Internet of Things. Laurent Toutain. May 14, 2014

Size: px
Start display at page:

Download "Internet of Things. Laurent Toutain. May 14, 2014"

Transcription

1 Internet of Things Laurent Toutain May 14, 2014

2 Table of Contents 1 Internet of Things 2 Layer 2 protocols 3 IPv6 4 Addresses 5 Protocol IPv6 Header 6 Associated Protocols & Mechanisms 7 6LoWPAN 8 IETF Working Groups 6LoWPAN 9 Routing Protocols 10 RPL 11 CoAP Slide 2 Laurent Toutain Filière 2

3 Introduction Slide 3 Laurent Toutain Filière 2

4 Internet of Things Internet of Things? Internet of Things Slide 4 Laurent Toutain Filière 2

5 Internet of Things Internet of Things? Internet of Things Internet Protocols Simplified Internet Protocols Interoperability with Internet (e2e, URI,... ) Open Standards Always on Slide 4 Laurent Toutain Filière 2

6 Internet of Things Internet of Things? Internet of Things Internet Protocols Simplified Internet Protocols Interoperability with Internet (e2e, URI,... ) Open Standards Always on RFID NFC Wireless Sensor (and Actuator) Networks Smart Grids Cars... Slide 4 Laurent Toutain Filière 2

7 Internet of Things History repeating? 80 s: IP as a word wide protocol other alternatives: CLNP, X.25, Frame Relay, ATM IP: Best Effort, no reservation, fixed address size, s: IP in entreprise network Other alternatives: IPX, NetBios IP: no d auto-configuration, no service discovery 90 s IP in telephony 00 s IP in TV Other alternatives: IEEE 1394/ATM/Hiperlan Conclusion Network Value comes from Interconnection Interconnection is based on Open Protocols Slide 5 Laurent Toutain Filière 2

8 Internet of Things ZigBee SE 2.0 Advanced Metering Infrastructure Energy Price Energy Portal Service Slide 6 Laurent Toutain Filière 2

9 Internet of Things ZigBee SE 2.0 Advanced Metering Infrastructure Energy Price Energy Portal Service Multi L2 Technologies: IEEE G3-PLC, IEEE P Bluetooth Low Energy CAT-iq (DECT) Dash7 Slide 6 Laurent Toutain Filière 2

10 Internet of Things ZigBee SE 2.0 Advanced Metering Infrastructure Energy Price Energy Portal Service Auto-Configuration Multi L2 Technologies: IEEE G3-PLC, IEEE P Bluetooth Low Energy CAT-iq (DECT) Dash7 Slide 6 Laurent Toutain Filière 2

11 Internet of Things ZigBee SE 2.0 ZigBee had its own stack Smart Energy Profile move to IPv6 ZSE 1.1 APP APP ZDO SSP APS NWK MAC (IEEE ) Physical (radio) adapted from: ZigBee Alliance Slide 7 Laurent Toutain Filière 2

12 Internet of Things ZigBee SE 2.0 ZigBee had its own stack Smart Energy Profile move to IPv6 ZSE 1.1 SSP APP APP APS NWK ZDO RPL ZSE 2.0 6LoWPAN APP APP UDP/CoAP or TCP/HTTP IPv6 MAC (IEEE ) Physical (radio) Radio PLC Phy Ethernet adapted from: ZigBee Alliance Slide 7 Laurent Toutain Filière 2

13 Internet of Things Example: SmartGrid Slide 8 Laurent Toutain Filière 2

14 Internet of Things Example: SmartGrid Slide 8 Laurent Toutain Filière 2

15 Internet of Things Example: SmartGrid Slide 8 Laurent Toutain Filière 2

16 Internet of Things Interconnection at HTTP level IPv6 IPv6 IPv4 IPv6 Slide 9 Laurent Toutain Filière 2

17 Internet of Things Client Server: REST Client Server Slide 10 Laurent Toutain Filière 2

18 Internet of Things Client Server: REST Client Server Slide 10 Laurent Toutain Filière 2

19 Internet of Things Client Server: REST Client GET uri value Server Slide 10 Laurent Toutain Filière 2

20 Internet of Things Client Server: REST Client GET uri value Server PUT uri value ack Slide 10 Laurent Toutain Filière 2

21 Internet of Things Client Server: REST Client GET uri value Server PUT uri value ack POST uri value ack Slide 10 Laurent Toutain Filière 2

22 Internet of Things Client Server: REST Client GET uri value Server PUT uri value ack POST uri value ack DELETE uri ack Slide 10 Laurent Toutain Filière 2

23 Internet of Things Client Server: REST Client Proxy Server Slide 10 Laurent Toutain Filière 2

24 Internet of Things Client Server: REST Client Proxy Server HTTP/TCP/IPv4 CoAP/UDP/IPv6 Slide 10 Laurent Toutain Filière 2

25 Internet of Things Client Server: REST Client Proxy Server GET uri GET uri value value HTTP/TCP/IPv4 CoAP/UDP/IPv6 Slide 10 Laurent Toutain Filière 2

26 Internet of Things Client Server: REST Client Proxy Server GET uri GET uri value value GET uri HTTP/TCP/IPv4 CoAP/UDP/IPv6 Slide 10 Laurent Toutain Filière 2

27 Internet of Things Client Server: REST Client Proxy Server GET uri GET uri value value GET uri HTTP/TCP/IPv4 Observe: value CoAP/UDP/IPv6 Slide 10 Laurent Toutain Filière 2

28 Internet of Things Client Server: REST Client MIB Proxy Server GET uri GET uri value value GET uri HTTP/TCP/IPv4 Observe: value CoAP/UDP/IPv6 Slide 10 Laurent Toutain Filière 2

29 Internet of Things Challenges Reduce IP impact in term of: Code size, Energy consumption Collapsed OSI stack. Moore s Law lead to reduce costs not increase capacities. Network topology Star topology Meshed L2 mesh versus Routing Millions of objects generating individually small traffic: LTE is not adapted to IoT Auto-configuration Interoperability Plugtest IPSO & ETSI Security and Privacy Slide 11 Laurent Toutain Filière 2

30 Hardware & Physical Layer Slide 12 Laurent Toutain Filière 2

31 Layer 2 protocols Hardware and physical layers requirements Both hardware and Physical Layer should be designed to minimize energy consumption Low-consumption processor (RISC, low frequency) Favor non-volatile memory (e.g. Flash) over RAM Radio coding / modulation not very efficient but interference-resilient to simplify MAC protocol Slide 13 Laurent Toutain Filière 2

32 Layer 2 protocols Hardware and physical layers requirements Both hardware and Physical Layer should be designed to minimize energy consumption Low-consumption processor (RISC, low frequency) Favor non-volatile memory (e.g. Flash) over RAM Radio coding / modulation not very efficient but interference-resilient to simplify MAC protocol Slide 13 Laurent Toutain Filière 2

33 Layer 2 protocols Some Figures Micro-controller (TI MSP430) 8 MHz, RISC Memory: RAM: 10 kb Flash: 48 kb + 1 MB Wireless interface (Chipcon CC 2420): Frequency: 2.4 GHz Throughput: 250 kb/s Max. frame size: 127 B Energy: Consumption (Tx): 19.5 ma Consumption (Rx): 21.8 ma Consumption (µc): 1.8 ma Consumption (sens): 54.5 µa Consumption (idle): 5.1 µa Flash reading: 4 ma Flash writing: 20 ma Capacity: Alkaline batteries: 2 Ah Self-discharge: 10 µa What is the most expensive (in term of energy) operation? Slide 14 Laurent Toutain Filière 2

34 Layer 2 protocols Some Figures Micro-controller (TI MSP430) 8 MHz, RISC Memory: RAM: 10 kb Flash: 48 kb + 1 MB Wireless interface (Chipcon CC 2420): Frequency: 2.4 GHz Throughput: 250 kb/s Max. frame size: 127 B Energy: Consumption (Tx): 19.5 ma Consumption (Rx): 21.8 ma Consumption (µc): 1.8 ma Consumption (sens): 54.5 µa Consumption (idle): 5.1 µa Flash reading: 4 ma Flash writing: 20 ma Capacity: Alkaline batteries: 2 Ah Self-discharge: 10 µa What is the most expensive (in term of energy) operation? Slide 14 Laurent Toutain Filière 2

35 Minimize Energy! Slide 15 Laurent Toutain Filière 2

36 Layer 2 protocols Strategies Asynchronous: Transmit when needed Can be protected by a CSMA/CA algorithm to avoid collisions Minimize delays, but receivers MUST listen to the channel Synchronous A Master send Beacon Frame with active and idle times. Each node may also send their schedules to synchronize between themselves. Multi-Channel Pre assign slots and frequencies for transmissions Not flexible, for deterministic transmissions. Slide 16 Laurent Toutain Filière 2

37 Layer 2 protocols Sleeping receiver Rx sleep probe sleep probe sleep probe sleep probe sleep probe The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey Pei Huang, Li Xiao, Soroor Soltani, Matt W. Mutka, and Ning Xi, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013 Slide 17 Laurent Toutain Filière 2

38 Layer 2 protocols Sleeping receiver Tx Rx preamble data preamble data preamble data preamble data sleep active active active sleep probe probe probe probe probe The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey Pei Huang, Li Xiao, Soroor Soltani, Matt W. Mutka, and Ning Xi, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013 Slide 17 Laurent Toutain Filière 2

39 Layer 2 protocols Sleeping receiver Tx Rx preamble data preamble data preamble data preamble data sleep active active active sleep probe probe probe probe probe Tx Rx preamble data preamble data sleep active sleep active probe probe probe probe sleep probe The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey Pei Huang, Li Xiao, Soroor Soltani, Matt W. Mutka, and Ning Xi, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013 Slide 17 Laurent Toutain Filière 2

40 Layer 2 protocols Sleeping receiver Tx Rx preamble data preamble data preamble data preamble data sleep active active active sleep probe probe probe probe probe Tx Rx preamble data preamble data sleep active sleep active probe probe probe probe sleep probe Tx Rx P P P P P P P P data P P P P P P P P data sleep sleep active sleep sleep active probe probe probe probe probe probe sleep probe The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey Pei Huang, Li Xiao, Soroor Soltani, Matt W. Mutka, and Ning Xi, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013 Slide 17 Laurent Toutain Filière 2

41 Layer 2 protocols Sleeping receiver Tx Rx preamble data preamble data preamble data preamble data sleep active active active sleep probe probe probe probe probe Tx Rx preamble data preamble data sleep active sleep active probe probe probe probe sleep probe Tx Rx P P P P P P P P data P P P P P P P P data sleep sleep active sleep sleep active probe probe probe probe probe probe sleep probe Tx Rx P P P P data P P P data sleep active active ack sleep probe probe ack active The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey Pei Huang, Li Xiao, Soroor Soltani, Matt W. Mutka, and Ning Xi, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013 Slide 17 Laurent Toutain Filière 2

42 Layer 2 protocols Typical sensor network sketches s Slide 18 Laurent Toutain Filière 2

43 Layer 2 protocols Typical sensor network sketches s Slide 18 Laurent Toutain Filière 2

44 Layer 2 protocols Typical sensor network sketches s Slide 18 Laurent Toutain Filière 2

45 Layer 2 protocols Typical sensor network sketches s Increase radio range Slide 18 Laurent Toutain Filière 2

46 Layer 2 protocols Typical sensor network sketches s Relay message from node to node Slide 18 Laurent Toutain Filière 2

47 IEEE Slide 19 Laurent Toutain Filière 2

48 Layer 2 protocols IEEE Physical Layer Channels: MHz Slide 20 Laurent Toutain Filière 2

49 Layer 2 protocols IEEE Physical Layer Channels: MHz Wi-Fi b/g Slide 20 Laurent Toutain Filière 2

50 Layer 2 protocols IEEE Physical Layer Channels: kb/s 40 kb/s MHz Wi-Fi b/g kb/s Slide 20 Laurent Toutain Filière 2

51 MAC Layer adaptation Slide 21 Laurent Toutain Filière 2

52 Aloha Slide 22 Laurent Toutain Filière 2

53 Layer 2 protocols Aloha Simplest protocol on a shared media Send when a station want to send Does not listen to neighbor s traffic Collisions (two stations sending at the same time) can occur Unreceived messages are sent again latter. Was primary used by Hawaiian universities works well when traffic is very limited unstable when the network is loaded Aloha is not CSMA since the media is not sensed before sending Slide 23 Laurent Toutain Filière 2

54 Layer 2 protocols Hypothesis Message size is the equal for every messages. The number of stations is The global traffic can be modelized by a Poisson law Inter-arrival is given by an exponential law T : time to send a message λ: number of message arriving in the system per second g: number of message send per send Arriving messages plus retransmissions s: number of successful messages per second message without any collision when the system works correctly s = λ probability of k messages during a period T is P k (T ) = (gt )k e gt k! Slide 24 Laurent Toutain Filière 2

55 Layer 2 protocols S and G Normalized throughput G = g.t percentage of successful transmission Offered load S = s.t percentage of channel usage can be > 1 1 s Slide 25 Laurent Toutain Filière 2

56 Layer 2 protocols S and G Normalized throughput G = g.t percentage of successful transmission Offered load S = s.t percentage of channel usage can be > 1 1 s Slide 25 Laurent Toutain Filière 2

57 Layer 2 protocols S and G Normalized throughput G = g.t percentage of successful transmission Offered load S = s.t percentage of channel usage can be > 1 1 s Slide 25 Laurent Toutain Filière 2

58 Layer 2 protocols S and G Normalized throughput G = g.t percentage of successful transmission Offered load S = s.t percentage of channel usage can be > 1 1 s Slide 25 Laurent Toutain Filière 2

59 Layer 2 protocols S and G Normalized throughput G = g.t percentage of successful transmission Offered load S = s.t percentage of channel usage can be > 1 1 s Slide 25 Laurent Toutain Filière 2

60 Layer 2 protocols S and G Normalized throughput G = g.t percentage of successful transmission Offered load S = s.t percentage of channel usage can be > 1 1 s Slide 25 Laurent Toutain Filière 2

61 Layer 2 protocols Success Probability No other transmission No transmission T T P Succ = P 0 (2T ) = (2gT )0 e 2gT 0! = e 2gT = e 2G P Succ = S G S = G.e 2G Slide 26 Laurent Toutain Filière 2

62 Layer 2 protocols Slotted Aloha: Success Probability No transmission T P Succ = P 0 (T ) = (gt )0 e gt 0! = e gt = e G P Succ = S G S = G.e G Slide 27 Laurent Toutain Filière 2

63 S Layer 2 protocols Aloha performances G Non Slotted Aloha: max 18% of the channel bandwidth Slotted Aloha: max 36% of the channel bandwidth When this limit is reached, system become unstable Before the limit, increasing the load increase success After the limit, increasing the load, decrease success Getting closer to limit, increases instability risk Slide 28 Laurent Toutain Filière 2

64 S Layer 2 protocols Aloha performances G Non Slotted Aloha: max 18% of the channel bandwidth Slotted Aloha: max 36% of the channel bandwidth When this limit is reached, system become unstable Before the limit, increasing the load increase success After the limit, increasing the load, decrease success Getting closer to limit, increases instability risk Slide 28 Laurent Toutain Filière 2

65 S Layer 2 protocols Aloha performances G Non Slotted Aloha: max 18% of the channel bandwidth Slotted Aloha: max 36% of the channel bandwidth When this limit is reached, system become unstable Before the limit, increasing the load increase success After the limit, increasing the load, decrease success Getting closer to limit, increases instability risk Slide 28 Laurent Toutain Filière 2

66 S Layer 2 protocols Aloha performances G Non Slotted Aloha: max 18% of the channel bandwidth Slotted Aloha: max 36% of the channel bandwidth When this limit is reached, system become unstable Before the limit, increasing the load increase success After the limit, increasing the load, decrease success Getting closer to limit, increases instability risk Slide 28 Laurent Toutain Filière 2

