# 15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION

Save this PDF as:

Size: px
Start display at page:

Download "15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION"

## Transcription

1 15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories: lossless and lossy methods Foundations of Computer Science Cengage Learning 15.3 Figure 15.1 Data compression methods Objectives After studying this chapter, the student should be able to: Distinguish between lossless and lossy compression. Describe run-length encoding and how it achieves compression. Describe Huffman coding and how it achieves compression. Describe Lempel Ziv encoding and the role of the dictionary in encoding and decoding. Describe the main idea behind the JPEG standard for compressing still images. Describe the main idea behind the MPEG standard for compressing video and its relation to JPEG. Describe the main idea behind the MP3 standard for compressing audio LOSSLESS COMPRESSION In lossless data compression, the integrity of the data is preserved. The original data and the data after compression and decompression are exactly the same because, in these methods, the compression and decompression algorithms are exact inverses of each other: no part of the data is lost in the process. Redundant data is removed in compression and added during decompression. Lossless compression methods are normally used when we cannot afford to lose any data

2 Run-length encoding Run-length encoding is probably the simplest method of compression. It can be used to compress data made of any combination of symbols. It does not need to know the frequency of occurrence of symbols and can be very efficient if data is represented as 0s and 1s. The general idea behind this method is to replace consecutive repeating occurrences of a symbol by one occurrence of the symbol followed by the number of occurrences. The method can be even more efficient if the data uses only two symbols (for example 0 and 1) in its bit pattern and one symbol is more frequent than the other Figure 15.3 Run-length encoding for two symbols Huffman coding Huffman coding assigns shorter codes to symbols that occur more frequently and longer codes to those that occur less frequently. For example, imagine we have a text file that uses only five characters (A, B, C, D, E). Before we can assign bit patterns to each character, we assign each character a weight based on its frequency of use. In this example, assume that the frequency of the characters is as shown in Table Figure 15.2 Run-length encoding example

3 Encoding Let us see how to encode text using the code for our five characters. Figure 15.6 shows the original and the encoded text Figure 15.4 Huffman coding Figure 15.6 Huffman encoding A character s code is found by starting at the root and following the branches that lead to that character. The code itself is the bit value of each branch on the path, taken in sequence. Decoding The recipient has a very easy job in decoding the data it receives. Figure 15.7 shows how decoding takes place Figure 15.5 Final tree and code Figure 15.7 Huffman decoding 3

4 Lempel Ziv encoding Lempel Ziv (LZ) encoding is an example of a category of algorithms called dictionary-based encoding. The idea is to create a dictionary (a table) of strings used during the communication session. If both the sender and the receiver have a copy of the dictionary, then previously-encountered strings can be substituted by their index in the dictionary to reduce the amount of information transmitted Figure 15.8 An example of Lempel Ziv encoding Compression In this phase there are two concurrent events: building an indexed dictionary and compressing a string of symbols. The algorithm extracts the smallest substring that cannot be found in the dictionary from the remaining uncompressed string. It then stores a copy of this substring in the dictionary as a new entry and assigns it an index value. Compression occurs when the substring, except for the last character, is replaced with the index found in the dictionary. The process then inserts the index and the last character of the substring into the compressed string. Decompression Decompression is the inverse of the compression process. The process extracts the substrings from the compressed string and tries to replace the indexes with the corresponding entry in the dictionary, which is empty at first and built up gradually. The idea is that when an index is received, there is already an entry in the dictionary corresponding to that index

5 Image compression JPEG encoding As discussed in Chapter 2, an image can be represented by a two-dimensional array (table) of picture elements (pixels). A grayscale picture of 307,200 pixels is represented by 2,457,600 bits, and a color picture is represented by 7,372,800 bits. In JPEG, a grayscale picture is divided into blocks of 8 8 pixel blocks to decrease the number of calculations because, as we will see shortly, the number of mathematical operations for each picture is the square of the number of units Figure 15.9 An example of Lempel Ziv decoding LOSSY COMPRESSION METHODS Our eyes and ears cannot distinguish subtle changes. In such cases, we can use a lossy data compression method. These methods are cheaper they take less time and space when it comes to sending millions of bits per second for images and video. Several methods have been developed using lossy compression techniques. JPEG (Joint Photographic Experts Group) encoding is used to compress pictures and graphics, MPEG (Moving Picture Experts Group) encoding is used to compress video, and MP3 (MPEG audio layer 3) for audio compression Figure JPEG grayscale example, pixels 5

