IMAGE COMPRESSION. Chapter  5 : (Basic)


 Alfred Gaines
 1 years ago
 Views:
Transcription
1 Chapter  5 : IMAGE COMPRESSION (Basic) Q() Explain the different types of redundncies that exists in image.? (8M May6 Comp) [8M, MAY 7, ETRX] A common characteristic of most images is that the neighboring pixels are correlated and therefore contain redundant information. The foremost task then is to find less correlated representation of the image. Two fundamental components of compression are redundancy and irrelevancy reduction. Redundancy reduction aims at removing duplication from the signal source (image/video). Irrelevancy reduction omits parts of the signal that will not be noticed by the signal receiver, namely the Human Visual System (HVS). Types of redundancies are as follows : Spatial Redundancy or correlation between neighbouring pixel values. Spectral Redundancy or correlation between different color planes or spectral bands. Temporal Redundancy or correlation between adjacent frames in a sequence of images (in video applications). Image compression research aims at reducing the number of bits needed to represent an image by removing the spatial and spectral redundancies as much as possible. In digital image compression, three basic data redundancies can be identified and exploited : Coding redundancy, Interpixel redundancy and Psychovisual redundancy. ) Coding Redundancy. If the gray levels of an image are coded in a way that uses more code symbols than absolutely necessary to represent each gray level then, the resulting image is said to contain coding redundancy. IP Help Line :
2 2) Interpixel Redundancy. The gray levels not equally probable. The value of any given pixel can be predicted from the value of its neighbors that is they are highly correlated. The information carried by individual pixel is relatively small. To reduce the interpixel redundancy the difference between adjacent pixels can be used to represent an image. 3) Psychovisual Redundancy. The psychovisual redundancies exist because human perception does not involve quantitative analysis of every pixel or luminance value in the image. It s elimination is real visual information is possible only because the information itself is not essential for normal visual processing. Q(2) Describe the general compression system model. (6M May6 IT) Image compression system reduces the number of bits needed to represent an image by removing the spatial and spectral redundancies as much as possible. In digital image compression, three basic data redundancies can be identified and exploited. Coding redundancy, Interpixel redundancy and psychovisual redundancy. Input Image Preprocessing Lossless Encoding Entropy Encoder Encoded Image Lossy Quantization IP Help Line :
3 Source Encoder (or Linear Transformer) Over the years, a variety of linear transforms have been developed which include Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) [], Discrete Wavelet Transform (DWT) and many more, each with its own advantages and disadvantages. Quantizer A quantizer simply reduces the number of bits needed to store the transformed coefficients by reducing the precision of those values. Since this is a manytoone mapping, it is a lossy process and is the main source of compression in an encoder. Quantization can be performed on each individual coefficient, which is known as Scalar Quantization (SQ). Quantization can also be performed on a group of coefficients together, and this is known as Vector Quantization (VQ). Both uniform and nonuniform quantizers can be used depending on the problem at hand. Entropy Encoder An entropy encoder further compresses the quantized values losslessly to give better overall compression. It uses a model to accurately determine the probabilities for each quantized value and produces an appropriate code based on these probabilities so that the resultant output code stream will be smaller than the input stream. The most commonly used entropy encoders are the Huffman encoder and the arithmetic encoder, although for applications requiring fast execution, simple runlength encoding (RLE) has proven very effective. It is important to note that a properly designed quantizer and entropy encoder are absolutely necessary along with optimum signal transformation to get the best possible compression. IP Help Line :
4 Q(3) Write short notes on: Psychovisual redundancy. (M Dec6 IT) (5M May5 Comp) Eye does not respond with equal sensitivity to all visual information. Certain information has lees relative importance than other information in normal visual processing. This information is said to be psychovisually redundant. It can be eliminated without significantly impairing the quality of image perception. The psychovisual redundancies exist because human perception does not involve quantitative analysis of every pixel or luminance value in the image. In general, an observer searches for distinguishing features such as edges or textural regions and mentally combines them into recognizable groupings. The brain then correlates these groupings with prior knowledge in order to complete the image interpretation processes. Psychovisual redundancies are associated with real visual information. It s elimination in real visual information is possible only because the information itself is not essential for normal visual processing. Since the elimination of psychovisual redundant data, results in a loss of quantitative information, its is commonly referred to as quantization Q(4) Classify Image Compression Techniques. (5M Dec6 Comp) In Lossy compression techniques reconstructed image contains loss of information. Which in turn produces distortion in the image. The resulting distortion may or may not be visually apparent. This compromising accuracy of the reconstructed image gives very high compression ratio. IP Help Line :
5 Q(5) Explain Objective And Subjective Fidelity Criteria (M Dec 4 Comp) The criteria for an assessment of a the quality of an image are ) Objective Fidelity Criteria and 2) Subjective Fidelity Criteria. ) Objective Fidelity Criteria :  a) Mean Square Error [MSE] : Let f (x,y) represent an input image and Let fˆ (x, y) denote an estimate or appro of f (x,y) For any value of x and y, the error e (x,y) between f(x,y) and fˆ (x, y) can be defined as, e (x,y) = f (x,y) fˆ (x, y) So that the total error between the two images is M N x, y= [ f ( x, y) fˆ ( x, y) ] Where the images are of size M x N. The root mean square error between f (x,y) and fˆ (x, y) is defined as, M 2 ˆ 2 = N e rms [ f ( x, y) f ( x, y) ] == MSE MN x= y= b) Signal to Noise Ratio [SNR} SNR c) Peak Signal to Noise Ratio [PSNR] IP Help Line : = M x =, PSNR M N x =, y = N y = [ f = M x=, f ( x, y) ( x, y) N y= M N x=, y= 2 fˆ ( x, y)] (255)2 [ f ( x, y) 2 fˆ ( x, y) ] 2) Subjective fidelity criteria : Images are viewed by human beings. Therefore measuring image quality by the subjective evaluations of a human observer is more appropriate. This can be accomplished by showing a typical decompressed image to an appropriate cross section of viewers and averaging their evaluations. The evaluations may be made using an absolute rating scale or by means of side by side comparisons of f (x,y) and fˆ (x, y), side by side comparisons can be done with the following scale. 2