67 S Layer 2 protocols Aloha performances G Non Slotted Aloha: max 18% of the channel bandwidth Slotted Aloha: max 36% of the channel bandwidth When this limit is reached, system become unstable Before the limit, increasing the load increase success After the limit, increasing the load, decrease success Getting closer to limit, increases instability risk Slide 28 Laurent Toutain Filière 2

68 CSMA/CA with Energy constraints Slide 29 Laurent Toutain Filière 2

69 Layer 2 protocols Wi-Fi CSMA/CA A B C D Slide 30 Laurent Toutain Filière 2

70 Layer 2 protocols Wi-Fi CSMA/CA A B C B B C C B C D B C Slide 30 Laurent Toutain Filière 2

71 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B B C C B Ack C B C C B Ack D B C C B Ack Slide 30 Laurent Toutain Filière 2

72 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B B C C B Ack C B C C B Ack Collision CSMA D B C D A C B Ack Slide 30 Laurent Toutain Filière 2

73 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B B C C B Ack C Collision Solution: C B Smaller B Inter-frame C Ack spacing (IFS) between Frame and Ack than between Frame and Frame. CSMA D B C D A C B Ack Slide 30 Laurent Toutain Filière 2

74 Layer 2 protocols Wi-Fi CSMA/CA A B DIFS Idle B C B C C B Ack C B Ack DIFS = SIFS + 2.SlotTime SIFS = 10µs SlotTime = 9µs if all IEEE a or g or SlotTime = 20µs if one IEEE b DIFS = 28µs or 50µs C B C SIFS C B Ack D B C C B Ack Slide 30 Laurent Toutain Filière 2

75 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack D B C C B Ack Slide 30 Laurent Toutain Filière 2

76 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack D B C C B Ack Slide 30 Laurent Toutain Filière 2

77 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack DIFS DIFS D B C C B Ack Slide 30 Laurent Toutain Filière 2

78 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack DIFS DIFS D B C C B Ack Frame+SIFS+Ack Slide 30 Laurent Toutain Filière 2

79 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack DIFS DIFS DIFS DIFS D B C C B Ack Frame+SIFS+Ack Slide 30 Laurent Toutain Filière 2

80 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack Back Off: initially between 0 and 7 Doubled until 4 th transmission then 255 if no acknowledgment. Used to avoid synchronization on CS. DIFS DIFS DIFS DIFS D B C C B Ack Frame+SIFS+Ack Slide 30 Laurent Toutain Filière 2

81 Layer 2 protocols Wi-Fi CSMA/CA A B C C B Ack B DIFS Idle B C C B Ack C B C SIFS C B Ack Active Listen DIFS DIFS DIFS DIFS D B C C B Ack Frame+SIFS+Ack Slide 30 Laurent Toutain Filière 2

82 Layer 2 protocols IEEE CSMA/CA Slide 31 Laurent Toutain Filière 2

83 Layer 2 protocols IEEE CSMA/CA Slide 31 Laurent Toutain Filière 2

84 Layer 2 protocols IEEE CSMA/CA Slide 31 Laurent Toutain Filière 2

85 Layer 2 protocols IEEE CSMA/CA SIFS (14 symbols) if frame data size 18 Bytes LIFS (40 symbols) if frame data size > 18 Bytes. EMPTY Data Ack Short IFS: 14 symbols Clear Channel Assessment : Check for a signal. Slide 31 Laurent Toutain Filière 2

86 Layer 2 protocols IEEE CSMA/CA EMPTY BUSY Data Ack Slide 31 Laurent Toutain Filière 2

87 Layer 2 protocols IEEE CSMA/CA EMPTY BUSY Data Ack BUSY Data Ack Slide 31 Laurent Toutain Filière 2

88 Layer 2 protocols IEEE CSMA/CA Sleep Sleep Sleep EMPTY BUSY Data Ack BUSY Data Ack Slide 31 Laurent Toutain Filière 2

89 Layer 2 protocols IEEE CSMA/CA Sleep during CSMA-CA. Otherwise node must be active expecting data. Sleep Sleep Sleep EMPTY BUSY Data Ack BUSY Data Ack Slide 31 Laurent Toutain Filière 2

90 Layer 2 protocols IEEE CSMA/CA Sleep Sleep Sleep Active portion Inactive portion EMPTY BUSY Data Ack BUSY Data Ack beacon... beacon 2 macsuperframeorder slots Beacon Less Beacon 2 macbeaconorder slots Slide 31 Laurent Toutain Filière 2

91 Layer 2 protocols IEEE CSMA/CA Sleep Sleep Sleep Active portion Inactive portion EMPTY BUSY Data Ack BUSY Data Ack beacon... beacon 2 macsuperframeorder slots Beacon Less Beacon 2 macbeaconorder slots 0 macsuperframerorder macbeaconorder 14 Slide 31 Laurent Toutain Filière 2

92 Layer 2 protocols IEEE CSMA/CA Allow to concentrate traffic Sleeping node Allow other nodes to PAN to send traffic. Sleep Sleep Sleep Active portion Inactive portion EMPTY BUSY Data Ack BUSY Data Ack beacon... beacon 2 macsuperframeorder slots Beacon Less Beacon 2 macbeaconorder slots Slide 31 Laurent Toutain Filière 2

93 Layer 2 protocols IEEE CSMA/CA Sleep Sleep Sleep Active portion Contention Access Period Contention Free Period Inactive portion EMPTY BUSY Data Ack BUSY Data Ack beacon... beacon 2 macsuperframeorder slots Beacon Less Beacon 2 macbeaconorder slots Slide 31 Laurent Toutain Filière 2

94 Layer 2 protocols IEEE General Frame Format 000: BEACON 001: DATA 010: ACK 011: MAC command 00: PAN and addr not present 10: Addr on 16 bits 11: Addr on 64 bits Frame type Intra Sec Pend Ack PAN reserved Dest. addressing mode reserved Source addressing mode 3bits 1bit 1bit 1bit 1bit 3bits 2bits 3bits 2bits FC Seq. num. Dest. PAN Addr. Fields (variable 4 to 20) Dest. Addr. Dest. PAN Dest. Addr. Payload CRC 2 1 0/2 0/2/8 0/2 0/2/8 n 2 Preamble SFD Len. MPDU (4to20) + n 127 Slide 32 Laurent Toutain Filière 2

95 IPv6 Addresses Slide 33 Laurent Toutain Filière 2

96 Addresses IPv6 Benefits Larger address space from 2 32 to Permanent address Stateless auto-configuration of hosts Layer 3 Plug & Play Protocol Simple header Efficient routing No checksum No fragmentation by routers Enhanced extension system Slide 34 Laurent Toutain Filière 2

97 Addresses IPv6 Benefits Larger address space from 2 32 to Permanent address Stateless auto-configuration of hosts Layer 3 Plug & Play Protocol Simple header Efficient routing No checksum No fragmentation by routers Enhanced extension system end to end, but... Slide 34 Laurent Toutain Filière 2

98 Addresses IPv6 Benefits Larger address space from 2 32 to Permanent address Stateless auto-configuration of hosts Layer 3 Plug & Play Protocol Simple header Efficient routing No checksum No fragmentation by routers Enhanced extension system end to end, but... Quality of service Slide 34 Laurent Toutain Filière 2

99 Addresses IPv6 Benefits Larger address space from 2 32 to Permanent address Stateless auto-configuration of hosts Layer 3 Plug & Play Protocol Simple header Efficient routing No checksum No fragmentation by routers Enhanced extension system end to end, but... Quality of service Better support of mobility Slide 34 Laurent Toutain Filière 2

100 Addresses IPv6 Benefits Larger address space from 2 32 to Permanent address Stateless auto-configuration of hosts Layer 3 Plug & Play Protocol Simple header Efficient routing No checksum No fragmentation by routers Enhanced extension system end to end, but... Quality of service Better support of mobility IPsec Slide 34 Laurent Toutain Filière 2

101 Notation Slide 35 Laurent Toutain Filière 2

102 Addresses IPv6 addresses F2C:544:9E::2:EF8D:6B7 F692:: A:1455::A:6E0 D:63:D::4:3A:55F B33:C::F2 7:5059:3D:C0:: 9D::9BAC:B8CA:893F:80 1E:DE2:4C83::4E:39:F35:C875 2:: A:FDE3:76:B4F:D9D:: D6:: 369F:9:F8:DBF::2 DD4:B45:1:C42F:BE6:75:: 9D7B:7184:EF::3FB:BF1A:D80 FE9::B:3 EC:DB4:B:F:F11::E9:090 83:B9:08:B5:F:3F:AF:B84 E::35B:8572:7A3:FB2 99:F:9:8B76::BC9 D64:07:F394::BDB:DF40:08EE:A79E AC:23:5D:78::233:84:8 F0D:F::F4EB:0F:5C7 E71:F577:ED:E:9DE8:: B::3 1D3F:A0AA:: 70:8EA1::8:D5:81:2:F302 26::8880:7 93:: F::9:0 E:2:0:266B:: 763E:C:2E:1EB:F6:F4:14:16 E6:6:F4:B6:A888:979E:D78:09 9:754:5:90:0A78:A1A3:1:7 2:8:: 97B:C4::C36 A40:7:5:7E8F:0:32EC:9A:D0 8A52::575 D::4CB4:E:2BF:5485:8CE 07:5::41 6B::A9:C 94FF:7B8::D9:51:26F 2::E:AE:ED: :: 5F97:: AD5B:259C:7DB8:24:58:552A:: 94:4:9FD:4:87E5:: 5A8:2FF:1::CC EA:8904:7C:: 7C::D6B7:A7:B0:8B DC:6C::34:89 6C:1::5 7B3:6780:4:B1::E :2:5E1:6DE5:5E3A:553:3:: 7F0:: B39::1:B77:DB 9D3:1F1:4B:3:B4E6:7681:09:D4A8 61:520::E0 1:28E9:0:095:DF:F2:: 1B61:4::1DE:50A 34BC:99::E9:9EFB E:EF:: BDC:672A:F4C8:A1::4:7:9CB7 C697:56AD:40:8:0::62 Slide 36 Laurent Toutain Filière 2

103 Addresses Notation Base format (a 16-octet Global IPv6 Address): 2001:0db8:beef:0001:0000:0000:cafe:deca Compact Format: 2001:0db8:beef:0001:0000:0000:cafe:deca 1. Remove 0 on the left of each word 2. To avoid ambiguity, substitute ONLY one sequence of zeros by :: an IPv4 address may also appear : ::ffff: Warning: 2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40 Slide 37 Laurent Toutain Filière 2

104 Addresses Notation Base format (a 16-octet Global IPv6 Address): 2001:0db8:beef:0001:0000:0000:cafe:deca Compact Format: 2001:0db8:beef:0001:0000:0000:cafe:deca 1. Remove 0 on the left of each word 2. To avoid ambiguity, substitute ONLY one sequence of zeros by :: an IPv4 address may also appear : ::ffff: Warning: 2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40 Slide 37 Laurent Toutain Filière 2

105 Addresses Notation Base format (a 16-octet Global IPv6 Address): 2001:0db8:beef:0001:0000:0000:cafe:deca Compact Format: 2001:db8:beef:1:0:0:cafe:deca 1. Remove 0 on the left of each word 2. To avoid ambiguity, substitute ONLY one sequence of zeros by :: an IPv4 address may also appear : ::ffff: Warning: 2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40 Slide 37 Laurent Toutain Filière 2

106 Addresses Notation Base format (a 16-octet Global IPv6 Address): 2001:0db8:beef:0001:0000:0000:cafe:deca Compact Format: 2001:db8:beef:1:0:0:cafe:deca 1. Remove 0 on the left of each word 2. To avoid ambiguity, substitute ONLY one sequence of zeros by :: an IPv4 address may also appear : ::ffff: Warning: 2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40 Slide 37 Laurent Toutain Filière 2

107 Addresses Notation Base format (a 16-octet Global IPv6 Address): 2001:0db8:beef:0001:0000:0000:cafe:deca Compact Format: 2001:db8:beef:1::cafe:deca 1. Remove 0 on the left of each word 2. To avoid ambiguity, substitute ONLY one sequence of zeros by :: an IPv4 address may also appear : ::ffff: Warning: 2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40 Slide 37 Laurent Toutain Filière 2

108 Addresses Notation Base format (a 16-octet Global IPv6 Address): 2001:0db8:beef:0001:0000:0000:cafe:deca Compact Format: 2001:db8:beef:1::cafe:deca 1. Remove 0 on the left of each word 2. To avoid ambiguity, substitute ONLY one sequence of zeros by :: an IPv4 address may also appear : ::ffff: Warning: 2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40 Slide 37 Laurent Toutain Filière 2

109 Addresses Is it enough for the future? Address length About 3.4x10 38 addresses trillion trillion addresses per inhabitant on earth Addresses for every grain of sands in the world IPv4: 6 addresses per US inhabitant, 1 in Europe, 0.01 in China and in India Justification of a fixed-length address Warning: An address for everything on the network and not an address for everything No addresses for the whole life: Depends on your position on the network ISP Renumbering may be possible Slide 38 Laurent Toutain Filière 2

110 Addressing scheme Slide 39 Laurent Toutain Filière 2

111 Addresses Addressing scheme RFC 4291 defines current IPv6 addresses loopback (::1) link local (fe80::/10) global unicast (2000::/3) multicast (ff00::/8) Use CIDR principles: Prefix / prefix length notation 2001:db8:face::/ :db8:face:bed:cafe:deca:dead:beef/64 Interfaces have several IPv6 addresses at least a link-local and a global unicast addresses Slide 40 Laurent Toutain Filière 2

112 Addresses Address Format Global Unicast Address: Global Prefix SID Interface ID public topology given by the provider Link-Local Address: local topology assigned by network engineer link address auto or manual configuration fe Interface ID link address auto-configuration Slide 41 Laurent Toutain Filière 2

113 Addresses Interface Identifier Interface ID can be selected differently Derived from a Layer 2 ID (I.e. MAC address) : for Link Local address for Global Address : plug-and-play hosts Assigned manually : to keep same address when Ethernet card or host is changed to remember easily the address 1, 2, 3,... last digit of the v4 address the IPv4 address (for nostalgic system administrators)... Slide 42 Laurent Toutain Filière 2

114 Addresses Interface Identifier Interface ID can be selected differently Derived from a Layer 2 ID (I.e. MAC address) : for Link Local address for Global Address : plug-and-play hosts Assigned manually : to keep same address when Ethernet card or host is changed to remember easily the address 1, 2, 3,... last digit of the v4 address the IPv4 address (for nostalgic system administrators)... Slide 42 Laurent Toutain Filière 2

115 Addresses Interface Identifier Interface ID can be selected differently Random value : Changed frequently (e.g, every day, per session, at each reboot...) to guarantee anonymity Hash of other values (experimental) : To link address to other properties Public key List of assigned prefixes... Slide 43 Laurent Toutain Filière 2

116 Addresses Interface Identifier Interface ID can be selected differently Random value : Changed frequently (e.g, every day, per session, at each reboot...) to guarantee anonymity Hash of other values (experimental) : To link address to other properties Public key List of assigned prefixes... Slide 43 Laurent Toutain Filière 2

117 Addresses How to Construct an IID from MAC Address 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire,...) IEEE propose a way to transform a MAC-48 to an EUI-64 U/L changed for numbering purpose There is no conflicts if IID are manually numbered: 1, 2, 3,... Slide 44 Laurent Toutain Filière 2

118 Addresses How to Construct an IID from MAC Address 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire,...) IEEE propose a way to transform a MAC-48 to an EUI-64 U/L changed for numbering purpose MAC Vendor Serial Number EUI Vendor 0xfffe Serial Number There is no conflicts if IID are manually numbered: 1, 2, 3,... Slide 44 Laurent Toutain Filière 2

