a machine and the wire Life of a transmitted packet Userspace application NIC Transport

More information

Chapter 2: Memory Hierarchy Design Part 2

Chapter 2: Memory Hierarchy Design Part 2 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis Multi-level Translation CS 57 Lecture 9 Paging Michael Swift Problem: what if you have a sparse address space e.g. out of GB, you use MB spread out need one PTE per page in virtual address space bit AS

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

CS 261 Fall Caching. Mike Lam, Professor. (get it??)

CS 261 Fall Caching. Mike Lam, Professor. (get it??) CS 261 Fall 2017 Mike Lam, Professor Caching (get it??) Topics Caching Cache policies and implementations Performance impact General strategies Caching A cache is a small, fast memory that acts as a buffer

More information

Growth of the Internet Network capacity: A scarce resource Good Service

Growth of the Internet Network capacity: A scarce resource Good Service IP Route Lookups 1 Introduction Growth of the Internet Network capacity: A scarce resource Good Service Large-bandwidth links -> Readily handled (Fiber optic links) High router data throughput -> Readily

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2011/12 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1 2

More information

Mega KV: A Case for GPUs to Maximize the Throughput of In Memory Key Value Stores

Mega KV: A Case for GPUs to Maximize the Throughput of In Memory Key Value Stores Mega KV: A Case for GPUs to Maximize the Throughput of In Memory Key Value Stores Kai Zhang Kaibo Wang 2 Yuan Yuan 2 Lei Guo 2 Rubao Lee 2 Xiaodong Zhang 2 University of Science and Technology of China

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2012/13 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2012/13 1 2

More information

6.033 Computer System Engineering

6.033 Computer System Engineering MIT OpenCourseWare http://ocw.mit.edu 6.033 Computer System Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.033 2009 Lecture

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS335B Computer Architecture Winter 25 Lecture 32: Exploiting Memory Hierarchy: How? Marc Moreno Maza wwwcsduwoca/courses/cs335b [Adapted from lectures on Computer Organization and Design, Patterson &

More information

COS 318: Operating Systems. Virtual Memory and Address Translation

COS 318: Operating Systems. Virtual Memory and Address Translation COS 318: Operating Systems Virtual Memory and Address Translation Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Today s Topics

More information

Lecture notes for CS Chapter 2, part 1 10/23/18

Lecture notes for CS Chapter 2, part 1 10/23/18 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

OpenEdge 12.0 Database Performance and Server Side Joins. Richard Banville Fellow, OpenEdge Development October 12, 2018

OpenEdge 12.0 Database Performance and Server Side Joins. Richard Banville Fellow, OpenEdge Development October 12, 2018 OpenEdge 12.0 Database Performance and Server Side Joins Richard Banville Fellow, OpenEdge Development October 12, 2018 Data Access Performance Enhancements Increasing overall throughput Provide more concurrency

More information

Chapter 8 Main Memory

Chapter 8 Main Memory COP 4610: Introduction to Operating Systems (Spring 2014) Chapter 8 Main Memory Zhi Wang Florida State University Contents Background Swapping Contiguous memory allocation Paging Segmentation OS examples

More information

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant Big and Fast Anti-Caching in OLTP Systems Justin DeBrabant Online Transaction Processing transaction-oriented small footprint write-intensive 2 A bit of history 3 OLTP Through the Years relational model

More information

High-Speed Forwarding: A P4 Compiler with a Hardware Abstraction Library for Intel DPDK

High-Speed Forwarding: A P4 Compiler with a Hardware Abstraction Library for Intel DPDK High-Speed Forwarding: A P4 Compiler with a Hardware Abstraction Library for Intel DPDK Sándor Laki Eötvös Loránd University Budapest, Hungary lakis@elte.hu Motivation Programmability of network data plane