6 ) {, 2, 3, 4, 5, 6} to represent subjective evaluations such as {Excellent, Fine, Passable, Marginal, Inferior, Unusable} respectively. 2) { 3,  2, ,,, 2, 3} to represent subjective evaluations such as {much worse, worse, slightly worse, the same, slightly better, better, much better] respectively. These evaluations are said to be based on subjective fidelity criteria. Value Rating Description Excellent An image of extremely high quality, as good as you could desire. 2 Fine An image of high quality, providing enjoyable viewing. Interference is not objectionable. 3 Passable An image of acceptable quality. Interference is not objectionable. 4 Marginal An image of poor quality; you wish you could improve it. Interference is somewhat objectionable. 5 Inferior A very poor image, but you could watch it. Objectionable interference is definitely present. 6 Unusable An image so bad that you could not watch it. Q(6) Explain Arithmetic Coding (6M Dec 4 Comp) In arithmetic coding one to one correspondence between source symbols and code words does not exists. Instead an entire sequence is assigned single code word. The codeword its self defines an interval of real numbers between and. As the number of symbols in the message increases, the interval used to represent it becomes smaller and the number of information bits required to represent the interval becomes larger. Each symbol of the message reduces the size of the interval in accordance with its probability of occurrences Example :  IP Help Line :
7 Q(7) Classify with reasons, the following data compression techniques into Lossy and Lossless schemes [8 M, MAY 7, ETRX] i] Run length coding. ii] DCT compression. (Lossless) Q(8) Given below is a table of eight symbol and their frequency of occurrence. Symbol S S S2 S3 S4 S5 S S7 Frequency (a) Give Huffman code for each eight symbol. (6M Dec.4 I.T) (b) Evaluate minimum number of average bits of sequence per symbol. (c) What is coding efficiency for the code you have obtained in part (a)? Q(9) Generate Huffman code for the given image source. Calculate entropy of the source, average length of the code generated and the compression ratio achieved compare it to standard binary encoding. (2M May6 Etrx) Symbol A A2 A3 A4 A5 A6 A7 A8 probability Q() Find Huffman code for the following six symbols. The symbols and their probabilities are given in tabular form: (M Dec6 IT) Symbol A A2 A3 A4 A5 A6 Probability Q() Short Note: Huffman coding and Run length coding. (M Dec5 IT) Q(2) How many unique Huffman codes are there for three symbol source? construct these modes. [4 M, MAY 7, Comp] Solution : Consider three symbols s, s2, s3 with probabilities p,p2 and p3 respectively. IP Help Line :
8 Case : When P > P 2 > P 3 SYMBOL PROBABILTY S P P23 S2 P2 P S3 SYMBOL S S2 S3 CODE Case 2: When P > P 3 > P 2 SYMBOL PROBABILTY S P P23 S3 P3 P S2 P2 SYMBOL S S3 S2 CODE Case 3: When P 2 > P > P 3 SYMBOL PROBABILTY S2 P2 P23 S P P S3 P3 SYMBOL S2 S S3 CODE Case 4: When P 2 > P 3 > P SYMBOL PROBABILTY S2 P2 P23 S3 P3 P S P SYMBOL S2 S3 S CODE IP Help Line :
9 . Case 5: When P 3 > P > P 2 SYMBOL PROBABILTY S3 P3 P23 S P P S2 P2 SYMBOL S3 S S2 CODE Case 6: When P 3 > P 2 > P SYMBOL PROBABILTY S3 P3 P23 S2 P2 P S P SYMBOL S3 S2 S CODE Q(3) For a given source A = { a, a2, a3, a4 } the following codes were developed. Check for each of them whether it is uniquely decodable or not. Also state which is the most optimum compared to others? Why? Solution : SYMBOL PROBABILITY CODE CODE2 CODE3 CODE4 a.5 a2.25 a3.25 a4.25 Code 2 and Code 4 are NOT uniquely decodable code. In Code : The prefix of the code is not a valid codeword. Therefore Code is uniquely decodable Code. In Code2, the codeword for symbol a4 is. The single bit prefix of code(a4) is which is a valid codeword. Therefore, code2 is NOT uniquely decodable code. In Code3, the single bit prefix of a2, a3 and a4 is and it is not a valid codeword. Two bit prefix of code(a3) and Code(a4) is and it is not a valid codeword. Therefore Code3 is uniquely decodable Code. IP Help Line :
10 In Code4, the single bit prefix is not a valid codeword. Two bit prefix of Code(a3) is (which is not a valid codeword.) and Code4 is ( which is a valid codeword). Therefore, code4 is NOT uniquely decodable code. To find Optimum Code, find Average Length. () For Code : Lavg = N k = Pk Lk = P L + P 2 L 2 + P 3 L 3 + P 4 L 4 = (.5)(2)+ (.25)(2)+ (.25)(2)+ (.25)(2) Lavg = bit/symbol (2) For Code3 : Lavg = N k = Pk Lk = P L + P 2 L 2 + P 3 L 3 + P 4 L 4 = (.5)()+ (.25)(2)+ (.25)(3)+ (.25)(3) Lavg =.75 bit/symbol Code  has minimum value of Average Length. So the efficiency of Code is greater than the efficiency of Code3. Therefore Code is an Optimum code. Q(4) Can variable length coding procedures be used to compress a histogram equalized image with gray levels?. Explain. (M May6 Comp) Q(5) What is Constant Area Coding Technique? (5M Dec6 Comp) The image is divided into blocks of size (m x n pixels which are classified as all white, all black or mixed intensity. the most frequently occurs category is assigned the bit code word and other two categories are assigned the 2 codes and. The mixed intensity category block is coded using 2 bit code word as a prefix which is followed by the m x n bit pattern of the pixel. Example : IP Help Line :
11 Compression is achieved because the (m x n) bits that will be replaced by bit or 2 code words. When predominantly white text documents are compressed a slightly simpler approach is to code the solid white areas as and all other blocks (including solid black blocks) by a followed by the bit pattern of the block. This approach is called white block skipping (WBS). As few black areas are expected, they are grouped with the mixed intensity regions. Q(6) Explain Bit plane Coding. (5M May5 Comp)(6M Dec 4 Comp) Bit plane technique is an error free compression that exploits the images interpixel redundancies. Bit plane technique is based on the concept of decomposing a multilevel image (monocrome or colour) into a series of binary images and compressing each binary image. Bit Plane Decomposition : The gray levels of an m bit gray scale image can be represented in the form of the base 2 polynomial. am 2 m a 2 + a 2 By separating the m coefficients into m bit planes, the image gets decomposed into bit planes. Zero order bit plane is generated by collecting a bit of each pixel. In General, each bit plane is numbered from to (m ) and is constructed by setting its pixel equal to the values of the appropriate bits from each pixel. The disadvantage of this approach is that small changes in gray level can have a significant impact on the complexity of the bit planes. If a pixel of intensity 27 () is adjacent to a pixel of intensity 28 ( ), every bit plane will contain a corresponding to (OR to ) transition. This problem can be solved by representing the image by m bit Gray code. The m bit gray code gm.. g2 g g can be computed from IP Help Line :