119 Addresses How to Construct an IID from MAC Address 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire,...) IEEE propose a way to transform a MAC-48 to an EUI-64 U/L changed for numbering purpose MAC Vendor Serial Number EUI Vendor 0xfffe Serial Number IID 10 Vendor 0xFFFE Serial Number There is no conflicts if IID are manually numbered: 1, 2, 3,... Slide 44 Laurent Toutain Filière 2

120 Addresses How to Construct an IID from MAC Address 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire,...) IEEE propose a way to transform a MAC-48 to an EUI-64 U/L changed for numbering purpose MAC Vendor Serial Number EUI Vendor 0xfffe Serial Number IID 10 Vendor 0xFFFE Serial Number There is no conflicts if IID are manually numbered: 1, 2, 3,... Slide 44 Laurent Toutain Filière 2

121 Kind of addresses Slide 45 Laurent Toutain Filière 2

122 Addresses Other kind of addresses : ULA (RFC 4193 ) Equivalent to the private addresses in IPv4 But try to avoid same prefixes on two different sites: avoid renumbering if two company merge avoid ambiguities when VPN are used These prefixes are not routable on the Internet Unique Local IPv6 Unicast Addresses: fd Random Value SID Interface ID private topology Not Routable in the Internet local topology link address to create your own ULA prefix. Slide 46 Laurent Toutain Filière 2

123 Addresses Multicast Generic Format: ff xrpt scope Group ID T (Transient) 0: well known address - 1: temporary address P (Prefix) 1 : assigned from a network prefix (T must be set to 1) R (Rendez Vous Point) 1: contains the RP address (P & T set to 1) Scope : 1 - interface-local 2 - link-local 3 - reserved 4 - admin-local 5 - site-local 8 - organisation-local e - global f - reserved Slide 47 Laurent Toutain Filière 2

124 Addresses Some Well Known Multicast Addresses ff 0 scope Group ID ff02:0:0:0:0:0:0:1 All Nodes Address (link-local scope) ff02:0:0:0:0:0:0:2 All Routers Address ff02:0:0:0:0:0:0:5 OSPFIGP ff02:0:0:0:0:0:0:6 OSPFIGP Designated Routers ff02:0:0:0:0:0:0:9 RIP Routers ff02:0:0:0:0:0:0:fb mdnsv6 ff02:0:0:0:0:0:1:2 All-dhcp-agents ff02:0:0:0:0:1:ffxx:xxxx Solicited-Node Address ff05:0:0:0:0:0:1:3 All-dhcp-servers (site-local scope) Slide 48 Laurent Toutain Filière 2

125 Addresses Some Well Known Multicast Addresses ff 0 scope Group ID ff02:0:0:0:0:0:0:1 All Nodes Address (link-local scope) ff02:0:0:0:0:0:0:2 All Routers Address ff02:0:0:0:0:0:0:5 OSPFIGP ff02:0:0:0:0:0:0:6 OSPFIGP Designated Routers ff02:0:0:0:0:0:0:9 RIP Routers ff02:0:0:0:0:0:0:fb mdnsv6 ff02:0:0:0:0:0:1:2 All-dhcp-agents ff02:0:0:0:0:1:ffxx:xxxx Solicited-Node Address ff05:0:0:0:0:0:1:3 All-dhcp-servers (site-local scope) Slide 48 Laurent Toutain Filière 2

126 Addresses Anycast In the same addressing space as unicast No way to distiguish them Two anycast families: Same prefix on Internet same a IPv4 anycast for DNS or 6to4 Same address on the link Must avoid DAD Some IID values are reserved All IID bits to 1 except last byte Only 0x7E Mobile Home Agent May more addresses with Wireless Sensor Network? Temperature, presence Prefix Interface ID Slide 49 Laurent Toutain Filière 2

127 Addresses Anycast on prefix : Example from Renater #traceroute6 2001:500:2f::f traceroute6 to 2001:500:2f::f (2001:500:2f::f) from 2001:660:7301:3103:223:6cff: 30 hops max, 12 byte packets :660:7301:3103:: ms ms ms :660:7301:3036:: ms ms ms 3 vl856-gi9-9-rennes-rtr-021.noc.renater.fr ms ms ms 4 te4-1-caen-rtr-021.noc.renater.fr ms 5.1 ms ms 5 te4-1-rouen-rtr-021.noc.renater.fr ms ms ms 6 te paris1-rtr-001.noc.renater.fr ms ms ms 7 F-root-server.sfinx.tm.fr ms ms ms 8 f.root-servers.net ms ms ms Slide 50 Laurent Toutain Filière 2

128 Addresses Anycast on prefix : Example from HawaÏ #traceroute6 2001:500:2f::f traceroute6 to 2001:500:2f::f (2001:500:2f::f) from 2001:1888:0:1:2d0:b7ff:fe7d: 64 hops max, 12 byte packets 1 apapane-fe ms ms ms 2 r1.mdtnj.ipv6.att.net ms ms ms 3 bbr01-p1-0.nwrk01.occaid.net ms ms ms 4 bbr01-g1-0.asbn01.occaid.net ms ms ms 5 bbr01-g1-0.atln01.occaid.net ms ms ms 6 bbr01-p1-0.dlls01.occaid.net ms ms ms 7 dcr01-p1-5.lsan01.occaid.net ms ms ms 8 bbr01-g0-2.irvn01.occaid.net ms ms ms 9 dcr01-g1-2.psdn01.occaid.net ms ms ms 10 bbr01-f1-5.snfc02.occaid.net ms ms ms 11 exit.sf-guest.sfo2.isc.org ms ms ms 12 f.root-servers.net ms ms ms Slide 51 Laurent Toutain Filière 2

129 Addresses OnLink Anycast: Example α::1 α::fff1 α::2 α::fff1 α::3 α::fff1 RFC 2526 Anycast values, all bit of IID set to 1 except last 8 bits: 0x7F: reserved 0x7E: Home Agent (Mobile IP) 0x00 to 0x7D: reserved Slide 52 Laurent Toutain Filière 2

130 Addresses OnLink Anycast: Example α::1 α::fff1 α::2 α::fff1 α::3 α::fff1 RFC 2526 Anycast values, all bit of IID set to 1 except last 8 bits: 0x7F: reserved 0x7E: Home Agent (Mobile IP) 0x00 to 0x7D: reserved Slide 52 Laurent Toutain Filière 2

131 Addresses OnLink Anycast: Example α::1 α::fff1 α::2 α::fff1 α::3 α::fff1 MAC1 MAC2 MAC3 RFC 2526 Anycast values, all bit of IID set to 1 except last 8 bits: 0x7F: reserved 0x7E: Home Agent (Mobile IP) 0x00 to 0x7D: reserved Slide 52 Laurent Toutain Filière 2

132 Addresses OnLink Anycast: Example α::1 α::fff1 α::2 α::fff1 α::3 α::fff1 α::fff1 MAC2 RFC 2526 Anycast values, all bit of IID set to 1 except last 8 bits: 0x7F: reserved 0x7E: Home Agent (Mobile IP) 0x00 to 0x7D: reserved Slide 52 Laurent Toutain Filière 2

133 Addresses OnLink Anycast: Example α::1 α::fff1 α::2 α::fff1 α::3 α::fff1 α::fff1 MAC2 RFC 2526 Anycast values, all bit of IID set to 1 except last 8 bits: 0x7F: reserved 0x7E: Home Agent (Mobile IP) 0x00 to 0x7D: reserved Slide 52 Laurent Toutain Filière 2

134 Addresses Anycast on prefix : Example from HawaÏ # ifconfig en3 en3: flags=8863<up,broadcast,smart,running,simplex,multicast> mtu 1500 inet6 fe80::223:6cff:fe97:679c inet netmask 0xffffff00 broadcast inet6 2001:660:7301:3103:223:65ff:fe97:679c prefixlen 64 autoconf ether 00:23:6c:97:67:9c media: autoselect status: active supported media: autoselect # ifconfig en3 inet6 2001:660:7301:3103:FF::FF anycast # ifconfig en3 en3: flags=8863<up,broadcast,smart,running,simplex,multicast> mtu 1500 inet6 fe80::223:6cff:fe97:679c inet netmask 0xffffff00 broadcast inet6 2001:660:7301:3103:223:65ff:fe97:679c prefixlen 64 autoconf inet6 2001:660:7301:3103:ff::ff prefixlen 64 anycast ether 00:23:6c:97:67:9c media: autoselect status: active supported media: autoselect Slide 53 Laurent Toutain Filière 2

135 IPv6 Packets Slide 54 Laurent Toutain Filière 2

136 IPv6 Header Slide 55 Laurent Toutain Filière 2

137 IPv6 Packet : Simpler Protocol IPv6 Header Definition Goal : IPv6 header follows the same IPv4 principle: fixed address size... but 4 times larger alignment on 64 bit words (instead of 32) Features not used in IPv4 are removed Minimum MTU 1280 Bytes If L2 cannot carry 1280 Bytes, then add an adaptation layer such as AAL5 for ATM or 6LoWPAN (RFC 4944 ) for IEEE Forward packet as fast as possible Less processing in routers More features at both ends Slide 56 Laurent Toutain Filière 2

138 IPv4 Header Protocol IPv6 Header Ver. IHL DiffServ Packet Length Identifier flag Offset TTL Protocol Checksum Source Address Destination Address Options Layer 4 Slide 57 Laurent Toutain Filière 2

139 IPv4 Header Protocol IPv6 Header Ver. IHL DiffServ Packet Length Identifier flag Offset TTL Protocol Checksum Source Address Destination Address Options Layer 4 Slide 57 Laurent Toutain Filière 2

140 IPv4 Header Protocol IPv6 Header Ver. DiffServ Packet Length Identifier flag Offset TTL Protocol Checksum Source Address Destination Address Layer 4 Slide 57 Laurent Toutain Filière 2

141 IPv4 Header Protocol IPv6 Header Ver. DiffServ Packet Length TTL Protocol Checksum Source Address Destination Address Layer 4 Slide 57 Laurent Toutain Filière 2

142 IPv4 Header Protocol IPv6 Header Ver. DiffServ Packet Length TTL Protocol Source Address Destination Address Layer 4 Slide 57 Laurent Toutain Filière 2

143 IPv4 Header Protocol IPv6 Header DiffServ Packet Length TTL Protocol Source Address Destination Address Layer 4 Slide 57 Laurent Toutain Filière 2

144 IPv4 Header Protocol IPv6 Header DiffServ Packet Length TTL Protocol Source Address Destination Address Layer 4 Slide 57 Laurent Toutain Filière 2

145 IPv4 Header Protocol IPv6 Header DiffServ Payload Length TTL Protocol Source Address Destination Address Layer 4 Slide 57 Laurent Toutain Filière 2

146 IPv4 Header Protocol IPv6 Header DiffServ Payload Length Next header TTL Source Address Destination Address Layer 4Layer or extensions 4 Slide 57 Laurent Toutain Filière 2

147 IPv4 Header Protocol IPv6 Header DiffServ Payload Length Next header Hop Limit Source Address Destination Address Layer 4Layer or extensions 4 Slide 57 Laurent Toutain Filière 2

148 IPv4 Header Protocol IPv6 Header DiffServ Payload Length Next header Hop Limit Source Address Destination Address Layer 4Layer or extensions 4 Slide 57 Laurent Toutain Filière 2

149 IPv6 Header Protocol IPv6 Header DiffServ Payload Length Next header Flow Label Hop Limit Source Address Destination Address Layer 4 or extensions Slide 57 Laurent Toutain Filière 2

150 Extension Superiority Protocol IPv6 Header A R1 IPv4: A -> R1 option: -> B B Slide 58 Laurent Toutain Filière 2

151 Extension Superiority Protocol IPv6 Header special treatment special treatment special treatment A R1 IPv4: A -> R1 option: -> B B Slide 58 Laurent Toutain Filière 2

152 Extension Superiority Protocol IPv6 Header A R1 IPv4: A -> B option: R1 -> B Slide 58 Laurent Toutain Filière 2

153 Extension Superiority Protocol IPv6 Header A R1 IPv4: A -> B option: R1 -> B Slide 58 Laurent Toutain Filière 2

154 Extension Superiority Protocol IPv6 Header A R1 IPv6: A -> R1 Extension: -> B B Slide 58 Laurent Toutain Filière 2

155 Extension Superiority Protocol IPv6 Header A R1 IPv6: A -> R1 Extension: -> B B Slide 58 Laurent Toutain Filière 2

156 Extension Superiority Protocol IPv6 Header A R1 R1 is the destination, packet is sent to Routing Extension layer which swaps the addresses and forwards the packet. B Slide 58 Laurent Toutain Filière 2

157 Extension Superiority Protocol IPv6 Header A R1 IPv6: A -> B Extension: R1 -> B Slide 58 Laurent Toutain Filière 2

158 Extension Superiority Protocol IPv6 Header A R1 B is the destination, packet is sent to Routing Extension layer which sends it to upper layer protocol. ULP will see a packet from A to B. IPv6: A -> B Extension: R1 -> B Slide 58 Laurent Toutain Filière 2

159 Extension Order is Important Protocol IPv6 Header IPv6 Hop by Hop Destination Routing Fragmentation Authentication Security Destination Processed by every router Processed by routers listed in Routing extension Processed by routers listed in Routing extension Processed by the destination Processed by the destination Processed by the destination Processed by the destination 6, 11,... ULP Processed by the destination Slide 59 Laurent Toutain Filière 2

160 Extension Order is Important Protocol IPv6 Header IPv6 Hop by Hop Destination Routing Fragmentation Authentication Security Destination Processed by every router Processed by routers listed in Routing extension Processed by routers listed in Routing extension Costly to reassemble in each router listed Authentication can only be made on full packet Processed by the destination Destination information will be protected 6, 11,... ULP Processed by the destination Slide 59 Laurent Toutain Filière 2

161 Extensions Generic Format Protocol IPv6 Header Next Header Ext. Length Extension Data (options) Next Header: Save values as in IPv6 packets Length: numbers 64-bit long words for variable length extensions (0 for fixed length fragmentation extension) Data: options (Hop by hop, Destination) or specific format Slide 60 Laurent Toutain Filière 2

162 Hop by Hop (NH=0) Protocol IPv6 Header Always first position Composed of options: Pad1 Padn Router Alert CALIPSO Quick Start Jumbogram 0 1 lgth Value 7 lgth. See RFC lgth. See RFC Datagram Length Slide 61 Laurent Toutain Filière 2

163 Hop by Hop (NH=0) Protocol IPv6 Header Always first position Composed of options: Pad1 Padn Router Alert 0 1 lgth Value CALIPSO Quick Start Jumbogram 7 lgth. See RFC 5570 When value unknown: 00: skip, 01: discard, 10: discard + ICMP, 11: Discard + ICMP (if not multicast) 38 lgth. See RFC Datagram Length UU C VVVVV Slide 61 Laurent Toutain Filière 2

164 Hop by Hop (NH=0) Protocol IPv6 Header Always first position Composed of options: Pad1 Padn Router Alert CALIPSO Quick Start Jumbogram 0 1 lgth Value 7 lgth. See RFC 5570 Option data may be changed: 0: no, 38 lgth. See RFC : yes Datagram Length UU C VVVVV Slide 61 Laurent Toutain Filière 2

165 Hop by Hop (NH=0) Protocol IPv6 Header Always first position Composed of options: Pad1 0 Length in Bytes Padn Router Alert CALIPSO Quick Start Jumbogram 1 lgth Value 7 lgth. See RFC lgth. See RFC Datagram Length UU C VVVVV Slide 61 Laurent Toutain Filière 2

166 Hop by Hop (NH=0) Protocol IPv6 Header Always first position Composed of options: Pad1 Padn Router Alert CALIPSO 0 1 lgth Value 7 lgth. See RFC 5570 Quick Start Jumbogram 38 lgth. See RFC 4782 Possible options: - 0: Multicast 194 Listener Discovery 4 (RFC 2710 Datagram ) Length - 1: RSVP (RFC 2711 ) - 2: Active Networks (RFC 2711 ) - 4 to UU 35: CAggregated VVVVVReservation Nesting Level (RFC 3175 ) - 36 to 67: QoS NSLP Aggregation Levels 0-31 (draft-ietf-nsis-qos-nslp-18.txt) Slide 61 Laurent Toutain Filière 2