More information

Cuckoo Filter: Practically Better Than Bloom

Cuckoo Filter: Practically Better Than Bloom Cuckoo Filter: Practically Better Than Bloom Bin Fan (CMU/Google) David Andersen (CMU) Michael Kaminsky (Intel Labs) Michael Mitzenmacher (Harvard) 1 What is Bloom Filter? A Compact Data Structure Storing

More information

Ruler: High-Speed Packet Matching and Rewriting on Network Processors

Ruler: High-Speed Packet Matching and Rewriting on Network Processors Ruler: High-Speed Packet Matching and Rewriting on Network Processors Tomáš Hrubý Kees van Reeuwijk Herbert Bos Vrije Universiteit, Amsterdam World45 Ltd. ANCS 2007 Tomáš Hrubý (VU Amsterdam, World45)

More information

Building high performance network functions in VPP. Ole Trøan, VPP contributor FOSDEM 2018

Building high performance network functions in VPP. Ole Trøan, VPP contributor FOSDEM 2018 Building high performance network functions in VPP Ole Trøan, ot@cisco.com, VPP contributor FOSDEM 2018 1 2 This talk? Goal: Make you into VPP developers Agenda: VPP architecture An example decomposed

More information

Lecture 4: RISC Computers

Lecture 4: RISC Computers Lecture 4: RISC Computers Introduction Program execution features RISC characteristics RISC vs. CICS Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) represents an important

More information

Chapter 2: Memory Hierarchy Design Part 2

Chapter 2: Memory Hierarchy Design Part 2 Chapter 2: Memory Hierarchy Design Part 2 Introduction (Section 2.1, Appendix B) Caches Review of basics (Section 2.1, Appendix B) Advanced methods (Section 2.3) Main Memory Virtual Memory Fundamental

More information

SIGNET: NETWORK-ON-CHIP FILTERING FOR COARSE VECTOR DIRECTORIES. Natalie Enright Jerger University of Toronto

SIGNET: NETWORK-ON-CHIP FILTERING FOR COARSE VECTOR DIRECTORIES. Natalie Enright Jerger University of Toronto SIGNET: NETWORK-ON-CHIP FILTERING FOR COARSE VECTOR DIRECTORIES University of Toronto Interaction of Coherence and Network 2 Cache coherence protocol drives network-on-chip traffic Scalable coherence protocols

More information

Exam-2 Scope. 3. Shared memory architecture, distributed memory architecture, SMP, Distributed Shared Memory and Directory based coherence

Exam-2 Scope. 3. Shared memory architecture, distributed memory architecture, SMP, Distributed Shared Memory and Directory based coherence Exam-2 Scope 1. Memory Hierarchy Design (Cache, Virtual memory) Chapter-2 slides memory-basics.ppt Optimizations of Cache Performance Memory technology and optimizations Virtual memory 2. SIMD, MIMD, Vector,

More information

Agilio OVS Software Architecture

Agilio OVS Software Architecture WHITE PAPER Agilio OVS Software Architecture FOR SERVER-BASED NETWORKING THERE IS CONSTANT PRESSURE TO IMPROVE SERVER- BASED NETWORKING PERFORMANCE DUE TO THE INCREASED USE OF SERVER AND NETWORK VIRTUALIZATION

More information

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Basic Hardware Address Binding Logical VS Physical Address Space Dynamic Loading Dynamic Linking and Shared

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 Optimizations in General Code And Compilation Memory Considerations Parallelism Profiling And Optimization Examples 2 Premature optimization is the root of all evil. -- D. Knuth Our goal

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

EEC 483 Computer Organization. Chapter 5.3 Measuring and Improving Cache Performance. Chansu Yu

EEC 483 Computer Organization. Chapter 5.3 Measuring and Improving Cache Performance. Chansu Yu EEC 483 Computer Organization Chapter 5.3 Measuring and Improving Cache Performance Chansu Yu Cache Performance Performance equation execution time = (execution cycles + stall cycles) x cycle time stall