6 The whole idea of JPEG is to change the picture into a linear (vector) set of numbers that reveals the redundancies. The redundancies (lack of changes) can then be removed using one of the lossless compression methods we studied previously. A simplified version of the process is shown in Figure To understand the nature of this transformation, let us show the result of the transformations for three cases Figure The JPEG compression process Figure Case 1: uniform grayscale Discrete cosine transform (DCT) In this step, each block of 64 pixels goes through a transformation called the discrete cosine transform (DCT). The transformation changes the 64 values so that the relative relationships between pixels are kept but the redundancies are revealed. The formula is given in Appendix G. P(x, y) defines one value in the block, while T(m, n) defines the value in the transformed block Figure Case 2: two sections 6

7 Compression After quantization the values are read from the table, and redundant 0s are removed. However, to cluster the 0s together, the process reads the table diagonally in a zigzag fashion rather than row by row or column by column. The reason is that if the picture does not have fine changes, the bottom right corner of the T table is all 0s. JPEG usually uses run-length encoding at the compression phase to compress the bit pattern resulting from the zigzag linearization Figure Case 3: gradient grayscale Quantization After the T table is created, the values are quantized to reduce the number of bits needed for encoding. Quantization divides the number of bits by a constant and then drops the fraction. This reduces the required number of bits even more. In most implementations, a quantizing table (8 by 8) defines how to quantize each value. The divisor depends on the position of the value in the T table. This is done to optimize the number of bits and the number of 0s for each particular application Figure Reading the table 7

8 Video compression MPEG encoding The Moving Picture Experts Group (MPEG) method is used to compress video. In principle, a motion picture is a rapid sequence of a set of frames in which each frame is a picture. In other words, a frame is a spatial combination of pixels, and a video is a temporal combination of frames that are sent one after another. Compressing video, then, means spatially compressing each frame and temporally compressing a set of frames Figure MPEG frames Spatial compression The spatial compression of each frame is done with JPEG, or a modification of it. Each frame is a picture that can be independently compressed. Temporal compression In temporal compression, redundant frames are removed. When we watch television, for example, we receive 30 frames per second. However, most of the consecutive frames are almost the same. For example, in a static scene in which someone is talking, most frames are the same except for the segment around the speaker s lips, which changes from one frame to the next. Audio compression Audio compression can be used for speech or music. For speech we need to compress a 64 khz digitized signal, while for music we need to compress a MHz signal. Two categories of techniques are used for audio compression: predictive encoding and perceptual encoding

9 Predictive encoding In predictive encoding, the differences between samples are encoded instead of encoding all the sampled values. This type of compression is normally used for speech. Several standards have been defined such as GSM (13 kbps), G.729 (8 kbps), and G (6.4 or 5.3 kbps). Detailed discussions of these techniques are beyond the scope of this book. Perceptual encoding: MP3 The most common compression technique used to create CD-quality audio is based on the perceptual encoding technique. This type of audio needs at least Mbps, which cannot be sent over the Internet without compression. MP3 (MPEG audio layer 3) uses this technique

### Compression Part 2 Lossy Image Compression (JPEG) Norm Zeck

Compression Part 2 Lossy Image Compression (JPEG) General Compression Design Elements 2 Application Application Model Encoder Model Decoder Compression Decompression Models observe that the sensors (image

### Compression; Error detection & correction

Compression; Error detection & correction compression: squeeze out redundancy to use less memory or use less network bandwidth encode the same information in fewer bits some bits carry no information some

### IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event - compression and decompression 1 Compression categories Compression = Image coding Still-image