167 Destination (NH=60) Protocol IPv6 Header Tun. Encap. Limit Home Address (MIP) 4 1 Limit Home Address Tunnel Encapsultation Limit (RFC 2473 ): the maximum number of nested encapsulations of a packet. When it reaches 0, the packet is discard and an ICMPv6 message is sent. Home Address (RFC 3775 ): Contains the Home Address of the sender (IPv6 header contains the Care-of Address). Slide 62 Laurent Toutain Filière 2

168 Routing (NH=43) Protocol IPv6 Header Next Header Ext. Length=2 Routing Type=2 Seg. Left=1 Reserved Home Address Slide 63 Laurent Toutain Filière 2

169 Fragmentation (NH=44) Protocol IPv6 Header Next Header Ext. Length=2 Offset 0 0 M Identification Compared to IPv4, it is equivalent to DF=1 A Router never fragments packets but sends an ICMPv6 message ( Packet Too Big ) with the expected size The Sender either uses the fragmentation extension or adapts TCP segments Slide 64 Laurent Toutain Filière 2

170 ICMPv6 Slide 65 Laurent Toutain Filière 2

171 ICMPv6 Protocol IPv6 Header ICMPv6 is different from ICMP for IPv4 (RFC 4443 ) IPv6 (or extension): 58 Features are extended and better organized Never filter ICMPv6 messages blindly, be careful to what you do (see RFC 4890 ) Format : Type Code Checksum Options Precision type code nature of the message ICMPv6 code specifies the cause of the message ICMPv6 mandatory checksum used to verify the integrity of ICMP packet Slide 66 Laurent Toutain Filière 2

172 ICMPv6 : Two Functions Protocol IPv6 Header Error occurs during forwarding (value < 128) 1 Destination Unreachable 2 Packet Too Big 3 Time Exceeded 4 Parameter Problem Management Applications (value > 128) 128 Echo Request 129 Echo Reply 130 Group Membership Query 131 Group Membership Report 132 Group Membership Reduction 133 Router Solicitation 134 Router Advertissement 135 Neighbor Solicitation 136 Neighbor Advertissement 137 Redirect Slide 67 Laurent Toutain Filière 2

173 IPv6 Neighbor Discovery Slide 68 Laurent Toutain Filière 2

174 Neighbor Discovery Slide 69 Laurent Toutain Filière 2

175 Neighbor Discovery (RFC 4861 ) Associated Protocols & Mechanisms IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to: determine link-layer addresses of their neighbors IPv4 : ARP Address auto-configuration Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit Only for hosts! IPv4 : impossible, mandate a centralized DHCP server Duplicate Address Detection (DAD) IPv4 : gratuitous ARP maintain neighbors reachability information (NUD) Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM) Protocol packets are transported/encapsulated by/in ICMPv6 messages: Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137 Slide 70 Laurent Toutain Filière 2

176 Neighbor Discovery (RFC 4861 ) Associated Protocols & Mechanisms IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to: determine link-layer addresses of their neighbors IPv4 : ARP Address auto-configuration Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit Only for hosts! IPv4 : impossible, mandate a centralized DHCP server Duplicate Address Detection (DAD) IPv4 : gratuitous ARP maintain neighbors reachability information (NUD) Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM) Protocol packets are transported/encapsulated by/in ICMPv6 messages: Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137 Slide 70 Laurent Toutain Filière 2

177 Neighbor Discovery (RFC 4861 ) Associated Protocols & Mechanisms IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to: determine link-layer addresses of their neighbors IPv4 : ARP Address auto-configuration Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit Only for hosts! IPv4 : impossible, mandate a centralized DHCP server Duplicate Address Detection (DAD) IPv4 : gratuitous ARP maintain neighbors reachability information (NUD) Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM) Protocol packets are transported/encapsulated by/in ICMPv6 messages: Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137 Slide 70 Laurent Toutain Filière 2

178 Neighbor Discovery (RFC 4861 ) Associated Protocols & Mechanisms IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to: determine link-layer addresses of their neighbors IPv4 : ARP Address auto-configuration Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit Only for hosts! IPv4 : impossible, mandate a centralized DHCP server Duplicate Address Detection (DAD) IPv4 : gratuitous ARP maintain neighbors reachability information (NUD) Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM) Protocol packets are transported/encapsulated by/in ICMPv6 messages: Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137 Slide 70 Laurent Toutain Filière 2

179 Neighbor Discovery (RFC 4861 ) Associated Protocols & Mechanisms IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to: determine link-layer addresses of their neighbors IPv4 : ARP Address auto-configuration Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit Only for hosts! IPv4 : impossible, mandate a centralized DHCP server Duplicate Address Detection (DAD) IPv4 : gratuitous ARP maintain neighbors reachability information (NUD) Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM) Protocol packets are transported/encapsulated by/in ICMPv6 messages: Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137 Slide 70 Laurent Toutain Filière 2

180 Neighbor Discovery (RFC 4861 ) Associated Protocols & Mechanisms IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to: determine link-layer addresses of their neighbors IPv4 : ARP Address auto-configuration Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit Only for hosts! IPv4 : impossible, mandate a centralized DHCP server Duplicate Address Detection (DAD) IPv4 : gratuitous ARP maintain neighbors reachability information (NUD) Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM) Protocol packets are transported/encapsulated by/in ICMPv6 messages: Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137 Slide 70 Laurent Toutain Filière 2

181 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms Slide 71 Laurent Toutain Filière 2

182 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=0 fe80::iid1 α::iid1/64 Time t=0: Router is configured with a link-local address and manually configured with a global address (α::/64 is given by the network administrator) Slide 71 Laurent Toutain Filière 2

183 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=1 : Node Attachment fe80::iid1 α::iid1/64 fe80::iid2 Host constructs its link-local address based on the interface MAC address Slide 71 Laurent Toutain Filière 2

184 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=2 fe80::iid1 α::iid1/64 fe80::iid2 ::/0 -> solicited (fe80:iid2) : NS (who has fe80::iid2?) Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own address (tentative): no answers means no other host has this value). Slide 71 Laurent Toutain Filière 2

185 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=3 fe80::iid1 α::iid1/64 fe80::iid2 fe80::iid2 -> ff02::2 : RS Host sends a Router Solicitation to the Link-Local All-Routers Multicast group using the newly link-local configured address Slide 71 Laurent Toutain Filière 2

186 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=4 fe80::iid1 α::iid1/64 fe80::iid1 -> fe80::iid2 RA (α::/64, DHCPv6, MTU=1500, HL=64, bit M=1) fe80::iid2 Router directly answers the host using Link-local addresses. The answer may contain a/several prefix(es). Router can also mandate hosts to use DHCPv6 to obtain prefixes (statefull auto-configuration) and/or other parameters (DNS servers... ): Bit M = 1. Slide 71 Laurent Toutain Filière 2

187 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=5 fe80::iid1 α::iid1/64 fe80::iid2 ::/0 -> solicited (α:iid2) : NS (who has α::iid2?) Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own global address: no answers means no other host as this value). Slide 71 Laurent Toutain Filière 2

188 Stateless Auto-configuration: Basic Principles Associated Protocols & Mechanisms t=6 fe80::iid1 α::iid1/64 fe80::iid2 α::iid2/64 Host sets the global address and takes answering router as the default router. Slide 71 Laurent Toutain Filière 2

189 Optimistic DAD RFC 4429 Associated Protocols & Mechanisms DAD is a long process: Send NS Timeout May be repeated For Link-Local and Global addresses Mobile nodes are penalized Discover Network Authentication DAD, RS/RA, DAD odad allows a host to use the address before DAD If no answer to DAD then the address becomes a valid one Slide 72 Laurent Toutain Filière 2

190 Non-Broadcast Multiple Access (NBMA) Networks Slide 73 Laurent Toutain Filière 2

191 NBMA Networks Associated Protocols & Mechanisms NDP can handle efficiently NBMA networks Every host can be joined separately, but no broadcast Telephony network, ATM... Off-link bit is RA by the router to inform of a NBMA network 3G, Sensor Networks (broadcast expensive) All packets are sent to to the router, which will forward to destination No NS ICMP Redirect can be used. Slide 74 Laurent Toutain Filière 2

192 Off Link example Associated Protocols & Mechanisms fe80::iid2 -> ff02::2 : RS Slide 75 Laurent Toutain Filière 2

193 Off Link example Associated Protocols & Mechanisms RA (α::/64, DHCPv6, OffLink, MTU=1500, HL=64, bit M=1) Slide 75 Laurent Toutain Filière 2

194 Off Link example Associated Protocols & Mechanisms α::iid2 -> α::iid3 : DATA Slide 75 Laurent Toutain Filière 2

195 Off Link example Associated Protocols & Mechanisms α::iid2 -> α::iid3 : DATA α::iid2 -> α::iid3 : DATA Slide 75 Laurent Toutain Filière 2

196 Off Link example Optional Associated Protocols & Mechanisms REDIRECT α::iid3 : MAC3 α::iid2 -> α::iid3 : DATA α::iid2 -> α::iid3 : DATA Slide 75 Laurent Toutain Filière 2

197 Off Link example Optional Associated Protocols & Mechanisms REDIRECT α::iid3 : MAC3 α::iid2 -> α::iid3 : DATA α::iid2 -> α::iid3 : DATA α::iid2 -> α::iid3 : DATA Slide 75 Laurent Toutain Filière 2

198 Examples Slide 76 Laurent Toutain Filière 2

199 Router Configuration Example Associated Protocols & Mechanisms interface Vlan5 description reseau C5 ip address ipv6 address 2001:660:7301:1::/64 eui-64 ipv6 enable ipv6 nd ra-interval 10 ipv6 nd prefix-advertisement 2001:660:7301:1::/ \ onlink autoconfig Slide 77 Laurent Toutain Filière 2

200 Router Configuration Example Associated Protocols & Mechanisms interface Vlan5 description reseau C5 ip address ipv6 address 2001:660:7301:1::/64 eui-64 ipv6 enable ipv6 nd ra-interval 10 ipv6 nd prefix-advertisement 2001:660:7301:1::/ \ onlink autoconfig Slide 77 Laurent Toutain Filière 2

201 Router Configuration Example Associated Protocols & Mechanisms interface Vlan5 description reseau C5 ip address ipv6 address 2001:660:7301:1::/64 eui-64 ipv6 enable ipv6 nd ra-interval 10 ipv6 nd prefix-advertisement 2001:660:7301:1::/ \ onlink autoconfig Slide 77 Laurent Toutain Filière 2

202 Router Configuration Example Associated Protocols & Mechanisms interface Vlan5 description reseau C5 ip address ipv6 address 2001:660:7301:1::/64 eui-64 ipv6 enable ipv6 nd ra-interval 10 ipv6 nd prefix-advertisement 2001:660:7301:1::/ \ onlink autoconfig Slide 77 Laurent Toutain Filière 2

203 Stateless DHCPv6 (RFC 3736 ): With static parameters Associated Protocols & Mechanisms fe80::iid1 α::iid1/64 fe80::iid2 -> ff02::1:2 Information-Request fe80::iid2 α::iid2/64 Host needs only static parameters (DNS, NTP,...). It sends an Information-Request message to All DHCP Agents multicast group. The scope of this address is link-local. Slide 78 Laurent Toutain Filière 2

204 Stateless DHCPv6 (RFC 3736 ): With static parameters Associated Protocols & Mechanisms γ :: IID > ff 05 :: 1 : 3 : relay-frw[information-request] fe80::iid1 α::iid1/64 fe80::iid2 α::iid2/64 A relay (generally the router) encapsulates the request into a Forward message and sends it either to the All DHCP Servers site-local multicast group or to a list of pre-defined unicast addresses. Slide 78 Laurent Toutain Filière 2

205 Stateless DHCPv6 (RFC 3736 ): With static parameters Associated Protocols & Mechanisms ɛ :: IID > γ :: IID : relay-reply[parameters, DNS,...] fe80::iid1 α::iid1/64 fe80::iid2 α::iid2/64 The server responds to the relay Slide 78 Laurent Toutain Filière 2

206 Stateless DHCPv6 (RFC 3736 ): With static parameters Associated Protocols & Mechanisms fe80::iid1 α::iid1/64 fe80::iid1 -> fe80::iid2 parameters: DNS,... fe80::iid2 α::iid2/64 The router extracts information from the message to create answer and sends information to the host Slide 78 Laurent Toutain Filière 2

207 Stateless DHCPv6 (RFC 3736 ): With static parameters Associated Protocols & Mechanisms DNS fe80::iid1 α::iid1/64 fe80::iid2 α::iid2/64 Host is now configured to resolve domain names through the DNS Slide 78 Laurent Toutain Filière 2

208 DHCPv6 Slide 79 Laurent Toutain Filière 2

209 DHCPv6 : Stateful Auto-Configuration Associated Protocols & Mechanisms fe80::iid1 α::iid1/64 fe80::iid1 -> fe80::iid2 RA (bit M=1) fe80::iid2 α::iid2/64 Router responds to RS with a RA message with bit M set to 1. Host should request its IPv6 address from a DHCPv6 server. Slide 80 Laurent Toutain Filière 2

210 DHCPv6 Full Features Associated Protocols & Mechanisms For address or prefix allocation information form only one DHCPv6 must be taken into account. Four message exchange : Solicit : send by clients to locate servers Advertise : send by servers to indicate services available Request : send by client to a specific server (could be through relays) Reply : send by server with parameters requested Addresses or Prefixes are allocated for certain period of time Renew : Send by the client tells the server to extend lifetime Rebind : If no answer from renew, the client use rebind to extend lifetime of addresses and update other configuration parameters Reconfigure : Server informs availability of new or update information. Clients can send renew or Information-request Release : Send by the client tells the server the client does not need any longer addresses or prefixes. Decline : to inform server that allocated addresses are already in use on the link Slide 81 Laurent Toutain Filière 2

211 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Slide 82 Laurent Toutain Filière 2

212 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Relay-Forward {Solicit} Solicit Slide 82 Laurent Toutain Filière 2

213 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Relay-Reply {Advertise} Advertise Slide 82 Laurent Toutain Filière 2

214 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Relay-forward{Request} Request S1 Slide 82 Laurent Toutain Filière 2

215 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Relay-Reply {Reply} Reply Slide 82 Laurent Toutain Filière 2

216 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Relay-forward{Renew} Renew S1 Relay-Reply {Reply} Reply Slide 82 Laurent Toutain Filière 2

217 DHCPv6 Scenarii Associated Protocols & Mechanisms S2 S1 R C Relay-forward{Renew} Renew S1 Relay-Reply {Reply} Relay-forward{Release} Reply Release S1 Relay-Reply {Reply} Reply Slide 82 Laurent Toutain Filière 2

218 Slide 83 Laurent Toutain Filière 2

219 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

220 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

221 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

222 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

223 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

224 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

225 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

226 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

227 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

228 Wireless Sensor Network IETF Working Groups Allow end-to-end communication. Not the main feature. L2 Independant Reduce interconnection costs IPv6,... but: IPv6 packet are too big Compress them IPv6 is not energy aware Reduce packet size and control plane traffic IPv6 link is not well defined Neighbor Discovery Protocol must be improved IPv6 routing protocols (even Manet) are too expensive Define a new routing protocol for LoWPAN IPv6 End-to-end is insecure Define standard ALG to relay messages, based on REST Slide 84 Laurent Toutain Filière 2

229 IPv6 too big IETF Working Groups 6LoWPAN and L2 frames are too small. Discr. IPHC 3b 13b Discr. 1 With IPv6 header Compression Router Advertissement HC values ICMPv6 < 67 variable 16 No Compression Router Advertissement IPv6 ICMPv6 < Frame Control 2 Sequence Number 1 Addressing Field 4 to 20 FCS 2 preamble SDFLen. 0 to Slide 85 Laurent Toutain Filière 2