More information

Memory Management Topics. CS 537 Lecture 11 Memory. Virtualizing Resources

Memory Management Topics. CS 537 Lecture 11 Memory. Virtualizing Resources Memory Management Topics CS 537 Lecture Memory Michael Swift Goals of memory management convenient abstraction for programming isolation between processes allocate scarce memory resources between competing

More information

6232B: Implementing a Microsoft SQL Server 2008 R2 Database

6232B: Implementing a Microsoft SQL Server 2008 R2 Database 6232B: Implementing a Microsoft SQL Server 2008 R2 Database Course Overview This instructor-led course is intended for Microsoft SQL Server database developers who are responsible for implementing a database

More information

Scalable Enterprise Networks with Inexpensive Switches

Scalable Enterprise Networks with Inexpensive Switches Scalable Enterprise Networks with Inexpensive Switches Minlan Yu minlanyu@cs.princeton.edu Princeton University Joint work with Alex Fabrikant, Mike Freedman, Jennifer Rexford and Jia Wang 1 Enterprises

More information

Memory hierarchy review. ECE 154B Dmitri Strukov

Memory hierarchy review. ECE 154B Dmitri Strukov Memory hierarchy review ECE 154B Dmitri Strukov Outline Cache motivation Cache basics Six basic optimizations Virtual memory Cache performance Opteron example Processor-DRAM gap in latency Q1. How to deal

More information

Address Translation. Tore Larsen Material developed by: Kai Li, Princeton University

Address Translation. Tore Larsen Material developed by: Kai Li, Princeton University Address Translation Tore Larsen Material developed by: Kai Li, Princeton University Topics Virtual memory Virtualization Protection Address translation Base and bound Segmentation Paging Translation look-ahead

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures CS61C L22 Caches II (1) CPS today! Lecture #22 Caches II 2005-11-16 There is one handout today at the front and back of the room! Lecturer PSOE,

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 20 Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Pages Pages and frames Page

More information

NetBricks: Taking the V out of NFV. Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, Scott Shenker UC Berkeley, Google, ICSI

NetBricks: Taking the V out of NFV. Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, Scott Shenker UC Berkeley, Google, ICSI NetBricks: Taking the V out of NFV Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, Scott Shenker UC Berkeley, Google, ICSI What the heck is NFV? A Short Introduction to NFV A Short

More information

Computer Architecture Spring 2016

Computer Architecture Spring 2016 omputer Architecture Spring 2016 Lecture 09: Prefetching Shuai Wang Department of omputer Science and Technology Nanjing University Prefetching(1/3) Fetch block ahead of demand Target compulsory, capacity,

More information

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation Virtual Memory 2 Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

EECS 470 Lecture 13. Basic Caches. Fall 2018 Jon Beaumont

EECS 470 Lecture 13. Basic Caches. Fall 2018 Jon Beaumont Basic Caches Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Shen, Smith, Sohi, Tyson, and Vijaykumar of

More information

High-Speed Network Processors. EZchip Presentation - 1

High-Speed Network Processors. EZchip Presentation - 1 High-Speed Network Processors EZchip Presentation - 1 NP-1c Interfaces Switch Fabric 10GE / N x1ge or Switch Fabric or Lookup Tables Counters SDRAM/FCRAM 64 x166/175mhz SRAM DDR NBT CSIX c XGMII HiGig

More information

12 Cache-Organization 1

12 Cache-Organization 1 12 Cache-Organization 1 Caches Memory, 64M, 500 cycles L1 cache 64K, 1 cycles 1-5% misses L2 cache 4M, 10 cycles 10-20% misses L3 cache 16M, 20 cycles Memory, 256MB, 500 cycles 2 Improving Miss Penalty

More information

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has Swapping Active processes use more physical memory than system has Operating Systems I Address Binding can be fixed or relocatable at runtime Swap out P P Virtual Memory OS Backing Store (Swap Space) Main

More information