### CS 335 Graphics and Multimedia. Image Compression

CS 335 Graphics and Multimedia Image Compression CCITT Image Storage and Compression Group 3: Huffman-type encoding for binary (bilevel) data: FAX Group 4: Entropy encoding without error checks of group

### Image coding and compression

Image coding and compression Robin Strand Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Today Information and Data Redundancy Image Quality Compression Coding

### Ch 4: Multimedia. Fig.4.1 Internet Audio/Video

Ch 4: Multimedia Recent advances in technology have changed our use of audio and video. In the past, we listened to an audio broadcast through a radio and watched a video program broadcast through a TV.

### Data Storage. Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J.

Data Storage Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Data Storage Bits

### Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey

Data Compression Media Signal Processing, Presentation 2 Presented By: Jahanzeb Farooq Michael Osadebey What is Data Compression? Definition -Reducing the amount of data required to represent a source

### Topic 5 Image Compression

Topic 5 Image Compression Introduction Data Compression: The process of reducing the amount of data required to represent a given quantity of information. Purpose of Image Compression: the reduction of

### 7.5 Dictionary-based Coding

7.5 Dictionary-based Coding LZW uses fixed-length code words to represent variable-length strings of symbols/characters that commonly occur together, e.g., words in English text LZW encoder and decoder

### Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding

Perceptual Coding Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Part II wrap up 6.082 Fall 2006 Perceptual Coding, Slide 1 Lossless vs.

### Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Image compression Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Data and information The representation of images in a raw

### End-to-End Data. Presentation Formatting. Difficulties. Outline Formatting Compression

End-to-End Data Outline Formatting Compression Spring 2009 CSE30264 1 Presentation Formatting Marshalling (encoding) application data into messages Unmarshalling (decoding) messages into application data

### Multimedia Communications. Transform Coding

Multimedia Communications Transform Coding Transform coding Transform coding: source output is transformed into components that are coded according to their characteristics If a sequence of inputs is transformed

### yintroduction to compression ytext compression yimage compression ysource encoders and destination decoders

In this lecture... Compression and Standards Gail Reynard yintroduction to compression ytext compression Huffman LZW yimage compression GIF TIFF JPEG The Need for Compression ymultimedia data volume >

### Image Coding and Data Compression

Image Coding and Data Compression Biomedical Images are of high spatial resolution and fine gray-scale quantisiation Digital mammograms: 4,096x4,096 pixels with 12bit/pixel 32MB per image Volume data (CT

### CSCD 443/533 Advanced Networks Fall 2017

CSCD 443/533 Advanced Networks Fall 2017 Lecture 18 Compression of Video and Audio 1 Topics Compression technology Motivation Human attributes make it possible Audio Compression Video Compression Performance

### Image Compression. CS 6640 School of Computing University of Utah

Image Compression CS 6640 School of Computing University of Utah Compression What Reduce the amount of information (bits) needed to represent image Why Transmission Storage Preprocessing Redundant & Irrelevant

### CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106

CHAPTER 6 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform Page No 6.1 Introduction 103 6.2 Compression Techniques 104 103 6.2.1 Lossless compression 105 6.2.2 Lossy compression

### What is multimedia? Multimedia. Continuous media. Most common media types. Continuous media processing. Interactivity. What is multimedia?

Multimedia What is multimedia? Media types +Text + Graphics + Audio +Image +Video Interchange formats What is multimedia? Multimedia = many media User interaction = interactivity Script = time 1 2 Most

### Multimedia. What is multimedia? Media types. Interchange formats. + Text +Graphics +Audio +Image +Video. Petri Vuorimaa 1

Multimedia What is multimedia? Media types + Text +Graphics +Audio +Image +Video Interchange formats Petri Vuorimaa 1 What is multimedia? Multimedia = many media User interaction = interactivity Script

### IMAGE COMPRESSION. Chapter - 5 : (Basic)

Chapter - 5 : IMAGE COMPRESSION (Basic) Q() Explain the different types of redundncies that exists in image.? (8M May6 Comp) [8M, MAY 7, ETRX] A common characteristic of most images is that the neighboring

### ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University

ECE 499/599 Data Compression & Information Theory Thinh Nguyen Oregon State University Adminstrivia Office Hours TTh: 2-3 PM Kelley Engineering Center 3115 Class homepage http://www.eecs.orst.edu/~thinhq/teaching/ece499/spring06/spring06.html

### Robert Matthew Buckley. Nova Southeastern University. Dr. Laszlo. MCIS625 On Line. Module 2 Graphics File Format Essay

1 Robert Matthew Buckley Nova Southeastern University Dr. Laszlo MCIS625 On Line Module 2 Graphics File Format Essay 2 JPEG COMPRESSION METHOD Joint Photographic Experts Group (JPEG) is the most commonly

### 06/12/2017. Image compression. Image compression. Image compression. Image compression. Coding redundancy: image 1 has four gray levels

Theoretical size of a file representing a 5k x 4k colour photograph: 5000 x 4000 x 3 = 60 MB 1 min of UHD tv movie: 3840 x 2160 x 3 x 24 x 60 = 36 GB 1. Exploit coding redundancy 2. Exploit spatial and

### Lossy Coding 2 JPEG. Perceptual Image Coding. Discrete Cosine Transform JPEG. CS559 Lecture 9 JPEG, Raster Algorithms

CS559 Lecture 9 JPEG, Raster Algorithms These are course notes (not used as slides) Written by Mike Gleicher, Sept. 2005 With some slides adapted from the notes of Stephen Chenney Lossy Coding 2 Suppose

### Mesh Decimation Using VTK

Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

### The Gullibility of Human Senses

The Gullibility of Human Senses Three simple tricks for producing LBSC 690: Week 9 Multimedia Jimmy Lin College of Information Studies University of Maryland Monday, April 2, 2007 Images Video Audio But

### CS 260: Seminar in Computer Science: Multimedia Networking

CS 260: Seminar in Computer Science: Multimedia Networking Jiasi Chen Lectures: MWF 4:10-5pm in CHASS http://www.cs.ucr.edu/~jiasi/teaching/cs260_spring17/ Multimedia is User perception Content creation

### Megapixel Video for. Part 2 of 4. Brought to You by. Presented by Video Security Consultants

rought to You by 2009 Video Security Consultants Presented by Part 2 of 4 A1 Part 2 of 4 How to Avert a Compression Depression Illustration by Jerry King While bandwidth is widening, larger video systems

### A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

### Image Compression for Mobile Devices using Prediction and Direct Coding Approach

Image Compression for Mobile Devices using Prediction and Direct Coding Approach Joshua Rajah Devadason M.E. scholar, CIT Coimbatore, India Mr. T. Ramraj Assistant Professor, CIT Coimbatore, India Abstract

### DCT Based, Lossy Still Image Compression

DCT Based, Lossy Still Image Compression NOT a JPEG artifact! Lenna, Playboy Nov. 1972 Lena Soderberg, Boston, 1997 Nimrod Peleg Update: April. 2009 http://www.lenna.org/ Image Compression: List of Topics

Compressed Audio Demystified Why Music Producers Need to Care About Compressed Audio Files Download Sales Up CD Sales Down High-Definition hasn t caught on yet Consumers don t seem to care about high fidelity

### IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1

IMAGE COMPRESSION- I Week VIII Feb 25 02/25/2003 Image Compression-I 1 Reading.. Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive,

Chapter 1 Data Storage 2007 Pearson Addison-Wesley. All rights reserved Chapter 1: Data Storage 1.1 Bits and Their Storage 1.2 Main Memory 1.3 Mass Storage 1.4 Representing Information as Bit Patterns

### Audio and video compression

Audio and video compression 4.1 introduction Unlike text and images, both audio and most video signals are continuously varying analog signals. Compression algorithms associated with digitized audio and

### Bits and Bit Patterns

Bits and Bit Patterns Bit: Binary Digit (0 or 1) Bit Patterns are used to represent information. Numbers Text characters Images Sound And others 0-1 Boolean Operations Boolean Operation: An operation that

### Video Codec Design Developing Image and Video Compression Systems

Video Codec Design Developing Image and Video Compression Systems Iain E. G. Richardson The Robert Gordon University, Aberdeen, UK JOHN WILEY & SONS, LTD Contents 1 Introduction l 1.1 Image and Video Compression

### Digital Video Processing

Video signal is basically any sequence of time varying images. In a digital video, the picture information is digitized both spatially and temporally and the resultant pixel intensities are quantized.