230 Discriminator values IETF Working Groups 6LoWPAN Uncompressed IPv Compressed IPv6 (obsolete) Broadcast Used to suppress routing loops 01 1 Compressed header (new version) 10 xxxxxx MESH Kind of tunnel to carry source and destination addresses xxx Fragmentation (first)? xxx Fragmentation (subsequent) Discriminator cannot be used to identify Zigbee traffic. Slide 86 Laurent Toutain Filière 2

231 2 models IETF Working Groups 6LoWPAN Mesh-Under L2 allows relaying between nodes From IPv6, network appears as a link 6LoWPAN adds two Dispatch values (Mesh and Broadcast) Route-Over Routing (L3) is running on some nodes Change for traditional IPv6 link model (no routers) Terminology: 6LBR: Border Router (between LoWPAN and Internet) 6LR: Node with routing protocol 6LN: Node without routing/forwarding capabilities Slide 87 Laurent Toutain Filière 2

232 6LoWPAN IETF Working Groups 6LoWPAN 1 2 Slide 88 Laurent Toutain Filière 2

233 6LoWPAN IETF Working Groups 6LoWPAN 1 2 Star Slide 88 Laurent Toutain Filière 2

234 6LoWPAN IETF Working Groups 6LoWPAN 5 6 Mesh Under Slide 88 Laurent Toutain Filière 2 4

235 6LoWPAN IETF Working Groups 6LoWPAN 5 6 Mesh Under IPv Slide 88 Laurent Toutain Filière 2 4

236 6LoWPAN IETF Working Groups 6LoWPAN 5 6 Mesh Under IPv6 6LP Slide 88 Laurent Toutain Filière 2 4

237 6LoWPAN IETF Working Groups 6LoWPAN 5 L2 Mesh 6 Mesh Under IPv6 6LP Slide 88 Laurent Toutain Filière 2 4

238 6LoWPAN IETF Working Groups 6LoWPAN 5 L2 Mesh 6 Mesh Under IPv6 6LP 1 2 L2 Mesh L2 Mesh 7 6LP IPv Slide 88 Laurent Toutain Filière 2

239 6LoWPAN IETF Working Groups 6LoWPAN 5 L2 Mesh 6 Mesh Under IPv6 6LP L2 Mesh L2 Mesh Mesh Under: L2 is viewed as a link (single prefix) - Lot of Broadcasts (high energy consumption) - How to build bridging table 4? (not IETF business) Slide 88 Laurent Toutain Filière 2 6LP IPv6

240 Example : Simple AODV (LOAD) IETF Working Groups 6LoWPAN s Slide 89 Laurent Toutain Filière 2

241 Example : Simple AODV (LOAD) IETF Working Groups 6LoWPAN s s? Rreq Rreq s? Slide 89 Laurent Toutain Filière 2

242 Example : Simple AODV (LOAD) IETF Working Groups 6LoWPAN s s? s? Rreq Rreq s? s? Slide 89 Laurent Toutain Filière 2

243 Example : Simple AODV (LOAD) IETF Working Groups 6LoWPAN s s? s? Rreq Rreq s? Rreq s? s? s? Slide 89 Laurent Toutain Filière 2

244 Example : Simple AODV (LOAD) IETF Working Groups 6LoWPAN s s? Rreq s? s? Rreq Rreq Rreq s? Rreq s? s? s? s? s? Slide 89 Laurent Toutain Filière 2

245 Example : Simple AODV (LOAD) IETF Working Groups 6LoWPAN s Rresp Rresp Rresp Rresp Slide 89 Laurent Toutain Filière 2

246 6LoWPAN: broadcast IETF Working Groups 6LoWPAN 5 6 Mesh Under IPv6 ( )6LP Slide 90 Laurent Toutain Filière 2

247 6LoWPAN: broadcast IETF Working Groups 6LoWPAN IPv6 ( )6LP 5 Broad IPv Broad IPv Mesh Under 7 Broad IPv Slide 90 Laurent Toutain Filière 2

248 6LoWPAN: broadcast IETF Working Groups 6LoWPAN 5 Broad IPv Broad IPv Broad IPv Broad IPv Mesh Under IPv6 ( )6LP Broad IPv Broad IPv6 Broad IPv6 7 Broad IPv Broad IPv Broad IPv Slide 90 Laurent Toutain Filière 2

249 6LoWPAN: Route Over IETF Working Groups 6LoWPAN Slide 91 Laurent Toutain Filière 2 4

250 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv Slide 91 Laurent Toutain Filière 2 4

251 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 6LP Slide 91 Laurent Toutain Filière 2 4

252 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP Slide 91 Laurent Toutain Filière 2 4

253 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP 1 7 6LP Slide 91 Laurent Toutain Filière 2 4

254 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP 1 7 6LP Slide 91 Laurent Toutain Filière 2 4

255 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP 1 7 6LP 6LP Slide 91 Laurent Toutain Filière 2 4

256 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP 1 7 6LP 6LP Slide 91 Laurent Toutain Filière 2 4

257 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP 1 7 6LP 6LP 1 2 IPv6 IPv6 6LP 7 IPv LP 6LP 4 3 Slide 91 Laurent Toutain Filière 2

258 6LoWPAN: Route Over IETF Working Groups 6LoWPAN 5 6 IPv6 IPv6 6LP 1 7 6LP 1 6LP 2 IPv6 Route Over: ad-hoc network (addresses not prefixes) - May avoid boradcast 6LP 6LP - Routing protocol (IETF scope) 4 RPL IPv LP 7 IPv6 3 Slide 91 Laurent Toutain Filière 2

259 6LoWPAN IETF Working Groups 6LoWPAN 6LoWPAN (RFC4944) or draft: Compression of the IPv6 header 011 TF NH HLIM CID SAC SAM M DAC DAM Header fields... Create contexts for well-known prefixes Slide 92 Laurent Toutain Filière 2

260 Bitmap IETF Working Groups 6LoWPAN TF: DiffServ Field (DSCP: 6 bits), the Explicit Congestion Notification (ECN: 2 bits) and the flow label (20 bits) NH: 0 sent in in Header field, 1 L4 Dispatch after Header (allow L4 compression) HLIM: well know values CID: Add a context to allow 16 source and destination prefixes Slide 93 Laurent Toutain Filière 2

261 SAC and SAM: Source Address Compression IETF Working Groups 6LoWPAN SAC \SAM IID 0: LL 1: Global Address is send completely (Link Local and Global) Unspecified address (::/0 (fully elided)) 64 first prefix bits are elided, IID is fully sent 112 first prefix bits are elided, last 16 IID bits are sent prefix is FE80::/64 prefix is FE80::0:ff:fe00: /112 prefix is given by the context prefix is given by the context, IID starts with 0000:00ff:fe00: and 16 bits inline 128 are elided prefix is FE80::/64 and IID is taken from L2 source address. prefix is given by the contect and IID is taken from L2 source address. Slide 94 Laurent Toutain Filière 2

262 M, DAC and DAM: Dest. Address Compression IETF Working Groups 6LoWPAN M-DAC \DAM 00 Link Local 01 Global Address is send completely (Link Local and Global) reserved prefix is FE80::/64 prefix is FE80::0:ff:fe00: /112 prefix is given by the context prefix is given by the context, IID starts with 0000:00ff:fe00: and 16 bits inline prefix is FE80::/64 and IID is taken from L2 source address. prefix is given by the contect and IID is taken from L2 source address. 10 local Multicast 11 Global Multicast Address is send completely 48 bits are sent. They are used for large scale multicast as defined in RFC Context value contains the Rendezvous Point address 48 bits are sent in-line and are spread in a multicast address the following way FFXX::00XX:XXXX: XXXX 32 bits are sent in-line and are spread in a multicast address the following way FFXX::00XX:XXXX reserved reserved reserved 8 bits are sent inline and are spread in a multicast address the following way FF02::00XX Slide 95 Laurent Toutain Filière 2

263 Example: Compress IETF Working Groups 6LoWPAN 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

264 Example: Compress IETF Working Groups 6LoWPAN version 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

265 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

266 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS Length 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

267 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

268 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

269 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address 011 TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

270 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data 011 TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 96 Laurent Toutain Filière 2

271 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data TF NH HLIM CID SAC SAM M DAC DAM E0 Header fields... Slide 96 Laurent Toutain Filière 2

272 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data TF NH HLIM CID SAC SAM M DAC DAM E0 3A Header fields... 0 Slide 96 Laurent Toutain Filière 2

273 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data TF NH HLIM CID SAC SAM M DAC DAM E0 3A Header fields Slide 96 Laurent Toutain Filière 2

274 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data Header E0 fields. 3A TF NH HLIM CID SAC SAM M DAC DAM Slide 96 Laurent Toutain Filière 2

275 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data Header E0 fields. 3A TF NH HLIM CID SAC SAM M DAC DAM Slide 96 Laurent Toutain Filière 2

276 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data TF NH 0 HLIM 11 CID 0 SAC 0 11 SAM 1M DAC 0 DAM 11 Header E0 fields. 3A.. 02 Slide 96 Laurent Toutain Filière 2

277 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim 6 e a f f f e f f f e 2 f f c 0 a f f b a f f c 0 a d c c d a Source Address Dest. Address Data TF NH 0 HLIM 11 CID 0 SAC 0 11 SAM 1M DAC 0 DAM 11 Header E0 fields. 3A Bytes to 5 Bytes Slide 96 Laurent Toutain Filière 2

278 Example: Compress IETF Working Groups 6LoWPAN a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 97 Laurent Toutain Filière 2

279 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 97 Laurent Toutain Filière 2

280 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address TF NH HLIM CID SAC SAM M DAC DAM Header fields... Slide 97 Laurent Toutain Filière 2

281 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address TF NH HLIM CID SAC SAM M DAC DAM 06 Header fields... Slide 97 Laurent Toutain Filière 2

282 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address TF NH HLIM CID SAC SAM M DAC DAM 06 Header fields Slide 97 Laurent Toutain Filière 2

283 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address Header 06 fields TF NH HLIM CID SAC SAM M DAC DAM Slide 97 Laurent Toutain Filière 2

284 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address TF NH 0 HLIM 10 CID 0 SAC 1 00 SAM 0M DAC 1 DAM 00 Header 06 fields d f f f f e a 9 f 7 a c 2 a Slide 97 Laurent Toutain Filière 2

285 Example: Compress IETF Working Groups 6LoWPAN version Flow Label DS proto = ICMPv6 Length HLim a d f f f f e a 9 f 7 a c 2 a e b e a 5 9 f 5 3 b 1 a 5 e 5 a f 6 a a 0 3 e a a d f 5 f 5 f d 2 e f d d e e d d d 6 e 3 d 3 2 Source Address Dest. Address TF NH 0 HLIM 10 CID 0 SAC 1 00 SAM 0M DAC 1 DAM 00 Header 06 fields d f f f f e a 9 f 7 a c 2 a Bytes to 35 Bytes Slide 97 Laurent Toutain Filière 2

286 Neighbor Discovery Slide 98 Laurent Toutain Filière 2

287 Neighbor Discovery Protocol For LoWPAN IETF Working Groups 6LoWPAN Limitations: radio range is limited, all the nodes cannot talk directly. range change Bidirectional traffic cannot be always guaranteed. The link definition is not clear Energy consumption must be limited Implementation must be kept as simple as possible Slide 99 Laurent Toutain Filière 2

288 Neighbor Discovery Protocol For LoWPAN IETF Working Groups 6LoWPAN Two models: Mesh-Under model: L3 multicast address mapped into a L2 broadcast address. No change Route-Over networks NBMA: control done by a server. Multicast only allowed to discover neighbor routers: Once the address of a router is learned, the traffic will be send in unicast. No periodic RA NDP do not, by construction, cross routers since original: NDP for 6LoWPAN introduces the concept of Multi-Hop prefixes LL addresses are based on the EUI-64 unique: no need for DAD or NS Slide 100 Laurent Toutain Filière 2

289 NDP options IETF Working Groups 6LoWPAN 6LoWPAN uses RA, RS, NS and NA Only RS is sent in multicast: FF02::2 Standard and new options are used: SLLAO: Source Link-layer Address PIO: Prefix Information 6CO: 6LoWPAN Context Number ABRO: Announcing Border Router ARO: Address Registration If IID is based on MAC (or from DHCP): no DAD Currently there is no 6LoWPAN Compression for NDP messages. Slide 101 Laurent Toutain Filière 2

290 LL address IETF Working Groups 6LoWPAN IID 1 IID 2 Traditional NDP NS FE80 :: IID 2? NA FE80 :: IID 2 IID 2 IID 1 IID 2 FE80 :: IID 1 FE80 :: IID 2 Slide 102 Laurent Toutain Filière 2

291 LL address IETF Working Groups 6LoWPAN IID 1 IID 2 NDP for LoWPAN IID 1 IID 2 FE80 :: IID 1 FE80 :: IID 2 Slide 102 Laurent Toutain Filière 2

292 NDP for Global Addresses: Star IETF Working Groups 6LoWPAN 6LBR LL 1 6LR LL 2 Node LL 3 LL 2 FF 02 :: 2 RS (SLLAO) LL 1 LL 2 RA (SLLAO,PIO 6CO,ABRO) LL 2 LL 1 NS (SLLAO,ARO) LL 1 LL 2 NS (ARO) Slide 103 Laurent Toutain Filière 2

293 NDP for Global Addresses: Mesh IETF Working Groups 6LoWPAN 6LBR LL 1 6LR LL 2 Node LL 3 LL 2 FF 02 :: 2 RS (SLLAO) LL 1 LL 2 RA (SLLAO,PIO 6CO,ABRO) LL 2 LL 1 NS (SLLAO,ARO) LL 1 LL 2 NS (ARO) LL 2 FF 02 :: 2 RS (SLLAO) LL 1 LL 2 RA (SLLAO,PIO 6CO,ABRO) DAR DAC LL 2 LL 1 NS (SLLAO,ARO) LL 1 LL 2 NS (ARO) Slide 103 Laurent Toutain Filière 2

294 NDP for Global Addresses: Mesh IETF Working Groups 6LoWPAN 6LBR LL 1 6LR LL 2 Node LL 3 LL 2 FF 02 :: 2 RS (SLLAO) LL 1 LL 2 RA (SLLAO,PIO 6CO,ABRO) LL 2 LL 1 NS (SLLAO,ARO) LL 1 LL 2 NS (ARO) LL 2 FF 02 :: 2 RS (SLLAO) LL 1 LL 2 RA (SLLAO,PIO 6CO,ABRO) DAR DAC LL 2 LL 1 NS (SLLAO,ARO) LL 1 LL 2 NS (ARO) Slide 103 Laurent Toutain Filière 2

295 ISA 100 IETF Working Groups 6LoWPAN Slide 104 Laurent Toutain Filière 2

296 ISA 100 IETF Working Groups 6LoWPAN Transit Data network Slide 104 Laurent Toutain Filière 2

297 Backbone router IETF Working Groups 6LoWPAN Router Backbone BR1 BR2 BR3 Slide 105 Laurent Toutain Filière 2

298 Backbone router IETF Working Groups 6LoWPAN Router Backbone BR1 BR2 BR3 DAR NS (SLLAO,EARO) ARO + Trans. ID + Unique ID Slide 105 Laurent Toutain Filière 2

299 Backbone router IETF Working Groups 6LoWPAN DAD (EARO) Router Backbone BR1 BR2 BR3 Slide 105 Laurent Toutain Filière 2

300 Backbone router IETF Working Groups 6LoWPAN No response Router Backbone BR1 BR2 BR3 Slide 105 Laurent Toutain Filière 2

301 Backbone router IETF Working Groups 6LoWPAN Router Backbone BR1 p BR2 BR3 DAC Status=OK NA Slide 105 Laurent Toutain Filière 2

302 Backbone router IETF Working Groups 6LoWPAN Router Backbone BR1 p BR2 BR3 Slide 105 Laurent Toutain Filière 2

303 Backbone router IETF Working Groups 6LoWPAN DAD (EARO) Router Backbone BR1 p BR2 BR3 DAR NS sametid Slide 105 Laurent Toutain Filière 2