12 gi = ai + ai + i m 2 gm = am This code has the unique property that successive code words differ in only one bit position. Thus small changes in gray level are lees likely to affect all m bit planes. When gray levels 27 and 28 are adjacent the gray code of 27 = and 28 = That means only the 7 th bit plane will contain a to transition Q(7) Explain B2 Code : B2 Code is variable length coding. Each code word is made up of continuation bits denoted as C and information bits which are natural binary numbers. The purpose of the continuation code is to separate the individual code words. In B2 code, two information bits are used per continuation bits and hence B2 code. Example : Consider six symbols with probabilities as given below, Symbol Probability B2 Code S.4 C S2.3 C S3. C S4. C S5.6 CC S6.4 CC Message : S S2 S3 S5 S S6 B2 code : C C C C C C C C C= C= C= C= C= C= C= C= IP Help Line :
13 To Average Length : Lavg = N k = Pk Lk = P L + P 2 L 2 + P 3 L 3 + P 4 L 4 = (.4)(3) + (.3)(3) + (.)(3) + (.)(3) + (.6)(6) + (.4)(6) Lavg = 3.3 bit/symbol Q(8) Explain Shift codes. Algorithm to find shift code word. i) Arrange the source symbols so that their probabilities are monotonically decreasing. ii) Divide the total number of symbol into symbol blocks of equal size. iii) Add special shift up and / or shift down symbols to identify each block. Each Time a shift up or shift down symbol is recognized at the decoder, it moves one block up or down with respect to a predefined reference block. Example of Shift code is Binary Shift Code. Consider 2 source symbols, Arrange the source symbols so that their probabilities are monotonically decreasing and divide into three blocks of seven symbols. The individual symbols (a thro a 7 ) of upper block can be considered as the reference block. Code the symbols in reference block with the binary codes thro. The 8 th binary code is obtained by single shift up control symbol followed by. The 9 th binary code is obtained by single shift up control symbol followed by and so on... This procedure continues to find the code word of the next symbol. The code word for each symbol is control symbol followed by binary sequence of corresponding earlier block symbol codeword. IP Help Line :
14 Q(9) What do you mean by Variable Length Coding technique? Explain at least two Techniques. (M Dec6 Comp) Examples of Variable Length Coding are : Huffman Code, B2 Code, Shift Code. (Lossy) Q(2) Explain Improved Gray Scale (IGS) Quantization : IGS method recognizes the eye s inherent sensitivity to edges and breaks them up by adding to each a pseudo random number. The pseudo random number is generated from low order bits of neighbouring pixels. Because low order bits are fairly random, this amounts to adding a level of randomness which depends on the local characteristics of the image, to the artificial edges normally associated with false contouring. IGS Quantization Procedure : PIXEL GRAY LEVEL SUM IGS CODE N / A N / A SUM is initially set to Zero. Then Sum = Current 8 bit gray level + Four least significant bits of a previously generated sum. If the four most significant bits of the current value are instead of four least significant bits of a previously generated sum, are added. The four most significant bits of the resulting sum are used as the coded pixel value. IP Help Line :
15 Q(2) Consider an 8pixel line of gray scale data { 2,2,3,3,,3,57,54 }, which has been uniformly quantized with 6 bit accuracy. Construct its 3 bit IGS code. (8M May6 Etrx) Solution : Pixel Pixel in 6 bit Sum IGS Code Binary Q(22) DPCM/DCT encoder for video compression. (5M May6 I.T) Q(23) Write Short Notes on: (a) Compression using LZW method (M May6 Comp)(7M May6 Etrx) (b) Delta Modulation and differential pulse code modulation (DPCM). (6M May6 Comp) Q(24) TRUE OR FALSE AND JUSTIFY (a) All image compression technique are invertible. (4M May7 IT) (3M May6 Etrx) False All image compression techniques are not invertible. Lossless compression techniques such as Runlength encoding, Huffman coding, Arithmetic coding, CAC coding, B2 code DPCM are invertible. Lossy compression techniques such as JPEG, IGS Quantization are not invertible. (b) Runlength coding is loss less coding but may not give data compression always. [4 M, MAY 7, ETRX] True Runlength coding is a lossless compression coding technique. Runlength codeword consists of repeated sequence of tokens. Each token consists of two words : () pixel value (2) consecutive occurrence of pixel value. Runlegth Encoding (RLE) is effective compression technique when pixel value is repeated consecutively. In the overall image if the pixel value is not repeatedly consecutively large number of times, RLE cannot give compression. IP Help Line :
16 For Ex RLE coded image is =, 8, 3,, 2, 8, 3,, Size : bytes Image is compressed Size of input Image is 25 bytes For Ex RLE coded image is =, 5,,, 8, 3, 2, 2, 8, 3, 2,,, 2, 2,,, 5, 3,, 2,,,, 4, RLE coded imag Size : 28 bytes Size of input Image is 25 bytes Hence size of the RLE coded image is larger than size of input image. That means every time RLE does not gives compression. Q(25) Write Short Notes on Transform Coding In transform coding a reversible, linear transform is used to map the image into a set of transform coefficients which are then quantized and coded. For most images, a significant number of coefficients have small magnitudes and can be coarsely quantized (or discarded entirely) with little image distortion. The following fig. shows general block diagram of transform coding system. Input Compressed Forward Transform Quantizer Symbol encoder image Image (N x N) Compressed image Deccmpressed Symbol decoder Inverse Transform image IP Help Line :
17 The decoder implements the inverse sequence of steps. An N x N input image first is subdivided into subimages of size (n x n) which are then transformed to generate n x n subimage transform arrays. The goal of the transformation process is to decorrelate the pixel of each subimage or to pack as much information as possible into the smallest number of coefficients. Transform coding system based on DCT, WT, FT can be effectively applied. The choice of a particular transform in a given application depends on the amount of reconstruction error that can be tolerated and computational resources available. Q(26) Explain the basic principle of transform coding for image compression and illustrate same with the help of DFT and DCT. (M Dec5 IT) Q(27) Write short Note on : JPEG Compression IP Help Line :