### compression and coding ii

compression and coding ii Ole-Johan Skrede 03.05.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides

### CHAPTER 4 REVERSIBLE IMAGE WATERMARKING USING BIT PLANE CODING AND LIFTING WAVELET TRANSFORM

74 CHAPTER 4 REVERSIBLE IMAGE WATERMARKING USING BIT PLANE CODING AND LIFTING WAVELET TRANSFORM Many data embedding methods use procedures that in which the original image is distorted by quite a small

### A NEW ENTROPY ENCODING ALGORITHM FOR IMAGE COMPRESSION USING DCT

A NEW ENTROPY ENCODING ALGORITHM FOR IMAGE COMPRESSION USING DCT D.Malarvizhi 1 Research Scholar Dept of Computer Science & Eng Alagappa University Karaikudi 630 003. Dr.K.Kuppusamy 2 Associate Professor

### FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING. Moheb R. Girgis and Mohammed M.

322 FRACTAL IMAGE COMPRESSION OF GRAYSCALE AND RGB IMAGES USING DCT WITH QUADTREE DECOMPOSITION AND HUFFMAN CODING Moheb R. Girgis and Mohammed M. Talaat Abstract: Fractal image compression (FIC) is a

### Compressing Data. Konstantin Tretyakov

Compressing Data Konstantin Tretyakov (kt@ut.ee) MTAT.03.238 Advanced April 26, 2012 Claude Elwood Shannon (1916-2001) C. E. Shannon. A mathematical theory of communication. 1948 C. E. Shannon. The mathematical

### The PackBits program on the Macintosh used a generalized RLE scheme for data compression.

Tidbits on Image Compression (Above, Lena, unwitting data compression spokeswoman) In CS203 you probably saw how to create Huffman codes with greedy algorithms. Let s examine some other methods of compressing

### REVIEW ON IMAGE COMPRESSION TECHNIQUES AND ADVANTAGES OF IMAGE COMPRESSION

REVIEW ON IMAGE COMPRESSION TECHNIQUES AND ABSTRACT ADVANTAGES OF IMAGE COMPRESSION Amanpreet Kaur 1, Dr. Jagroop Singh 2 1 Ph. D Scholar, Deptt. of Computer Applications, IK Gujral Punjab Technical University,

### Rate Distortion Optimization in Video Compression

Rate Distortion Optimization in Video Compression Xue Tu Dept. of Electrical and Computer Engineering State University of New York at Stony Brook 1. Introduction From Shannon s classic rate distortion

### Lecture 16 Perceptual Audio Coding

EECS 225D Audio Signal Processing in Humans and Machines Lecture 16 Perceptual Audio Coding 2012-3-14 Professor Nelson Morgan today s lecture by John Lazzaro www.icsi.berkeley.edu/eecs225d/spr12/ Hero

### Noise Reduction in Data Communication Using Compression Technique

Digital Technologies, 2016, Vol. 2, No. 1, 9-13 Available online at http://pubs.sciepub.com/dt/2/1/2 Science and Education Publishing DOI:10.12691/dt-2-1-2 Noise Reduction in Data Communication Using Compression

### Audio Compression. Audio Compression. Absolute Threshold. CD quality audio:

Audio Compression Audio Compression CD quality audio: Sampling rate = 44 KHz, Quantization = 16 bits/sample Bit-rate = ~700 Kb/s (1.41 Mb/s if 2 channel stereo) Telephone-quality speech Sampling rate =

### TKT-2431 SoC design. Introduction to exercises. SoC design / September 10

TKT-2431 SoC design Introduction to exercises Assistants: Exercises and the project work Juha Arvio juha.arvio@tut.fi, Otto Esko otto.esko@tut.fi In the project work, a simplified H.263 video encoder is

### Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding.