304 Backbone router IETF Working Groups 6LoWPAN NA bito=0 Router Backbone BR1 p BR2 BR3 Slide 105 Laurent Toutain Filière 2

305 Backbone router IETF Working Groups 6LoWPAN Router Backbone BR1 p BR2 s BR3 DAC Status=OK NA Slide 105 Laurent Toutain Filière 2

306 Backbone router IETF Working Groups 6LoWPAN Router Backbone BR1 p BR2 s BR3 Slide 105 Laurent Toutain Filière 2

307 Backbone router IETF Working Groups 6LoWPAN NS Router Backbone BR1 p BR2 s BR3 Slide 105 Laurent Toutain Filière 2

308 Backbone router IETF Working Groups 6LoWPAN NA NA Router BR2 Backbone BR1 p BR2 s BR3 Slide 105 Laurent Toutain Filière 2

309 Backbone router IETF Working Groups 6LoWPAN Router BR2 Backbone BR1 p BR2 s BR3 Slide 105 Laurent Toutain Filière 2

310 Backbone router IETF Working Groups 6LoWPAN Router BR2 Backbone BR1 p BR2 s BR3 Slide 105 Laurent Toutain Filière 2

311 Backbone router IETF Working Groups 6LoWPAN DAD (EARO) Router BR2 Backbone BR1 p BR2 s BR3 DAR NS TID++ Slide 105 Laurent Toutain Filière 2

312 Backbone router IETF Working Groups 6LoWPAN DAD (EARO) Router BR2 Backbone BR1 p BR2 s BR3 DAR NS TID++ Slide 105 Laurent Toutain Filière 2

313 Backbone router IETF Working Groups 6LoWPAN Router BR2 Backbone BR1 p BR2 s BR3 Slide 105 Laurent Toutain Filière 2

314 Backbone router IETF Working Groups 6LoWPAN Router BR3 Backbone BR1 p BR2 s BR3 p DACStatus=OK NA Slide 105 Laurent Toutain Filière 2

315 LOAD and LOADng Slide 106 Laurent Toutain Filière 2

316 Routing Protocols Pro-active protocol: LOAD G.9903 (Annex H) Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks. LOAD works for mesh-under (MAC-16 and MAC-64), LOADng includes route-over (IPv6) and IPv4. Messages: Route REQuest : flooded to neighbors looking to a destination. Route REPly: P2P response triggered when a RREQ reach the destination. RREP-ACK: optional to LOADng to be sure that the RREP has been received. RERR: when impossible to forward data toward destination Slide 107 Laurent Toutain Filière 2

317 Routing Protocols Tables Each node maintains 4 tables: Routing Set: Dest NextHop Metric MetricType HopCount SeqNum Bidir. Iface ValidTime Blacklisted Set: Neighbors with unidirectional connectivity. Local Interface set: addresses associated to node s interfaces. DestinationSet: addresses the node is responsible (ie non LOAD nodes) Pending ack set: if REEP-ACK is required. Slide 108 Laurent Toutain Filière 2

318 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir Dest NH HC Seq Bidir source Dest NH HC Seq Bidir Dest NH HC Seq Bidir Dest NH HC Seq Bidir Slide 109 Laurent Toutain Filière 2

319 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir RREQ: Orig=5, Dest=0, Seq=BEEF, HC=0 Dest NH HC Seq Bidir source Dest NH HC Seq Bidir Dest NH HC Seq Bidir Dest NH HC Seq Bidir Slide 109 Laurent Toutain Filière 2

320 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir 1 2 Dest NH HC Seq Bidir RREQ: Orig=5, Dest=0, Seq=BEEF, HC=0 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

321 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir RREQ: Orig=5, Dest=0, Seq=BEEF, HC=1 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

322 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir RREQ: Orig=5, Dest=0, Seq=BEEF, HC=1 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

323 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir RREQ: Orig=5, Dest=0, Seq=BEEF, HC=2 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

324 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir 0 BEEF BEEF BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

325 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir 0 BEEF BEEF 0 RREQ: Orig=5, Dest=0, Seq=BEEF, HC= BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

326 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir BEEF 0 Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir 0 BEEF BEEF BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

327 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir BEEF 0 Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir 0 BEEF BEEF 0 RREP BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

328 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir BEEF 0 Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir BEEF BEEF 0 RREP BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF source Dest NH HC Seq Bidir 0 BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

329 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir BEEF 0 Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 RREP RREP RREP source Dest NH HC Seq Bidir BEEF 0 0 BEEF BEEF 0 Dest NH HC Seq Bidir BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

330 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir BEEF 0 Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 RREP RREP RREP source Dest NH HC Seq Bidir BEEF 0 0 BEEF BEEF 0 Dest NH HC Seq Bidir BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

331 Routing Protocols Example : Simple AODV (LOAD) Dest NH HC Seq Bidir BEEF 0 Destination 0 Dest NH HC Seq Bidir Dest NH HC Seq Bidir BEEF BEEF RREP entry is in table, message ignored, expect if QoS is better or HC smaller. Dest NH HC Seq Bidir 0 BEEF 0 RREP RREP source 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir 0 BEEF BEEF 0 Dest NH HC Seq Bidir BEEF BEEF 0 Slide 109 Laurent Toutain Filière 2

332 Slide 110 Laurent Toutain Filière 2

333 RPL RPL Ecosystem RFC 5548 Urban RFC 5673 indus RFC 5826 Home RFC 5867 Building RPL RFC 6550 Thanks to Dominique Barthel (Orange) Slide 111 Laurent Toutain Filière 2

334 RPL RPL Ecosystem Generic specification: DoDAG algorithm, messages RFC 5548 Urban RFC 5673 indus RFC 5826 Home RFC 5867 Building RPL RFC 6550 Thanks to Dominique Barthel (Orange) Slide 111 Laurent Toutain Filière 2

335 RPL RPL Ecosystem P2P (opt.) draft-ietf-roll-p2p-16 RFC 5548 Urban RFC 5673 indus RFC 5826 Home RFC 5867 Building RPL RFC 6550 Optimize timer values Trickle RFC 6206 Thanks to Dominique Barthel (Orange) Slide 111 Laurent Toutain Filière 2

336 RPL RPL Ecosystem Basic Objective Function: Minimize hop to the nearest exit router. P2P (opt.) draft-ietf-roll-p2p-16 OF0 RFC 6552 RFC 5548 Urban RFC 5673 indus RFC 5826 Home RFC 5867 Building RPL RFC 6550 Trickle RFC 6206 Thanks to Dominique Barthel (Orange) Slide 111 Laurent Toutain Filière 2

337 RPL RPL Ecosystem RFC 5548 Urban RFC 5673 indus RFC 5826 Home RFC 5867 Building P2P (opt.) draft-ietf-roll-p2p-16 RPL RFC 6550 OF0 RFC 6552 MRHOF RFC 6719 Metrics RFC 6551 Min Rank Hysteresis: Change parents only if a threshold is reached. Trickle RFC 6206 Thanks to Dominique Barthel (Orange) Slide 111 Laurent Toutain Filière 2

338 RPL RPL Ecosystem RFC 5548 Urban RFC 5673 indus RFC 5826 Home RFC 5867 Building P2P (opt.) draft-ietf-roll-p2p-16 RPL RFC 6550 OF0 RFC 6552 MRHOF RFC 6719 Metrics RFC 6551 Trickle RFC 6206 Thanks to Dominique Barthel (Orange) Slide 111 Laurent Toutain Filière 2

339 RPL RPL: Generic protocol RFC 6550 Routing Protocol on Lossy Links Based on a Directed Acyclic Graph: Based on Distance Vector Simple to implement Announcements are limited in stable network with trickle algorithm Designed to be robust (several paths) and reduced convergence time Two kind of traffic P2MP: 6LBR to 6LN MP2P: 6LN to 6LBR P2P is under study Each node can be a router and forward packets Some nodes can only be leave: Register their address Do not participate to routing announcement Slide 112 Laurent Toutain Filière 2

340 RPL RPL - DIO s Slide 113 Laurent Toutain Filière 2

341 RPL RPL - DIO s 3 rank= Slide 113 Laurent Toutain Filière 2

342 RPL RPL - DIO rank=3 rank=5 s rank= rank= Slide 113 Laurent Toutain Filière 2

343 RPL RPL - DIO 2 rank= rank=3 s rank=5 7 rank=7 rank=0 rank=5 rank=7 8 rank= rank=9 Slide 113 Laurent Toutain Filière 2

344 RPL RPL - DIO 2 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 rank=7 8 rank= rank= rank=9 Slide 113 Laurent Toutain Filière 2

345 RPL RPL - DIO 2 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 rank=7 8 rank= rank= rank=9 Slide 113 Laurent Toutain Filière 2

346 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 rank=7 8 rank=8 12 rank=17 13 rank= rank=9 Slide 113 Laurent Toutain Filière 2

347 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 rank=7 8 rank=8 12 rank=17 13 rank= rank=9 Slide 113 Laurent Toutain Filière 2

348 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 rank=7 8 rank=8 12 rank=17 13 rank= rank=9 DoDAG: Destination-Oriented Directed Acyclic Graph Slide 113 Laurent Toutain Filière 2

349 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 3 rank=7 8 rank=8 12 rank=17 13 rank= rank=9 Slide 113 Laurent Toutain Filière 2

350 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 3 rank=3 8 rank=4 12 rank=17 13 rank=9 6 9 rank=5 Slide 113 Laurent Toutain Filière 2

351 RPL RPL - DIO 2 rank=6 10 rank= rank=3 s rank=4 7 rank=6 11 rank=11 rank=0 rank=5 3 rank=3 8 rank=4 12 rank=16 13 rank=9 6 9 rank=5 Slide 113 Laurent Toutain Filière 2

352 RPL RPL - DIO 2 rank=6 10 rank= rank=3 s rank=4 7 rank=6 11 rank=11 rank=0 rank=5 7 rank=7 8 rank=4 12 rank=16 13 rank=9 6 9 rank=5 Slide 113 Laurent Toutain Filière 2

353 RPL RPL - DIO 2 rank=6 10 rank= rank=3 s rank=4 7 rank=6 11 rank=11 rank=0 rank=5 7 rank=7 8 rank=4 12 rank=16 13 rank=9 6 9 rank=5 Slide 113 Laurent Toutain Filière 2

354 RPL RPL - DIO 2 rank=6 10 rank= rank=3 s rank=0 rank= rank= rank=7 9 8 rank= 7 rank= rank=6 rank=11 7 rank=16 rank=9 Slide 113 Laurent Toutain Filière 2

355 RPL RPL - DIO 2 rank=6 10 rank= rank=3 s rank= 7 11 rank=0 rank=5 rank= rank= rank= rank= rank=11 7 rank=16 rank= Slide 113 Laurent Toutain Filière 2

356 RPL RPL - DIO 2 rank=6 10 rank= rank=3 s rank= 7 11 rank=0 rank=5 rank= rank= rank= rank= rank= 7 rank=16 rank= Slide 113 Laurent Toutain Filière 2

357 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 7 rank=7 8 rank=8 12 rank=17 13 rank= rank=9 Slide 113 Laurent Toutain Filière 2

358 RPL RPL - DIO 2 rank=7 10 rank= rank=3 s rank=5 7 rank=7 11 rank=12 rank=0 rank=5 7 rank=7 8 rank=8 12 rank=17 13 rank= rank= Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 113 Laurent Toutain Filière 2

359 RPL Rank Rank: 16 bits MinHopRankIncrease: is used to add some precision by default: MinHopRankIncrease = 256 DAGRank(rank) = rank MinHopRankIncrease by default: rank most significant byte. Relations: A rank < B rank if DAGRank(A rank ) < DAGRank(B rank ) A rank = B rank if DAGRank(A rank ) = DAGRank(B rank ) A rank > B rank if DAGRank(A rank ) > DAGRank(B rank ) Actions: DAGRank(M) < DAGRank(N): M can be a DoDAG parent without risk of loop DAGRank(M) = DAGRank(N): There is a risk of loop, but sibling possibilities DAGRank(M) > DAGRank(N): High risk of loop Slide 114 Laurent Toutain Filière 2

360 RPL Example s MinHopRankIncrease = 256 Compute the DoDAG Slide 115 Laurent Toutain Filière 2

361 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR= r=604 DR= r=538 DR= r=866 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

362 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR=2 r=933 DR= r=604 DR= r=538 DR=2 436 r=630 DR= r=866 DR=3 r=974 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

363 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR=2 r=933 DR=3 r=1722 DR=6 r=1660 DR= r=604 DR= r=538 DR=2 436 r=630 DR= r=1061 DR=4 r=866 DR=3 r=974 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

364 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR=2 r=933 DR=3 r=1722 DR=6 r=1660 DR= r=604 DR= r=538 DR=2 436 r=630 DR= r=1523 DR=5 9 r=1061 DR=4 r=866 DR=3 r=974 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

365 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR=2 r=933 DR=3 r=1722 DR=6 r=1660 DR= r=604 DR= r=538 DR=2 436 r=630 DR= r=1523 DR=5 9 r=1061 DR=4 r=866 DR=3 r=974 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

366 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR=2 r=933 DR=3 r=1722 DR=6 r=1660 DR= r=604 DR= r=538 DR=2 436 r=630 DR= r=1523 DR=5 9 r=1061 DR=4 r=866 DR=3 r=974 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

367 RPL Example r=1047 DR= s r=702 DR= r=0 DR= r=511 DR=2 r=933 DR=3 r=1722 DR=6 r=1660 DR= r=604 DR= r=538 DR=2 436 r=630 DR= r=1523 DR=5 9 r=1061 DR=4 r=866 DR=3 r=974 DR=3 MinHopRankIncrease = 256 Compute the DoDAG Slide 116 Laurent Toutain Filière 2

368 RPL Version Number s Type=155 Code=1 Checksum Instance version=0 Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 117 Laurent Toutain Filière 2

369 RPL Version Number s Type=155 Code=1 Checksum Instance version=1 Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 117 Laurent Toutain Filière 2

370 RPL Version Number s Type=155 Code=1 Checksum Instance version=1 Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 117 Laurent Toutain Filière 2

371 RPL Version Number s Type=155 Code=1 Checksum Instance version=1 Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 117 Laurent Toutain Filière 2

372 RPL Version Number s Type=155 Code=1 Checksum Instance version=1 Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 117 Laurent Toutain Filière 2

373 RPL Version Number s Type=155 Code=1 Checksum Instance version=1 Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 117 Laurent Toutain Filière 2

374 RPL Instance Minimize Delay s Minimize Energy Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 118 Laurent Toutain Filière 2

375 RPL Instance Minimize Delay Minimize Energy 0iii iiii Global: for all LLN s Dii iiii Local: for a specific root D=1: Destination Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 118 Laurent Toutain Filière 2

376 RPL Instance Minimize Delay s Minimize Energy DODAG Version Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 118 Laurent Toutain Filière 2

377 RPL Upward traffic: DoDAG Preferred Parent Slide 119 Laurent Toutain Filière 2

378 RPL Upward traffic: DoDAG Hop by Hop IPv6 forwarding plan Preferred Parent L Slide 119 Laurent Toutain Filière 2

379 RPL DIO fields Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 120 Laurent Toutain Filière 2

380 RPL DIO fields Type=155 Code=1 Checksum Instance version Rank Grounded G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 120 Laurent Toutain Filière 2

381 RPL DIO fields Mode of Operation: 0: No Downward routes maintained by RPL 1: Non-Storing Mode of Operation 2: Storing Mode of Operation with no multicast support 3: Storing Mode of Operation with multicast support Grounded Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) Options Slide 120 Laurent Toutain Filière 2

382 RPL DIO fields Mode of Operation: 0: No Downward routes maintained by RPL 1: Non-Storing Mode of Operation 2: Storing Mode of Operation with no multicast support 3: Storing Mode of Operation with multicast support Grounded Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved Preference: 0: Least preferred (default) 7: most preferred DODAG ID (one of root s IPv6 address) Options Slide 120 Laurent Toutain Filière 2