18 JPEG ENCODER ( Sequential Baseline System) Input Image Data FDCT Quantizer Zigzag ordering Entropy Encoding Compressed Image 8 X 8 Blocks Quantization Table Specification Entropy Table Specification i) In the sequential baseline system, an input image is first divided into pixel blocks of size 8 x 8 which are processed left to right, top to bottom. ii) iii) iv) Each block of 8 x 8 pixel size is level shifted by subtracting the quantity 2 n where 2 n is the highest gray value (ie for n = 8, 2 n = 256). The 2D DCT of the block is then computed and quantized. c( u, v) Ô(u,v) = Round Where Q(u,v) is the quantization factor. Q( u, v) In DCT sequential baseline system, Input and output data precision is limited to 8 bits and DCT quantized values are restricted to bits. Quantized DCT coefficients are reordered using the zigzag pattern to form a D sequence of quantized coefficients. Zigzag reordering results increasing spatial frequency components with long runs of zeros. v) Nonzero AC coefficients are coded using a variable length code that defines the coefficients value and the number of preceding zeros. vi) DC coefficients are the difference coded relative to the Dc coefficient of the previous subimage. The output consists of sequence of tokens is repeated until the block is complete. IP Help Line :
19 ) Run length : Number of consecutive zeros that preceded the current element in the DCT output matrix. 2) Bit count : The number of bits to follow in the amplitude number. 3) Amplitude : The amplitude of the DCT coefficient. JPEG DECODER : Entropy Decoding Zigzag Reordering Dequantizer IDCT Compressed Image Entropy Table Specification Quantization Table Specification Reconstructed Image Data i) To decompress the image, decoder first creates the normalized transform coefficient. ii) After demoralization, the DCT coefficients are computed. C(u,v) = c(u,v) Q(u,v). iii) iv) The reconstructed subimage is obtained by taking the inverse DCT of the demoralized coefficients and then level shifting each pixel by 2 n. The difference between the original and reconstructed image is the result of lossy nature of compression and decompression process. v) The root mean square error of the overall compression and reconstruction process is approximately 5.9. IP Help Line :
20 Q(28) Write short note on : Image Compression Standards. (5M Dec 4 Comp) Image Compression Standards : Joint Photographic Expert Group (JPEG) has developed an international standard for general purpose colour still image compression standards. Motion Picture Expert Group(MPEG) has developed full motion video image sequence with application to digital video distribution and high Definition Television (HDTV) JPEG still Image Compression: The JPEG standard defines three difference coding systems.. Lossy baseline Coding Systemwhich is based on sequential DCT based compression. 2. An Extended Coding System, for greater compression, higher precision or progressive reconstructions applications. 3. Lossless independent coding system based on sequential predictive compression techniques. Q(29) Write short note on : Vidéo Compression Standards. (5M Dec 4 Comp) MPEG Full motion video compression: The MPEG standard defines different coding systems. Video teleconferencing standards. 2. Multimedia standards. H.263 standard defines low bit rate 3 kbps speed. H.32 standard supports ISDN Bandwidth. IP Help Line :
21 () MPEG standard is an Entertainment quality video compression standard for the storage and retrieval of compressed imaginary on digital media such as compact disk read only memory (CDRom). MPEG standard is written to allow higher bit rates and higher quality encoding. (2) MPEG II standard supports video transfer rates between 5 to Mbps a range which is suitable for cable TV distribution and narrowchannel satellite broadcasting. (3) MPEG IV standard are developed for small frame full motion compression with slow refresh rates. Both MPEG standards and H.26 standards extends the DCT based compression approach. IP Help Line :
Topic 5 Image Compression
Topic 5 Image Compression Introduction Data Compression: The process of reducing the amount of data required to represent a given quantity of information. Purpose of Image Compression: the reduction of
More informationCMPT 365 Multimedia Systems. Media Compression  Image
CMPT 365 Multimedia Systems Media Compression  Image Spring 2017 Edited from slides by Dr. Jiangchuan Liu CMPT365 Multimedia Systems 1 Facts about JPEG JPEG  Joint Photographic Experts Group International
More informationIMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event  compression and decompression
IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event  compression and decompression 1 Compression categories Compression = Image coding Stillimage
More informationImage Compression Algorithm and JPEG Standard
International Journal of Scientific and Research Publications, Volume 7, Issue 12, December 2017 150 Image Compression Algorithm and JPEG Standard Suman Kunwar sumn2u@gmail.com Summary. The interest in
More informationVideo Compression An Introduction
Video Compression An Introduction The increasing demand to incorporate video data into telecommunications services, the corporate environment, the entertainment industry, and even at home has made digital
More informationDigital Image Processing
Lecture 9+10 Image Compression Lecturer: Ha Dai Duong Faculty of Information Technology 1. Introduction Image compression To Solve the problem of reduncing the amount of data required to represent a digital
More informationFeatures. Sequential encoding. Progressive encoding. Hierarchical encoding. Lossless encoding using a different strategy
JPEG JPEG Joint Photographic Expert Group Voted as international standard in 1992 Works with color and grayscale images, e.g., satellite, medical,... Motivation: The compression ratio of lossless methods
More informationAN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES
AN ANALYTICAL STUDY OF LOSSY COMPRESSION TECHINIQUES ON CONTINUOUS TONE GRAPHICAL IMAGES Dr.S.Narayanan Computer Centre, Alagappa University, KaraikudiSouth (India) ABSTRACT The programs using complex
More informationCompression II: Images (JPEG)
Compression II: Images (JPEG) What is JPEG? JPEG: Joint Photographic Expert Group an international standard in 1992. Works with colour and greyscale images Up 24 bit colour images (Unlike GIF) Target Photographic
More informationLecture 5: Compression I. This Week s Schedule
Lecture 5: Compression I Reading: book chapter 6, section 3 &5 chapter 7, section 1, 2, 3, 4, 8 Today: This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT
More informationIMAGE COMPRESSION I. Week VIII Feb /25/2003 Image CompressionI 1
IMAGE COMPRESSION I Week VIII Feb 25 02/25/2003 Image CompressionI 1 Reading.. Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, runlength, lossless predictive) 8.5 (lossy predictive,
More information1.Define image compression. Explain about the redundancies in a digital image.