Introduction to Digital Audio Compression B. Cavagnolo and J. Bier Berkeley Design Technology, Inc. 2107 Dwight Way, Second Floor Berkeley, CA 94704 (510) 665-1600 info@bdti.com http://www.bdti.com INTRODUCTION

DIGITAL IMAGE PROCESSING WRITTEN REPORT ADAPTIVE IMAGE COMPRESSION TECHNIQUES FOR WIRELESS MULTIMEDIA APPLICATIONS SUBMITTED BY: NAVEEN MATHEW FRANCIS #105249595 INTRODUCTION The advent of new technologies

### Standard File Formats

Standard File Formats Introduction:... 2 Text: TXT and RTF... 4 Grapics: BMP, GIF, JPG and PNG... 5 Audio: WAV and MP3... 8 Video: AVI and MPG... 11 Page 1 Introduction You can store many different types

### David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc.

David Rappaport School of Computing Queen s University CANADA Copyright, 1996 Dale Carnegie & Associates, Inc. Data Compression There are two broad categories of data compression: Lossless Compression

### JPEG Compression Using MATLAB

JPEG Compression Using MATLAB Anurag, Sonia Rani M.Tech Student, HOD CSE CSE Department, ITS Bhiwani India ABSTRACT Creating, editing, and generating s in a very regular system today is a major priority.

### Introduzione alle Biblioteche Digitali Audio/Video

Introduzione alle Biblioteche Digitali Audio/Video Biblioteche Digitali 1 Gestione del video Perchè è importante poter gestire biblioteche digitali di audiovisivi Caratteristiche specifiche dell audio/video

### Megapixel Networking 101. Why Megapixel?

Megapixel Networking 101 Ted Brahms Director Field Applications, Arecont Vision Why Megapixel? Most new surveillance projects are IP Megapixel cameras are IP Megapixel provides incentive driving the leap

### A Detailed look of Audio Steganography Techniques using LSB and Genetic Algorithm Approach

www.ijcsi.org 402 A Detailed look of Audio Steganography Techniques using LSB and Genetic Algorithm Approach Gunjan Nehru 1, Puja Dhar 2 1 Department of Information Technology, IEC-Group of Institutions

### Image Processing. Blending. Blending in OpenGL. Image Compositing. Blending Errors. Antialiasing Revisited Computer Graphics I Lecture 15

15-462 Computer Graphics I Lecture 15 Image Processing Blending Display Color Models Filters Dithering Image Compression March 18, 23 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

### Multimedia Technology

Multimedia Application An (usually) interactive piece of software which communicates to the user using several media e.g Text, graphics (illustrations, photos), audio (music, sounds), animation and video.

### Dictionary Based Compression for Images

Dictionary Based Compression for Images Bruno Carpentieri Abstract Lempel-Ziv methods were original introduced to compress one-dimensional data (text, object codes, etc.) but recently they have been successfully

### Lossless Image Compression having Compression Ratio Higher than JPEG

Cloud Computing & Big Data 35 Lossless Image Compression having Compression Ratio Higher than JPEG Madan Singh madan.phdce@gmail.com, Vishal Chaudhary Computer Science and Engineering, Jaipur National

### Data Representation and Networking

Data Representation and Networking Instructor: Dmitri A. Gusev Spring 2007 CSC 120.02: Introduction to Computer Science Lecture 3, January 30, 2007 Data Representation Topics Covered in Lecture 2 (recap+)

### Multimedia Signals and Systems Motion Picture Compression - MPEG

Multimedia Signals and Systems Motion Picture Compression - MPEG Kunio Takaya Electrical and Computer Engineering University of Saskatchewan March 9, 2008 MPEG video coding A simple introduction Dr. S.R.