383 RPL DIO fields Mode of Operation: 0: No Downward routes maintained by RPL 1: Non-Storing Mode of Operation 2: Storing Mode of Operation with no multicast support 3: Storing Mode of Operation with multicast support Grounded Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved Preference: 0: Least preferred (default) 7: most preferred DODAG ID (one of root s IPv6 address) DAO Trigger Sequence Number: Incremented to generate a DAO messages from children Options Slide 120 Laurent Toutain Filière 2

384 RPL DIO options Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) 0x00 Pad1-0x01 PadN 0x02 DAG Metric Container 0x03 Routing Information 0x04 DODAG Configuration 0x08 Prefix Information Slide 121 Laurent Toutain Filière 2

385 RPL DIO options DAG Metric Container (see RFC 6552) 0x02 Length (B) Metric Data Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) 0x00 Pad1-0x01 PadN 0x02 DAG Metric Container 0x03 Routing Information 0x04 DODAG Configuration 0x08 Prefix Information Slide 121 Laurent Toutain Filière 2

386 RPL DIO options DAG Metric Container (see RFC 6552) 0x02 Length (B) Metric Data Route Information (from RFC 4191 Default Router Pref) 0x03 Length (B) Pref Lenght ---PP--- Prefix Lifetime Prefix Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) 0x00 Pad1-0x01 PadN 0x02 DAG Metric Container 0x03 Routing Information 0x04 DODAG Configuration 0x08 Prefix Information Slide 121 Laurent Toutain Filière 2

387 RPL DIO options DAG Metric Container (see RFC 6552) 0x02 Length (B) Metric Data Route Information (from RFC 4191 Default Router Pref) 0x03 Length (B) Pref Lenght ---PP--- Prefix Lifetime Prefix DODAG Configuration 0x A PCS DIOIntDoubl. DIOIntMin. DIORedun. MaxRankIncrease MinHopRankIncrease Obj. func. CP. Reserved Def. Lifetime Lifetime Unit Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) 0x00 Pad1-0x01 PadN 0x02 DAG Metric Container 0x03 Routing Information 0x04 DODAG Configuration 0x08 Prefix Information Slide 121 Laurent Toutain Filière 2

388 RPL DIO options DAG Metric Container (see RFC 6552) 0x02 Length (B) Metric Data Route Information (from RFC 4191 Default Router Pref) 0x03 Length (B) Pref Lenght ---PP--- Prefix Lifetime Prefix DODAG Configuration 0x A PCS DIOIntDoubl. DIOIntMin. DIORedun. MaxRankIncrease MinHopRankIncrease Obj. func. CP. Reserved Def. Lifetime Lifetime Unit Prefix Information Option (from RFC 4861 Neighbor Discovery) 0x03 30 Pref Lenght LAR Valid Lifetime Preferred Lifetime Reserved Prefix Type=155 Code=1 Checksum Instance version Rank G -MOPPref DTSN Flags Reserved DODAG ID (one of root s IPv6 address) 0x00 Pad1-0x01 PadN 0x02 DAG Metric Container 0x03 Routing Information 0x04 DODAG Configuration 0x08 Prefix Information Slide 121 Laurent Toutain Filière 2

389 RPL Trickle RFC I min I max Slide 122 Laurent Toutain Filière 2

390 RPL Trickle RFC I min I I max Slide 122 Laurent Toutain Filière 2

391 RPL Trickle RFC I min I I max I 2 Slide 122 Laurent Toutain Filière 2

392 RPL Trickle RFC I min I I max I 2 0 I min I I max I 2 0 I min I I max I 2 Slide 122 Laurent Toutain Filière 2

393 RPL Trickle RFC I min I I max t I 2 0 I min I I max I 2 0 I min I I max I 2 Slide 122 Laurent Toutain Filière 2

394 RPL Trickle RFC I min I I max t I 2 0 I min I I max I 2 0 I min I I max I 2 Slide 122 Laurent Toutain Filière 2

395 RPL Trickle RFC I min I I max t I 2 0 I = I min I 2 0 I = I min I 2 Slide 122 Laurent Toutain Filière 2

396 RPL Trickle RFC I min I I max t I 2 0 I = I min I 2 0 I = I min I 2 Slide 122 Laurent Toutain Filière 2

397 RPL Trickle RFC I I 2 0 I = I min I 2 0 I = I min I 2 Slide 122 Laurent Toutain Filière 2

398 RPL Trickle RFC I I 2 0 I = I min t I 2 0 I = I min I 2 Slide 122 Laurent Toutain Filière 2

399 RPL Trickle RFC I c = 1 I 2 0 I = I min t I 2 0 I = I min c = 1 I 2 Slide 122 Laurent Toutain Filière 2

400 RPL Trickle RFC I I 2 0 I = I min t I 2 0 I = I min t I 2 Slide 122 Laurent Toutain Filière 2

401 RPL Trickle RFC I I 2 0 I = I min I = 2I min t I 2 I 2 0 I = I min I = 2I min t I 2 I 2 Slide 122 Laurent Toutain Filière 2

402 RPL DAO Type=155 Code=2 Checksum Instance D DAOSeq. Status. (DODAG ID) 0x00 Pad1-0x01 PadN 0x05 RPL Target (multiple) 0x06 Transit Information (multiple) 0x09 RPL Target Descriptor Slide 123 Laurent Toutain Filière 2

403 RPL DAO learned from DIO DODAGid is present Incremented to be acked Type=155 Code=2 Checksum 0:OK, 1-127: select other parent, : reject Instance D DAOSeq. Status. (DODAG ID) 0x00 Pad1-0x01 PadN 0x05 RPL Target (multiple) 0x06 Transit Information (multiple) 0x09 RPL Target Descriptor Slide 123 Laurent Toutain Filière 2

404 RPL DAO RPL Target (i.e. route or address) 0x05 Length (B) Flags=0x00 Pref Length Target Prefix learned from DIO DODAGid is present Incremented to be acked 0:OK, 1-127: select other parent, : reject Type=155 Code=2 Checksum Instance D DAOSeq. Status. (DODAG ID) 0x00 Pad1-0x01 PadN 0x05 RPL Target (multiple) 0x06 Transit Information (multiple) 0x09 RPL Target Descriptor Slide 123 Laurent Toutain Filière 2

405 RPL DAO RPL Target (i.e. route or address) 0x05 Length (B) Flags=0x00 Pref Length Target Prefix Transit Information (i.e. parent) 0x06 Length (B) E Path ctrl Path seq Path Lifetime Parent address learned from DIO DODAGid is present Incremented to be acked Type=155 Code=2 Checksum 0:OK, 1-127: select other parent, : reject Instance D DAOSeq. Status. (DODAG ID) 0x00 Pad1-0x01 PadN 0x05 RPL Target (multiple) 0x06 Transit Information (multiple) 0x09 RPL Target Descriptor Slide 123 Laurent Toutain Filière 2

406 RPL DAO RPL Target (i.e. route or address) 0x05 Length (B) Flags=0x00 Pref Length Target Prefix Transit Information (i.e. parent) 0x06 Length (B) E Path ctrl Path seq Path Lifetime Parent address learned from DIO DODAGid is present Incremented to be acked Type=155 Code=2 Checksum 0:OK, 1-127: select other parent, : reject Instance D DAOSeq. Status. Target Descriptor 0x06 Length = 4 Descriptor (continued) Descriptor (DODAG ID) 0x00 Pad1-0x01 PadN 0x05 RPL Target (multiple) 0x06 Transit Information (multiple) 0x09 RPL Target Descriptor Slide 123 Laurent Toutain Filière 2

407 RPL DAO Storing Mode 2 α :: IID 2 10 α :: IID α :: IID 0 α :: IID s α :: IID α :: IID 4 α :: IID α :: IID 7 α :: IID α :: IID 6 9 α :: IID 9 α :: IID 8 α :: IID α :: IID 13 Type=155 Code=2 Checksum Instance D DAOSeq. Status. (DODAG ID) 0x05 RPL Target (multiple) Slide 124 Laurent Toutain Filière 2

408 RPL DAO Storing Mode 0 1 α :: IID 0 α :: IID 4 α :: IID 1 α :: IID s α :: IID α :: IID α :: IID α :: IID α :: IID Type=155 α :: IID Code=2 Checksum 11 α :: IID 10 α :: IID 2 α :: IID 2 3 α :: IID 6 Instance D DAOSeq. α :: IID Status. 12 α :: IID 9 α :: IID α :: IID 6 α :: IID 6 2 α :: IID α :: 13 α :: IID 11 α :: α IID :: 4 IIDα 8 :: IID 5 9 (DODAG ID) α :: IID 10 α :: IID 12 8 α :: IID 7 9 α :: IID 8 α :: IID 13 α :: IID α :: IID 7 11 α :: IID 10 α :: IID 10 α :: IID α :: IID 12 α :: IID α :: IID x05 RPL Target (multiple) α :: IID α :: IID 12 α :: IID 5 α :: IID 13 α :: IID 8 α :: IID 5 α :: IID 9 Slide 124 Laurent Toutain Filière 2

409 RPL DAO Non-Storing Mode 2 α :: IID 2 10 α :: IID α :: IID 0 α :: IID s α :: IID α :: IID 4 α :: IID α :: IID 7 α :: IID α :: IID 6 9 α :: IID 9 α :: IID 8 α :: IID α :: IID 13 Type=155 Code=2 Checksum Instance D DAOSeq. Status. (DODAG ID) 0x05 RPL Target 0x06 Transit Information Slide 125 Laurent Toutain Filière 2

410 RPL DAO Non-Storing Mode 2 α :: IID 2 10 α :: IID α :: IID 0 s 3 α :: IID 3 α :: IID α :: IID 4 α :: IID α :: IID 7 α :: IID α :: IID 6 9 α :: IID 9 α :: IID 8 α :: IID α :: IID IPv6 (or 6LoWPAN) Rout. Type Next Header Hdr Ext Len =3 Com I.Com E. Pad Address 1... Address n Layer 4) reserved Seg. Left RFC6554 Slide 125 Laurent Toutain Filière 2

411 RPL Upward traffic: DoDAG 6LBR 11 root Slide 126 Laurent Toutain Filière 2

412 RPL Upward traffic: DoDAG 11 root DIO Slide 126 Laurent Toutain Filière 2

413 RPL Upward traffic: DoDAG 11 root DIO Slide 126 Laurent Toutain Filière 2

414 RPL Upward traffic: DoDAG 11 root DIO Slide 126 Laurent Toutain Filière 2

415 RPL Upward traffic: DoDAG Destination Oriented DAG 11 root Slide 126 Laurent Toutain Filière 2

416 RPL Upward traffic: DoDAG 11 root Slide 126 Laurent Toutain Filière 2

417 RPL Upward traffic: DoDAG Destination Oriented DAG 11 root Slide 126 Laurent Toutain Filière 2

418 RPL Upward traffic: DoDAG Preferred Parent 11 root Slide 126 Laurent Toutain Filière 2

419 RPL Upward traffic: DoDAG Objective Function is used to compute DoDAG: - To compute rank - To define preferred parent Preferred Parent 11 root A Node may never select a parent with a higher rank than itself Avoid loops Slide 126 Laurent Toutain Filière 2

420 RPL Upward traffic: DoDAG Preferred Parent Slide 127 Laurent Toutain Filière 2

421 RPL Upward traffic: DoDAG Hop by Hop IPv6 forwarding plan Preferred Parent L Slide 127 Laurent Toutain Filière 2

422 RPL Metrics Slide 128 Laurent Toutain Filière 2

IPv6 and Routing. Laurent Toutain. Table of Contents. October 18, 2011

IPv6 and Routing. Laurent Toutain. Table of Contents. October 18, 2011 IPv6 and Routing Laurent Toutain October 18, 2011 Table of Contents 1 Concepts Datagram 2 Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation Addresses Notation Addressing scheme

More information

IPv6 Courses. c G6 Association. November 13, Concepts. Facts on Addresses. Addresses. Protocol. Associated Protocols & Mechanisms.

IPv6 Courses. c G6 Association. November 13, Concepts. Facts on Addresses. Addresses. Protocol. Associated Protocols & Mechanisms. s & IPv6 Courses c G6 Association November 13, 2015 c G6 Association November 13, 2015 1 / 82 Table of Contents s & 1 2 3 4 5 s & 6 c G6 Association November 13, 2015 2 / 82 Datagram What Is A Datagram

More information

IPv6 Courses. c G6 Association. June 26, Concepts. Facts on Addresses. Addresses. Protocol. Associated Protocols & Mechanisms.

IPv6 Courses. c G6 Association. June 26, Concepts. Facts on Addresses. Addresses. Protocol. Associated Protocols & Mechanisms. s & Courses c G6 Association Applications June 26, 2012 Conclusion c G6 Association June 26, 2012 1 / 212 Table of Contents s & Applications Conclusion 1 2 3 4 5 s & 6 7 8 9 Applications 10 Conclusion

More information

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land IPv6 1 IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header Ver IHL Type of Service Total Length Ver Traffic Class Flow Label Identification Flags Fragment Offset Payload Length Next Header Hop Limit

More information

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local 1 v4 & v6 Header Comparison v6 Ver Time to Live v4 Header IHL Type of Service Identification Protocol Flags Source Address Destination Address Total Length Fragment Offset Header Checksum Ver Traffic Class

More information

TD#RNG#2# B.Stévant#

TD#RNG#2# B.Stévant# TD#RNG#2# B.Stévant# En1tête#des#protocoles#IP# IPv4 Header IPv6 Extensions ICMPv6 s & 0...7...15...23...31 Ver. IHL Di Serv Packet Length Identifier flag O set TTL Checksum Source Address Destination

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

Internet Protocol, Version 6

Internet Protocol, Version 6 Outline Protocol, Version 6 () Introduction to Header Format Addressing Model ICMPv6 Neighbor Discovery Transition from to vs. Taken from:chun-chuan Yang Basics: TCP/ Protocol Suite Protocol (IP) Features:

More information

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL IPv6 Protocol & Structure npnog3 9-11 Dec, 2017 Chitwan, NEPAL Protocol Header Comparison IPv4 contains 10 basic header fields, while IPv6 has 6 basic header fields IPv6 header size is 40 octets compared

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local

More information

IPv6 Protocol Architecture

IPv6 Protocol Architecture IPv6 Protocol Architecture v4/v6 Header Comparison Not kept in IPv6 Renamed in IPv6 Same name and function New in IPv6 2 New Functional Improvement Address Space Increase from 32-bit to 128-bit address

More information

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE )

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE ) Reference: 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann What is 6LoWPAN? 6LoWPAN makes this possible - Low-power RF + IPv6 = The Wireless Embedded Internet IPv6 over Low-Power wireless Area

More information

Introduction to IPv6 - II

Introduction to IPv6 - II Introduction to IPv6 - II Building your IPv6 network Alvaro Vives 27 June 2017 Workshop on Open Source Solutions for the IoT Contents IPv6 Protocols and Autoconfiguration - ICMPv6 - Path MTU Discovery

More information

Introduction to IPv6

Introduction to IPv6 Introduction to IPv6 1 What is IPv6? IP (Internet Protocol) The most common protocol over the Internet defines how packets are sent over the internet Addressing and routing Current versions IPv4 & IPv6

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. Hans Peter Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Lecture Computer Networks Internet Protocol

More information

Workshop on Scientific Applications for the Internet of Things (IoT) March

Workshop on Scientific Applications for the Internet of Things (IoT) March Workshop on Scientific Applications for the Internet of Things (IoT) March 16-27 2015 IP Networks: From IPv4 to IPv6 Alvaro Vives - alvaro@nsrc.org Contents 1 Digital Data Transmission 2 Switched Packet

More information

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT ISO 9001:2008 Pankaj Kumar Dir, TEC, DOT AWARENESS OBJECTIVES IPv6 Address Format & Basic Rules Understanding the IPv6 Address Components Understanding & Identifying Various Types of IPv6 Addresses 3/25/2012