1.Define image compression. Explain about the redundancies in a digital image. The term data compression refers to the process of reducing the amount of data required to represent a given quantity of information.
More informationDIGITAL TELEVISION 1. DIGITAL VIDEO FUNDAMENTALS
DIGITAL TELEVISION 1. DIGITAL VIDEO FUNDAMENTALS Television services in Europe currently broadcast video at a frame rate of 25 Hz. Each frame consists of two interlaced fields, giving a field rate of 50
More information7.5 Dictionarybased Coding
7.5 Dictionarybased Coding LZW uses fixedlength code words to represent variablelength strings of symbols/characters that commonly occur together, e.g., words in English text LZW encoder and decoder
More informationCS 335 Graphics and Multimedia. Image Compression
CS 335 Graphics and Multimedia Image Compression CCITT Image Storage and Compression Group 3: Huffmantype encoding for binary (bilevel) data: FAX Group 4: Entropy encoding without error checks of group
More informationIndex. 1. Motivation 2. Background 3. JPEG Compression The Discrete Cosine Transformation Quantization Coding 4. MPEG 5.
Index 1. Motivation 2. Background 3. JPEG Compression The Discrete Cosine Transformation Quantization Coding 4. MPEG 5. Literature Lossy Compression Motivation To meet a given target bitrate for storage
More informationWireless Communication
Wireless Communication Systems @CS.NCTU Lecture 6: Image Instructor: Kate ChingJu Lin ( 林靖茹 ) Chap. 9 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline
More informationDigital Image Processing
Imperial College of Science Technology and Medicine Department of Electrical and Electronic Engineering Digital Image Processing PART 4 IMAGE COMPRESSION LOSSY COMPRESSION NOT EXAMINABLE MATERIAL Academic
More informationCHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106
CHAPTER 6 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform Page No 6.1 Introduction 103 6.2 Compression Techniques 104 103 6.2.1 Lossless compression 105 6.2.2 Lossy compression
More informationLecture 8 JPEG Compression (Part 3)
CS 414 Multimedia Systems Design Lecture 8 JPEG Compression (Part 3) Klara Nahrstedt Spring 2012 Administrative MP1 is posted Today Covered Topics Hybrid Coding: JPEG Coding Reading: Section 7.5 out of
More informationCoE4TN4 Image Processing. Chapter 8 Image Compression
CoE4TN4 Image Processing Chapter 8 Image Compression Image Compression Digital images: take huge amount of data Storage, processing and communications requirements might be impractical More efficient representation
More informationSo, what is data compression, and why do we need it?
In the last decade we have been witnessing a revolution in the way we communicate 2 The major contributors in this revolution are: Internet; The explosive development of mobile communications; and The
More informationImage compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year
Image compression Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Data and information The representation of images in a raw
More informationDepartment of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2
IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOSSLESS METHOD OF IMAGE COMPRESSION USING HUFFMAN CODING TECHNIQUES Trupti S Bobade *, Anushri S. sastikar 1 Department of electronics
More informationImage Coding and Compression
Lecture 17, Image Coding and Compression GW Chapter 8.1 8.3.1, 8.4 8.4.3, 8.5.1 8.5.2, 8.6 Suggested problem: Own problem Calculate the Huffman code of this image > Show all steps in the coding procedure,
More informationDigital Image Representation Image Compression
Digital Image Representation Image Compression 1 Image Representation Standards Need for compression Compression types Lossless compression Lossy compression Image Compression Basics Redundancy/redundancy
More informationIMAGE COMPRESSION TECHNIQUES
IMAGE COMPRESSION TECHNIQUES A.VASANTHAKUMARI, M.Sc., M.Phil., ASSISTANT PROFESSOR OF COMPUTER SCIENCE, JOSEPH ARTS AND SCIENCE COLLEGE, TIRUNAVALUR, VILLUPURAM (DT), TAMIL NADU, INDIA ABSTRACT A picture
More informationIMAGE COMPRESSION USING HYBRID QUANTIZATION METHOD IN JPEG
IMAGE COMPRESSION USING HYBRID QUANTIZATION METHOD IN JPEG MANGESH JADHAV a, SNEHA GHANEKAR b, JIGAR JAIN c a 13/A Krishi Housing Society, Gokhale Nagar, Pune 411016,Maharashtra, India. (mail2mangeshjadhav@gmail.com)
More informationMultimedia Communications. Transform Coding
Multimedia Communications Transform Coding Transform coding Transform coding: source output is transformed into components that are coded according to their characteristics If a sequence of inputs is transformed
More informationReview and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding.