### In the first part of our project report, published

Editor: Harrick Vin University of Texas at Austin Multimedia Broadcasting over the Internet: Part II Video Compression Borko Furht Florida Atlantic University Raymond Westwater Future Ware Jeffrey Ice

### Lecture 6 Review of Lossless Coding (II)

Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Lecture 6 Review of Lossless Coding (II) May 28, 2009 Outline Review Manual exercises on arithmetic coding and LZW dictionary coding 1 Review Lossy coding

### COLOR IMAGE COMPRESSION USING DISCRETE COSINUS TRANSFORM (DCT)

COLOR IMAGE COMPRESSION USING DISCRETE COSINUS TRANSFORM (DCT) Adietiya R. Saputra Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma Jl. Margonda Raya no. 100, Depok 16424, Jawa Barat

### Data Compression Fundamentals

1 Data Compression Fundamentals Touradj Ebrahimi Touradj.Ebrahimi@epfl.ch 2 Several classifications of compression methods are possible Based on data type :» Generic data compression» Audio compression»

### 2.2: Images and Graphics Digital image representation Image formats and color models JPEG, JPEG2000 Image synthesis and graphics systems

Chapter 2: Representation of Multimedia Data Audio Technology Images and Graphics Video Technology Chapter 3: Multimedia Systems Communication Aspects and Services Chapter 4: Multimedia Systems Storage

### Parametric Coding of High-Quality Audio

Parametric Coding of High-Quality Audio Prof. Dr. Gerald Schuller Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany 1 Waveform vs Parametric Waveform Filter-bank approach Mainly exploits

### Digital Image Representation. Image Representation. Color Models

Digital Representation Chapter : Representation of Multimedia Data Audio Technology s and Graphics Video Technology Chapter 3: Multimedia Systems Communication Aspects and Services Chapter 4: Multimedia

### Scalable Perceptual and Lossless Audio Coding based on MPEG-4 AAC

Scalable Perceptual and Lossless Audio Coding based on MPEG-4 AAC Ralf Geiger 1, Gerald Schuller 1, Jürgen Herre 2, Ralph Sperschneider 2, Thomas Sporer 1 1 Fraunhofer IIS AEMT, Ilmenau, Germany 2 Fraunhofer

### Shafq ur Réhman Image and Video Compression

Shafq ur Réhman Shafiq.urrehman@umu.se Image and Video Compression outline mage/video compression: what and why source coding basics basic idea symbol codes stream codes compression systems and standards

### Compression and File Formats

Compression and File Formats 1 Compressing Moving Images Methods: Motion JPEG, Cinepak, Indeo, MPEG Known as CODECs compression / decompression algorithms hardware and software implementations symmetrical

### Introduction to Video Coding

Introduction to Video Coding o Motivation & Fundamentals o Principles of Video Coding o Coding Standards Special Thanks to Hans L. Cycon from FHTW Berlin for providing first-hand knowledge and much of

### CHAPTER 6 Audio compression in practice

CHAPTER 6 Audio compression in practice In earlier chapters we have seen that digital sound is simply an array of numbers, where each number is a measure of the air pressure at a particular time. This

### COMP 249 Advanced Distributed Systems Multimedia Networking. The Video Data Type Coding & Compression Basics

COMP 9 Advanced Distributed Systems Multimedia Networking The Video Data Type Coding & Compression Basics Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu

### Lecture 8: Image and Video Compression

I2200: Digital Image processing Lecture 8: Image and Video Compression Prof. YingLi Tian Nov. 1st, 2017 Department of Electrical Engineering The City College of New York The City University of New York

### MPEG-l.MPEG-2, MPEG-4

The MPEG Handbook MPEG-l.MPEG-2, MPEG-4 Second edition John Watkinson PT ^PVTPR AMSTERDAM BOSTON HEIDELBERG LONDON. NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Focal Press is an

### Compression I: Basic Compression Algorithms

Compression I: Basic Compression Algorithms Recap: The Need for Compression Raw Video, Image and Audio files are very large beasts: 337 Uncompressed Audio 1 minute of Audio: Audio Type 44.1 KHz 22.05 KHz