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

Rocky Mountain IPv6 Summit April 9, 2008

Rocky Mountain IPv6 Summit April 9, 2008 Rocky Mountain IPv6 Summit April 9, 2008 Introduction to the IPv6 Protocol Scott Hogg GTRI - Director of Advanced Technology Services CCIE #5133, CISSP 1 IPv6 Header IPv4 Header 20 bytes IPv6 Header, 40

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER CHAPTER 3 This chapter describes how to configure Internet Protocol version 6 (IPv6), which includes addressing, Neighbor Discovery Protocol (ND), and Internet Control Message Protocol version 6 (ICMPv6),

More information

Configuring IPv6 for Gigabit Ethernet Interfaces

Configuring IPv6 for Gigabit Ethernet Interfaces CHAPTER 46 IP version 6 (IPv6) provides extended addressing capability beyond those provided in IP version 4 (IPv4) in Cisco MDS SAN-OS. The architecture of IPv6 has been designed to allow existing IPv4

More information

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables IPv6 Concepts Tópicos Avançados de Redes 2016/2017 Why IPv6? 2 Lack of IPv4 addresses Imply NAT, or other solutions; Realm Specific IP (RFC3102) Improve router performance Simplify IP header Align to 64

More information

IPv6 Protocols & Standards

IPv6 Protocols & Standards IPv6 Protocols & Standards ISP/IXP Workshops 1 So what has really changed? Expanded address space Address length quadrupled to 16 bytes Header Format Simplification Fixed length, optional headers are daisy-chained

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (12 th Week) The Internet Protocol 12.Outline Principles of Internetworking Internet Protocol Operation Internet Protocol

More information

IPv6. (Internet Protocol version 6)

IPv6. (Internet Protocol version 6) IPv6 Réseaux 1 IPv6 (Internet Protocol version 6) 2 IPv6 IP version 6 is the new version of the Internet Protocol (IP) The standardization process started in the 90s The main elements of IPv4 are still

More information

An Industry view of IPv6 Advantages

An Industry view of IPv6 Advantages An Industry view of IPv6 Advantages March 2002 Yanick.Pouffary@Compaq.Com Imagine what IPv6 can do for you! 1 Where we are Today IPv4 a victim of its own success IPv4 addresses consumed at an alarming

More information

Configuring IPv6 basics

Configuring IPv6 basics Contents Configuring IPv6 basics 1 IPv6 overview 1 IPv6 features 1 IPv6 addresses 2 IPv6 neighbor discovery protocol 5 IPv6 PMTU discovery 8 IPv6 transition technologies 8 Protocols and standards 9 IPv6

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

CSCI-1680 Network Layer:

CSCI-1680 Network Layer: CSCI-1680 Network Layer: Wrapup Rodrigo Fonseca Based partly on lecture notes by Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John JannoA Administrivia Homework 2 is due tomorrow So we can

More information

Outline. Introduction. The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping

Outline. Introduction. The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping Outline Introduction The Internet of Things Applications of 6LoWPAN The Internet Architecture and Protocols Link Layer Technologies Introduction to 6LoWPAN The 6LoWPAN Format Bootstrapping Link-Layer Commissioning

More information

Foreword xxiii Preface xxvii IPv6 Rationale and Features

Foreword xxiii Preface xxvii IPv6 Rationale and Features Contents Foreword Preface xxiii xxvii 1 IPv6 Rationale and Features 1 1.1 Internet Growth 1 1.1.1 IPv4 Addressing 1 1.1.2 IPv4 Address Space Utilization 3 1.1.3 Network Address Translation 5 1.1.4 HTTP

More information

Athanassios Liakopoulos

Athanassios Liakopoulos Introduction to IPv6 (Part B) Athanassios Liakopoulos (aliako@grnet.gr) Greek IPv6 Training, Athens, May 2010 Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The

More information

IPv6 Next generation IP

IPv6 Next generation IP Seminar Presentation IPv6 Next generation IP N Ranjith Kumar 11/5/2004 IPv6 : Next generation IP 1 Network Problems Communication Problem Identification Problem Identification of Networks Logical Addressing

More information

Introduction to IPv6. IPv6 addresses

Introduction to IPv6. IPv6 addresses Introduction to IPv6 (Chapter 4 in Huitema) IPv6,Mobility-1 IPv6 addresses 128 bits long Written as eight 16-bit integers separated with colons E.g. 1080:0000:0000:0000:0000:0008:200C:417A = 1080::8:800:200C:417A

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 CS 356: Computer Network Architectures Lecture 15: DHCP, NAT, and IPv6 [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 Xiaowei Yang xwy@cs.duke.edu Dynamic Host Configuration Protocol (DHCP) Dynamic Assignment

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery IPv6 Neighbor Discovery Last Updated: September 19, 2012 The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 9 Internet Protocols Aims:- basic protocol functions internetworking principles connectionless internetworking IP IPv6 IPSec 1 Protocol Functions have a small set of functions that form basis of

More information

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang CS 356: Computer Network Architectures Lecture 10: IP Fragmentation, ARP, and ICMP Xiaowei Yang xwy@cs.duke.edu Overview Homework 2-dimension parity IP fragmentation ARP ICMP Fragmentation and Reassembly

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local

More information

Mobile Communications

Mobile Communications Mobile Communications Wireless Personal Area Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 IEEE Standards 2 IEEE 802.15.4 Wireless PAN (Sensor Networks) 3 Information Current

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

IPv6 address configuration and local operation

IPv6 address configuration and local operation IPv6 address configuration and local operation Amsterdam, 16 february 2012 Iljitsch van Beijnum Today's topics IPv6 address configuration stateless autoconfig DHCPv6 DAD, NUD, timers Router solicitations/advertisements

More information

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and INTERNET PROTOCOL VERSION 6 (IPv6) Introduction IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and addressing

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Network Layer Part A (IPv6) Network Layer 4-1

Network Layer Part A (IPv6) Network Layer 4-1 Network Layer Part A (IPv6) Network Layer 4-1 Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation

More information

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN

Politecnico di Milano Advanced Network Technologies Laboratory. 6LowPAN Politecnico di Milano Advanced Network Technologies Laboratory 6LowPAN ACKs o Slide/Figures Sources n IPSO Alliance Webinar 6LowPAN for IP Smart Objects n 6LoWPAN: The Wireless Embedded Internet, Shelby

More information

IPv6 Associated Protocols. Athanassios Liakopoulos 6DEPLOY IPv6 Training, Skopje, June 2011

IPv6 Associated Protocols. Athanassios Liakopoulos 6DEPLOY IPv6 Training, Skopje, June 2011 IPv6 Associated Protocols Athanassios Liakopoulos (aliako@grnet.gr) 6DEPLOY IPv6 Training, Skopje, June 2011 Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The Powerpoint

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-5 Introduction to IPv6 DNS 1-8 Protocols

More information

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc.

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc. IPv6 Protocol Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer fmajstor@cisco.com Cisco Systems, Inc. 1 Agenda IPv6 Primer IPv6 Protocol Security Dual stack approach

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-2 Introduction to IPv6 Neighbor Discovery Protocol 1-5 Introduction to ND Snooping 1-7 Introduction

More information

Avaya Networking IPv6 Using Fabric Connect to ease IPv6 Deployment. Ed Koehler Director DSE Ron Senna SE Avaya Networking Solutions Architecture

Avaya Networking IPv6 Using Fabric Connect to ease IPv6 Deployment. Ed Koehler Director DSE Ron Senna SE Avaya Networking Solutions Architecture Avaya Networking IPv6 Using Fabric Connect to ease IPv6 Deployment Ed Koehler Director DSE Ron Senna SE Avaya Networking Solutions Architecture IAUG Newport RI, November 2013 Agenda IPv6, The fundamentals

More information

Operation Manual IPv6 H3C S3610&S5510 Series Ethernet Switches Table of Contents. Table of Contents

Operation Manual IPv6 H3C S3610&S5510 Series Ethernet Switches Table of Contents. Table of Contents Operation Manual IPv6 Table of Contents Table of Contents Chapter 1 IPv6 Basics Configuration... 1-1 1.1 IPv6 Overview... 1-1 1.1.1 IPv6 Features... 1-2 1.1.2 Introduction to IPv6 Address... 1-3 1.1.3

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) Internet Control Message Protocol (ICMP) 1 Overview The IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions: Control functions (ICMP) Multicast signaling

More information

IPv6 Protocols & Standards. ISP/IXP Workshops

IPv6 Protocols & Standards. ISP/IXP Workshops IPv6 Protocols & Standards ISP/IXP Workshops 1 So what has really changed? Expanded address space Address length quadrupled to 16 bytes Header Format Simplification Fixed length, optional headers are daisy-chained

More information

Mobile Communications. Ad-hoc and Mesh Networks

Mobile Communications. Ad-hoc and Mesh Networks Ad-hoc+mesh-net 1 Mobile Communications Ad-hoc and Mesh Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto Ad-hoc+mesh-net 2 What is an ad-hoc network? What are differences between

More information

IPv6 : Internet Protocol Version 6

IPv6 : Internet Protocol Version 6 IPv6 : Internet Protocol Version 6 History Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s)

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s) History IPv6 : Internet Protocol Version 6 Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-6 Introduction to IPv6 DNS 1-8 Protocols

More information

IPv4 and IPv6 Commands

IPv4 and IPv6 Commands This module describes the Cisco IOS XR software commands used to configure the IPv4 and IPv6 commands for Broadband Network Gateway (BNG) on the Cisco ASR 9000 Series Router. For details regarding the

More information

CSE 4215/5431: Mobile Communications Winter Suprakash Datta

CSE 4215/5431: Mobile Communications Winter Suprakash Datta CSE 4215/5431: Mobile Communications Winter 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4215 Some slides are adapted

More information

Introduction to IPv6. IPv6 addresses

Introduction to IPv6. IPv6 addresses Introduction to IPv6 (Chapter4inHuitema) IPv6,Mobility-1 IPv6 addresses 128 bits long Written as eight 16-bit hexadecimal integers separated with colons E.g. 1080:0000:0000:0000:0000:0008:200C:417A = 1080::8:800:200C:417A

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

The Netwok Layer IPv4 and IPv6 Part 2

The Netwok Layer IPv4 and IPv6 Part 2 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec 2014 1 Contents 6. ARP 7. Host configuration 8. IP packet format Textbook Chapter 5: The Network Layer

More information

Telecom Systems Chae Y. Lee. Contents. Overview. Issues. Addressing ARP. Adapting Datagram Size Notes

Telecom Systems Chae Y. Lee. Contents. Overview. Issues. Addressing ARP. Adapting Datagram Size Notes Internetworking Contents Overview Functions Issues Basic Delivery Unit Addressing Datagram Delivery ARP IPv4 Header Adapting Datagram Size Notes 2 Overview - Example 3 Direct Delivery 4 Indirect Delivery

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Table of Contents 1 IPv6 Basics Configuration 1-1

Table of Contents 1 IPv6 Basics Configuration 1-1 Table of Contents 1 IPv6 Basics Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-5 IPv6 PMTU Discovery 1-8 Introduction

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

Internet Protocols (chapter 18)

Internet Protocols (chapter 18) Internet Protocols (chapter 18) CSE 3213 Fall 2011 Internetworking Terms 1 TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol

More information

cs144 Midterm Review Fall 2010

cs144 Midterm Review Fall 2010 cs144 Midterm Review Fall 2010 Administrivia Lab 3 in flight. Due: Thursday, Oct 28 Midterm is this Thursday, Oct 21 (during class) Remember Grading Policy: - Exam grade = max (final, (final + midterm)/2)

More information

Zigbee protocol stack overview

Zigbee protocol stack overview Zigbee protocol stack overview 2018 ASSUMPTIONS FOR USING THIS TEACHING MATERIAL DSR and OTSL takes no responsibility about the problem which occurs as a result of applying the technical information written

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Mobile IP 2 Mobile Network Layer: Problems and Concerns Entities and Terminology in Mobile IP Mobile Indirect Routing Mobile IP Agent Advertisement Registration

More information

IP: (Internet Protocol) IP - 1

IP: (Internet Protocol)   IP - 1 TCP/IP Family of Protocols IP: (Internet Protocol) www.comnets.uni-bremen.de IP - 1 A suite of protocols What is TCP/IP? Rules for sending and receiving data across networks Addressing Management www.comnets.uni-bremen.de

More information

Chapter 09 Network Protocols

Chapter 09 Network Protocols Chapter 09 Network Protocols Copyright 2011, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems

More information

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) 2. What is the purpose of Layer-3-Switches

More information

Internet Protocol v6.

Internet Protocol v6. Internet Protocol v6 October 25, 2016 v6@nkn.in Table of Content Why IPv6? IPv6 Address Space Customer LAN Migration Why IPv6? IPv6 Address Space Customer LAN migration IPv4 DASH BOARD THE REASON For IPv6

More information

Lecture 11: Networks & Networking

Lecture 11: Networks & Networking Lecture 11: Networks & Networking Contents Distributed systems Network types Network standards ISO and TCP/IP network models Internet architecture IP addressing IP datagrams AE4B33OSS Lecture 11 / Page

More information

IPv6. IPv6 Rationale. IPv6 (Review) IPv6 (Review) IPv6 Extension Headers. IPv6 Header Chaining PROTOCOL ADDRESSING AUTOCONFIGURATION DEPLOYMENT

IPv6. IPv6 Rationale. IPv6 (Review) IPv6 (Review) IPv6 Extension Headers. IPv6 Header Chaining PROTOCOL ADDRESSING AUTOCONFIGURATION DEPLOYMENT IPv6 PROTOCOL ADDRESSING AUTOCONFIGURATION DEPLOYMENT IPv6 Rationale Larger address space Efficient address allocation Simpler processing Autoconfiguration Support for QoS Support for security IPv4 IPv4

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Network Layer Features Basic model Node identification Node aggregation

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. Finding Feature Information,

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Transitioning to IPv6

Transitioning to IPv6 Transitioning to IPv6 麟瑞科技區域銷售事業處副處長張晃崚 CCIE #13673 2007 Cisco Systems, Inc. All rights reserved. ICND2 v1.0 7-1 IPv4 and IPv6 Currently, there are approximately 1.3 billion usable IPv4 addresses available.

More information

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9. Lecture 17 Overview Last Lecture Wide Area Networking (2) This Lecture Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.2 Next Lecture Internet Protocol (2) Source: chapters 19.1, 19.2, 22,1

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

Mobile Communications Mobility Support in Network Layer

Mobile Communications Mobility Support in Network Layer Motivation Mobility support needed to be able to use mobile devices in the Mobile devices need IP address for their communication Applications would like to communicate while being on the move Mobile Communications

More information

Network protocol for Internet of Things based on 6LoWPAN

Network protocol for Internet of Things based on 6LoWPAN Abstract Network protocol for Internet of Things based on 6LoWPAN Yijun Wang 1,*, Yushan Mei 1 College of Electronic & Information Engineering, Changchun University of Science and Technology Changchun

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy Hierarchical Routing Our routing study thus far - idealization all routers identical network flat no true in practice scale: with 50 million destinations: can t store all dest s in routing tables! routing

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

CS 457 Lecture 11 More IP Networking. Fall 2011

CS 457 Lecture 11 More IP Networking. Fall 2011 CS 457 Lecture 11 More IP Networking Fall 2011 IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2011 Some slides from Kurose and Ross, Computer Networking, 5 th Edition One of the core protocols in the Internet Primarily used to communicate errors among routers and hosts IP datagram

More information

Introduction to IPv6. IPv6 addresses

Introduction to IPv6. IPv6 addresses Introduction to IPv6 (Chapter 4 in Huitema) IPv6,Mobility-1 IPv6 addresses 128 bits long Written as eight 16-bit integers separated with colons E.g. 1080:0000:0000:0000:0000:0008:200C:417A = 1080::8:800:200C:417A

More information