Project Title: Review and Implementation of DWT based Scalable Video Coding with Scalable Motion Coding. Midterm Report CS 584 Multimedia Communications Submitted by: Syed Jawwad Bukhari 2004030028 About
More informationA NEW ENTROPY ENCODING ALGORITHM FOR IMAGE COMPRESSION USING DCT
A NEW ENTROPY ENCODING ALGORITHM FOR IMAGE COMPRESSION USING DCT D.Malarvizhi 1 Research Scholar Dept of Computer Science & Eng Alagappa University Karaikudi 630 003. Dr.K.Kuppusamy 2 Associate Professor
More informationMultimedia Systems Image III (Image Compression, JPEG) Mahdi Amiri April 2011 Sharif University of Technology
Course Presentation Multimedia Systems Image III (Image Compression, JPEG) Mahdi Amiri April 2011 Sharif University of Technology Image Compression Basics Large amount of data in digital images File size
More informationISSN (ONLINE): , VOLUME3, ISSUE1,
PERFORMANCE ANALYSIS OF LOSSLESS COMPRESSION TECHNIQUES TO INVESTIGATE THE OPTIMUM IMAGE COMPRESSION TECHNIQUE Dr. S. Swapna Rani Associate Professor, ECE Department M.V.S.R Engineering College, Nadergul,
More informationData and information. Image Codning and Compression. Image compression and decompression. Definitions. Images can contain three types of redundancy
Image Codning and Compression data redundancy, Huffman coding, image formats Lecture 7 GonzalezWoods: 8.8.3., 8.48.4.3, 8.5.8.5.2, 8.6 Carolina Wählby carolina@cb.uu.se 0847 3469 Data and information
More informationPart 1 of 4. MARCH
Presented by Brought to You by Part 1 of 4 MARCH 2004 www.securitysales.com A1 Part1of 4 Essentials of DIGITAL VIDEO COMPRESSION By Bob Wimmer Video Security Consultants cctvbob@aol.com AT A GLANCE Compression
More informationImage and Video Compression Fundamentals
Video Codec Design Iain E. G. Richardson Copyright q 2002 John Wiley & Sons, Ltd ISBNs: 0471485535 (Hardback); 0470847832 (Electronic) Image and Video Compression Fundamentals 3.1 INTRODUCTION Representing
More informationA Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm
International Journal of Engineering Research and General Science Volume 3, Issue 4, JulyAugust, 15 ISSN 912730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm
More informationVC 12/13 T16 Video Compression
VC 12/13 T16 Video Compression Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline The need for compression Types of redundancy
More informationLecture 6: Compression II. This Week s Schedule
Lecture 6: Compression II Reading: book chapter 8, Section 1, 2, 3, 4 Monday This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT Today Speech compression
More informationCHAPTER 4 REVERSIBLE IMAGE WATERMARKING USING BIT PLANE CODING AND LIFTING WAVELET TRANSFORM
74 CHAPTER 4 REVERSIBLE IMAGE WATERMARKING USING BIT PLANE CODING AND LIFTING WAVELET TRANSFORM Many data embedding methods use procedures that in which the original image is distorted by quite a small
More informationAUDIOVISUAL COMMUNICATION
AUDIOVISUAL COMMUNICATION Laboratory Session: Discrete Cosine Transform Fernando Pereira The objective of this lab session about the Discrete Cosine Transform (DCT) is to get the students familiar with
More informationInteractive Progressive Encoding System For Transmission of Complex Images
Interactive Progressive Encoding System For Transmission of Complex Images Borko Furht 1, Yingli Wang 1, and Joe Celli 2 1 NSF Multimedia Laboratory Florida Atlantic University, Boca Raton, Florida 33431
More informationFundamentals of Video Compression. Video Compression
Fundamentals of Video Compression Introduction to Digital Video Basic Compression Techniques Still Image Compression Techniques  JPEG Video Compression Introduction to Digital Video Video is a stream
More informationProfessor Laurence S. Dooley. School of Computing and Communications Milton Keynes, UK
Professor Laurence S. Dooley School of Computing and Communications Milton Keynes, UK How many bits required? 2.4Mbytes 84Kbytes 9.8Kbytes 50Kbytes Data Information Data and information are NOT the same!
More informationIntroduction ti to JPEG
Introduction ti to JPEG JPEG: Joint Photographic Expert Group work under 3 standards: ISO, CCITT, IEC Purpose: image compression Compression accuracy Works on fullcolor or grayscale image Color Grayscale
More information06/12/2017. Image compression. Image compression. Image compression. Image compression. Coding redundancy: image 1 has four gray levels
Theoretical size of a file representing a 5k x 4k colour photograph: 5000 x 4000 x 3 = 60 MB 1 min of UHD tv movie: 3840 x 2160 x 3 x 24 x 60 = 36 GB 1. Exploit coding redundancy 2. Exploit spatial and
More informationImage Compression  An Overview Jagroop Singh 1
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 23197242 Volume 5 Issues 8 Aug 2016, Page No. 1753517539 Image Compression  An Overview Jagroop Singh 1 1 Faculty DAV Institute
More informationJPEG: An Image Compression System. Nimrod Peleg update: Nov. 2003
JPEG: An Image Compression System Nimrod Peleg update: Nov. 2003 Basic Structure Source Image Data Reconstructed Image Data Encoder Compressed Data Decoder Encoder Structure Source Image Data Compressed
More informationCSEP 521 Applied Algorithms Spring Lossy Image Compression
CSEP 521 Applied Algorithms Spring 2005 Lossy Image Compression Lossy Image Compression Methods Scalar quantization (SQ). Vector quantization (VQ). DCT Compression JPEG Wavelet Compression SPIHT UWIC (University
More informationChapter 1. Digital Data Representation and Communication. Part 2
Chapter 1. Digital Data Representation and Communication Part 2 Compression Digital media files are usually very large, and they need to be made smaller compressed Without compression Won t have storage
More informationCompression of Stereo Images using a HuffmanZip Scheme
Compression of Stereo Images using a HuffmanZip Scheme John Hamann, Vickey Yeh Department of Electrical Engineering, Stanford University Stanford, CA 94304 jhamann@stanford.edu, vickey@stanford.edu Abstract
More information2014 Summer School on MPEG/VCEG Video. Video Coding Concept
2014 Summer School on MPEG/VCEG Video 1 Video Coding Concept Outline 2 Introduction Capture and representation of digital video Fundamentals of video coding Summary Outline 3 Introduction Capture and representation
More informationJPEG: An Image Compression System
JPEG: An Image Compression System ISO/IEC DIS 109181 ITUT Recommendation T.81 http://www.jpeg.org/ Nimrod Peleg update: April 2007 Basic Structure Source Image Data Reconstructed Image Data Encoder Compressed
More informationLecture 8 JPEG Compression (Part 3)
CS 414 Multimedia Systems Design Lecture 8 JPEG Compression (Part 3) Klara Nahrstedt Spring 2011 Administrative MP1 is posted Extended Deadline of MP1 is February 18 Friday midnight submit via compass