### 2.4 Audio Compression

2.4 Audio Compression 2.4.1 Pulse Code Modulation Audio signals are analog waves. The acoustic perception is determined by the frequency (pitch) and the amplitude (loudness). For storage, processing and

### Hybrid Image Compression Using DWT, DCT and Huffman Coding. Techniques

Hybrid Image Compression Using DWT, DCT and Huffman Coding Techniques Veerpal kaur, Gurwinder kaur Abstract- Here in this hybrid model we are going to proposed a Nobel technique which is the combination

### Affable Compression through Lossless Column-Oriented Huffman Coding Technique

IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 11, Issue 6 (May. - Jun. 2013), PP 89-96 Affable Compression through Lossless Column-Oriented Huffman Coding

### Image Segmentation Techniques for Object-Based Coding

Image Techniques for Object-Based Coding Junaid Ahmed, Joseph Bosworth, and Scott T. Acton The Oklahoma Imaging Laboratory School of Electrical and Computer Engineering Oklahoma State University {ajunaid,bosworj,sacton}@okstate.edu

About MPEG Compression HD video requires significantly more data than SD video. A single HD video frame can require up to six times more data than an SD frame. To record such large images with such a low

### A real-time SNR scalable transcoder for MPEG-2 video streams

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science A real-time SNR scalable transcoder for MPEG-2 video streams by Mohammad Al-khrayshah Supervisors: Prof. J.J. Lukkien Eindhoven

### Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

### High Quality Image Compression

Article ID: WMC001673 ISSN 2046-1690 High Quality Image Compression Corresponding Author: Dr. Rash B Dubey, Professor, ECE Dept, Hindu College of Engg, Sonepat, 121003 - India Submitting Author: Dr. Rash

### EFFICIENT DEISGN OF LOW AREA BASED H.264 COMPRESSOR AND DECOMPRESSOR WITH H.264 INTEGER TRANSFORM

EFFICIENT DEISGN OF LOW AREA BASED H.264 COMPRESSOR AND DECOMPRESSOR WITH H.264 INTEGER TRANSFORM 1 KALIKI SRI HARSHA REDDY, 2 R.SARAVANAN 1 M.Tech VLSI Design, SASTRA University, Thanjavur, Tamilnadu,

### STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC)

STUDY AND IMPLEMENTATION OF VIDEO COMPRESSION STANDARDS (H.264/AVC, DIRAC) EE 5359-Multimedia Processing Spring 2012 Dr. K.R Rao By: Sumedha Phatak(1000731131) OBJECTIVE A study, implementation and comparison

### Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Lesson 20 Basic Building Blocks & Temporal Redundancy Instructional Objectives At the end of this lesson, the students should be able to: 1. Name at least five

### Review for the Final

Review for the Final CS 635 Review (Topics Covered) Image Compression Lossless Coding Compression Huffman Interpixel RLE Lossy Quantization Discrete Cosine Transform JPEG CS 635 Review (Topics Covered)

### Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM

Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM 1 Instructions Labs may be done in groups of 2 or 3 (i.e., not alone). You may use any programming language you wish but MATLAB is highly suggested.

### JPEG Copy Paste Forgery Detection Using BAG Optimized for Complex Images

JPEG Copy Paste Forgery Detection Using BAG Optimized for Complex Images Dessalegn Atnafu AYALNEH*, Hyoung Joong KIM*, Yong Soo CHOI** *CIST (Center for Information Security Technologies), Korea University

### Chapter 11.3 MPEG-2. MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications:

Chapter 11.3 MPEG-2 MPEG-2: For higher quality video at a bit-rate of more than 4 Mbps Defined seven profiles aimed at different applications: Simple, Main, SNR scalable, Spatially scalable, High, 4:2:2,

### COS 116 The Computational Universe Laboratory 4: Digital Sound and Music

COS 116 The Computational Universe Laboratory 4: Digital Sound and Music In this lab you will learn about digital representations of sound and music, especially focusing on the role played by frequency