More informationLecture Information Multimedia Video Coding & Architectures
Multimedia Video Coding & Architectures (5LSE0), Module 01 Introduction to coding aspects 1 Lecture Information Lecturer Prof.dr.ir. Peter H.N. de With Faculty Electrical Engineering, University Technology
More informationA COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING  REVIEW
A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING  ABSTRACT: REVIEW M.JEYAPRATHA 1, B.POORNA VENNILA 2 Department of Computer Application, Nadar Saraswathi College of Arts and Science, Theni, Tamil
More information15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 151 LOSSLESS COMPRESSION
15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories:
More informationA Comparative Study of DCT, DWT & Hybrid (DCTDWT) Transform
A Comparative Study of DCT, DWT & Hybrid (DCTDWT) Transform Archana Deshlahra 1, G. S.Shirnewar 2,Dr. A.K. Sahoo 3 1 PG Student, National Institute of Technology Rourkela, Orissa (India) deshlahra.archana29@gmail.com
More informationECE 417 Guest Lecture Video Compression in MPEG1/2/4. MinHsuan Tsai Apr 02, 2013
ECE 417 Guest Lecture Video Compression in MPEG1/2/4 MinHsuan Tsai Apr 2, 213 What is MPEG and its standards MPEG stands for Moving Picture Expert Group Develop standards for video/audio compression
More information2.2: Images and Graphics Digital image representation Image formats and color models JPEG, JPEG2000 Image synthesis and graphics systems
Chapter 2: Representation of Multimedia Data Audio Technology Images and Graphics Video Technology Chapter 3: Multimedia Systems Communication Aspects and Services Chapter 4: Multimedia Systems Storage
More informationDigital Image Representation. Image Representation. Color Models
Digital Representation Chapter : Representation of Multimedia Data Audio Technology s and Graphics Video Technology Chapter 3: Multimedia Systems Communication Aspects and Services Chapter 4: Multimedia
More informationREVIEW ON IMAGE COMPRESSION TECHNIQUES AND ADVANTAGES OF IMAGE COMPRESSION
REVIEW ON IMAGE COMPRESSION TECHNIQUES AND ABSTRACT ADVANTAGES OF IMAGE COMPRESSION Amanpreet Kaur 1, Dr. Jagroop Singh 2 1 Ph. D Scholar, Deptt. of Computer Applications, IK Gujral Punjab Technical University,
More informationImage coding and compression
Image coding and compression Robin Strand Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Today Information and Data Redundancy Image Quality Compression Coding
More informationJPEG. Wikipedia: Felis_silvestris_silvestris.jpg, Michael Gäbler CC BY 3.0
JPEG Wikipedia: Felis_silvestris_silvestris.jpg, Michael Gäbler CC BY 3.0 DFT vs. DCT Image Compression Image compression system Input Image MAPPER QUANTIZER SYMBOL ENCODER Compressed output Image Compression
More informationTutorial T5. Video Over IP. Magda ElZarki (University of California at Irvine) Monday, 23 April, Morning
Tutorial T5 Video Over IP Magda ElZarki (University of California at Irvine) Monday, 23 April, 2001  Morning Infocom 2001 VIP  Magda El Zarki I.1 MPEG4 over IP  Part 1 Magda El Zarki Dept. of ICS
More informationDIGITAL IMAGE PROCESSING WRITTEN REPORT ADAPTIVE IMAGE COMPRESSION TECHNIQUES FOR WIRELESS MULTIMEDIA APPLICATIONS
DIGITAL IMAGE PROCESSING WRITTEN REPORT ADAPTIVE IMAGE COMPRESSION TECHNIQUES FOR WIRELESS MULTIMEDIA APPLICATIONS SUBMITTED BY: NAVEEN MATHEW FRANCIS #105249595 INTRODUCTION The advent of new technologies
More informationDigital Image Processing
Digital Image Processing 5 January 7 Dr. ir. Aleksandra Pizurica Prof. Dr. Ir. Wilfried Philips Aleksandra.Pizurica @telin.ugent.be Tel: 9/64.3415 UNIVERSITEIT GENT Telecommunicatie en Informatieverwerking
More informationLecture Information. Mod 01 Part 1: The Need for Compression. Why Digital Signal Coding? (1)
Multimedia Video Coding & Architectures (5LSE0), Module 01 Introduction to coding aspects 1 Lecture Information Lecturer Prof.dr.ir. Peter H.N. de With Faculty Electrical Engineering, University Technology
More informationDigital Image Processing (EI424)
Scheme of evaluation Digital Image Processing (EI424) Eighth Semester,April,2017. IV/IV B.Tech (Regular) DEGREE EXAMINATIONS ELECTRONICS AND INSTRUMENTATION ENGINEERING April,2017 Digital Image Processing
More information( ) ; For N=1: g 1. g n
L. Yaroslavsky Course 51.7211 Digital Image Processing: Applications Lect. 4. Principles of signal and image coding. General principles General digitization. Epsilonentropy (rate distortion function).
More informationDCT Based, Lossy Still Image Compression
DCT Based, Lossy Still Image Compression NOT a JPEG artifact! Lenna, Playboy Nov. 1972 Lena Soderberg, Boston, 1997 Nimrod Peleg Update: April. 2009 http://www.lenna.org/ Image Compression: List of Topics
More informationMultimedia Networking ECE 599
Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on B. Lee s lecture notes. 1 Outline Compression basics Entropy and information theory basics
More informationImage Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi
Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi 1. Introduction The choice of a particular transform in a given application depends on the amount of
More informationRobert Matthew Buckley. Nova Southeastern University. Dr. Laszlo. MCIS625 On Line. Module 2 Graphics File Format Essay
1 Robert Matthew Buckley Nova Southeastern University Dr. Laszlo MCIS625 On Line Module 2 Graphics File Format Essay 2 JPEG COMPRESSION METHOD Joint Photographic Experts Group (JPEG) is the most commonly
More informationDIGITAL IMAGE WATERMARKING BASED ON A RELATION BETWEEN SPATIAL AND FREQUENCY DOMAINS
DIGITAL IMAGE WATERMARKING BASED ON A RELATION BETWEEN SPATIAL AND FREQUENCY DOMAINS Murat Furat Mustafa Oral email: mfurat@cu.edu.tr email: moral@mku.edu.tr Cukurova University, Faculty of Engineering,
More informationHYBRID TRANSFORMATION TECHNIQUE FOR IMAGE COMPRESSION
31 st July 01. Vol. 41 No. 00501 JATIT & LLS. All rights reserved. ISSN: 1998645 www.jatit.org EISSN: 18173195 HYBRID TRANSFORMATION TECHNIQUE FOR IMAGE COMPRESSION 1 SRIRAM.B, THIYAGARAJAN.S 1, Student,
More informationAdaptive Quantization for Video Compression in Frequency Domain
Adaptive Quantization for Video Compression in Frequency Domain *Aree A. Mohammed and **Alan A. Abdulla * Computer Science Department ** Mathematic Department University of Sulaimani P.O.Box: 334 Sulaimani
More informationStatistical Image Compression using Fast Fourier Coefficients
Statistical Image Compression using Fast Fourier Coefficients M. Kanaka Reddy Research Scholar Dept.of Statistics Osmania University Hyderabad500007 V. V. Haragopal Professor Dept.of Statistics Osmania
More informationJPEG Compression. What is JPEG?
JPEG Compression Michael W. Chou Scott Siegrist EEA Spring April, Professor Ingrid Verbauwhede What is JPEG? JPEG is short for the 'Joint Photographic Experts Group'. The JPEG standard is fairly complex
More informationDigital Image Processing
Digital Image Processing Fundamentals of Image Compression DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Compression New techniques have led to the development
More informationFinal Review. Image Processing CSE 166 Lecture 18
Final Review Image Processing CSE 166 Lecture 18 Topics covered Basis vectors Matrix based transforms Wavelet transform Image compression Image watermarking Morphological image processing Segmentation
More informationInternational Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 4, April 2012)
A Technical Analysis Towards Digital Video Compression Rutika Joshi 1, Rajesh Rai 2, Rajesh Nema 3 1 Student, Electronics and Communication Department, NIIST College, Bhopal, 2,3 Prof., Electronics and
More informationIMAGE COMPRESSION. October 7, ICSY Lab, University of Kaiserslautern, Germany
Lossless Compression Multimedia File Formats Lossy Compression IMAGE COMPRESSION 69 Basic Encoding Steps 70 JPEG (Overview) Image preparation and coding (baseline system) 71 JPEG (Enoding) 1) select color
More informationIMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION  I
IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION  I 1 Need For Compression 2D data sets are much larger than 1D. TV and movie data sets are effectively 3D (2space, 1time). Need Compression for
More informationSparse Transform Matrix at Low Complexity for Color Image Compression
Sparse Transform Matrix at Low Complexity for Color Image Compression Dr. K. Kuppusamy, M.Sc.,M.Phil.,M.C.A.,B.Ed.,Ph.D #1, R.Mehala, (M.Phil, Research Scholar) *2. # Department of Computer science and
More informationIT Digital Image ProcessingVII Semester  Question Bank
UNIT I DIGITAL IMAGE FUNDAMENTALS PART A Elements of Digital Image processing (DIP) systems 1. What is a pixel? 2. Define Digital Image 3. What are the steps involved in DIP? 4. List the categories of
More informationImage Compression Compression Fundamentals
Compression Fndamentals Data compression refers to the process of redcing the amont of data reqired to represent given qantity of information. Note that data and information are not the same. Data refers
More informationcompression and coding ii
compression and coding ii OleJohan Skrede 03.05.2017 INF2310  Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides
More informationFingerprint Image Compression
Fingerprint Image Compression Ms.Mansi Kambli 1*,Ms.Shalini Bhatia 2 * Student 1*, Professor 2 * Thadomal Shahani Engineering College * 1,2 Abstract Modified Set Partitioning in Hierarchical Tree with
More informationMRT based Fixed Block size Transform Coding
3 MRT based Fixed Block size Transform Coding Contents 3.1 Transform Coding..64 3.1.1 Transform Selection...65 3.1.2 Subimage size selection... 66 3.1.3 Bit Allocation.....67 3.2 Transform coding using
More informationCompression Part 2 Lossy Image Compression (JPEG) Norm Zeck
Compression Part 2 Lossy Image Compression (JPEG) General Compression Design Elements 2 Application Application Model Encoder Model Decoder Compression Decompression Models observe that the sensors (image
More informationLossless Image Compression having Compression Ratio Higher than JPEG
Cloud Computing & Big Data 35 Lossless Image Compression having Compression Ratio Higher than JPEG Madan Singh madan.phdce@gmail.com, Vishal Chaudhary Computer Science and Engineering, Jaipur National
More informationWeek 14. Video Compression. Ref: Fundamentals of Multimedia
Week 14 Video Compression Ref: Fundamentals of Multimedia Last lecture review Prediction from the previous frame is called forward prediction Prediction from the next frame is called forward prediction
More informationAdvanced Video Coding: The new H.264 video compression standard
Advanced Video Coding: The new H.264 video compression standard August 2003 1. Introduction Video compression ( video coding ), the process of compressing moving images to save storage space and transmission
More informationImage Compression. CS 6640 School of Computing University of Utah
Image Compression CS 6640 School of Computing University of Utah Compression What Reduce the amount of information (bits) needed to represent image Why Transmission Storage Preprocessing Redundant & Irrelevant
More informationJPEG 2000 Still Image Data Compression
2015 IJSRSET Volume 1 Issue 3 Print ISSN : 23951990 Online ISSN : 23944099 Themed Section: Engineering and Technology JPEG 2000 Still Image Data Compression Shashikumar N *1, Choodarathnakara A L 2,
More informationOptimized Progressive Coding of Stereo Images Using Discrete Wavelet Transform
Optimized Progressive Coding of Stereo Images Using Discrete Wavelet Transform Torsten Palfner, Alexander Mali and Erika Müller Institute of Telecommunications and Information Technology, University of
More informationThe PackBits program on the Macintosh used a generalized RLE scheme for data compression.
Tidbits on Image Compression (Above, Lena, unwitting data compression spokeswoman) In CS203 you probably saw how to create Huffman codes with greedy algorithms. Let s examine some other methods of compressing
More informationImage Compression for Mobile Devices using Prediction and Direct Coding Approach
Image Compression for Mobile Devices using Prediction and Direct Coding Approach Joshua Rajah Devadason M.E. scholar, CIT Coimbatore, India Mr. T. Ramraj Assistant Professor, CIT Coimbatore, India Abstract
More information